CN106769756A - 一种确定裂缝~孔隙型有水气藏排水规模的方法 - Google Patents

一种确定裂缝~孔隙型有水气藏排水规模的方法 Download PDF

Info

Publication number
CN106769756A
CN106769756A CN201611088746.8A CN201611088746A CN106769756A CN 106769756 A CN106769756 A CN 106769756A CN 201611088746 A CN201611088746 A CN 201611088746A CN 106769756 A CN106769756 A CN 106769756A
Authority
CN
China
Prior art keywords
gas
crack
mining site
water body
pore type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611088746.8A
Other languages
English (en)
Other versions
CN106769756B (zh
Inventor
彭先
刘林清
庄小菊
郝煦
唐瑜
尹小红
苏世为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201611088746.8A priority Critical patent/CN106769756B/zh
Publication of CN106769756A publication Critical patent/CN106769756A/zh
Application granted granted Critical
Publication of CN106769756B publication Critical patent/CN106769756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0813Measuring intrusion, e.g. of mercury

Abstract

本发明公开了一种确定裂缝~孔隙型有水气藏排水规模的方法,属于油气田开发工程领域。所述方法包括:对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到岩心在不同水体倍数下多个阶段实验累计产气量和实验累计排水量,得到在矿场条件下有水气藏在相应水体倍数下的相应阶段的矿场累积产气量和矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量和矿场平均日排水量,并绘制排水采气评价图版,基于排水采气评价图版,确定裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模,实现排水量安排的科学合理化,进一步指导裂缝~孔隙型有水气藏的实地高效开采,提高气体的采收率。

Description

一种确定裂缝~孔隙型有水气藏排水规模的方法
技术领域
本发明属于油气田开发工程领域,特别涉及一种确定裂缝~孔隙型有水气藏排水规模的方法。
背景技术
目前国内大部分边底水气藏类型为裂缝~孔隙型,这类气藏非均质性强,水侵活跃,水一旦沿裂缝通道窜入井底,易造成地下天然气被地层水封隔,使气井产量大幅降低甚至停产,严重影响气藏的采收率和开发效益。在气井产水后,若配产较低,则不能有效的携液,会造成气井水淹,最终导致气井停产;若配产过高,则地层水沿着裂缝快速锥进,气井开始大量产地层水,随着生产的进行,产量逐渐降低,气藏采收率大幅降低。因此,如何确定裂缝~孔隙型有水气藏的排水规模就显得十分必要。
现有技术主要是通过岩心实验,对裂缝~孔隙型有水气藏水侵机理做了大量的物理模拟实验研究,主要集中研究不同裂缝模型在不同底水、配产、压力条件下的水侵机理,分析裂缝大小、水体大小、单井配产等因素对气井生产的影响。
在实现本发明的过程中,本发明人发现现有技术中至少存在以下问题:
现有技术主要通过岩心实验研究裂缝~孔隙型有水气藏方面的水侵机理,没有涉及裂缝~孔隙型有水气藏排水规模方面的研究,不能指导裂缝~孔隙型有水气藏的高效开采,难以指导矿场有水气井开发生产。
发明内容
鉴于此,本发明提供一种确定裂缝~孔隙型有水气藏排水规模的方法,以便指导矿场条件下的裂缝~孔隙型有水气藏的高效开采。
具体而言,包括以下的技术方案:
一种确定裂缝~孔隙型有水气藏排水规模的方法,所述方法包括:
对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到所述岩心在不同水体倍数下多个阶段的实验累计产气量和实验累计排水量;
基于所述多个阶段的实验累计产气量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量;
基于所述多个阶段的实验累计排水量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日排水量;
基于所述在不同水体倍数下每个阶段的矿场平均日产气量和矿场平均日排水量,得到所述裂缝~孔隙型有水气藏排水采气评价图版;
基于所述裂缝~孔隙型有水气藏排水采气评价图版,确定所述裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模。
进一步地,所述对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到所述岩心在不同水体倍数下多个阶段的实验累计产气量和所述岩心的实验累计排水量之前,所述方法还包括:获取所述裂缝~孔隙型有水气藏岩心,得到所述岩心的孔隙体积和所述岩心的储量。
进一步地,所述获取所述裂缝~孔隙型有水气藏岩心,得到所述岩心的孔隙体积和所述岩心的储量之后,所述方法还包括:获取所述裂缝~孔隙型有水气藏在矿场条件下的储量和所述裂缝~孔隙型有水气藏在矿场条件下的孔隙体积。
进一步地,所述基于所述多个阶段的实验累计产气量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量具体包括:根据所述多个阶段的实验累计产气量,计算得到所述岩心的阶段产气量,利用所述岩心的储量、所述岩心的阶段产气量和所述裂缝~孔隙型有水气藏在矿场条件下的储量,计算得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量。
进一步地,所述基于所述多个阶段的实验累计排水量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日排水量具体包括:利用所述岩心的孔隙体积、所述岩心的实验累计排水量和所述裂缝~孔隙型有水气藏在矿场条件下的孔隙体积,计算得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日排水量。
进一步地,所述基于所述裂缝~孔隙型有水气藏排水采气评价图版,确定所述裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模具体包括:利用矿场条件下的预设产气量阈值和水体倍数,在所述图版中确定所述裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模,所述排水规模即为所述裂缝~孔隙型有水气藏在矿场条件下的排水规模。
进一步地,所述排水采气模拟实验的实施方式如下:
1)利用盐水在预设时间内浸泡所述岩心,在浸泡后烘干所述岩心,再对所述岩心造缝;
2)向岩心夹持器内注入气体,使所述岩心夹持器的内部压力为原始地层压力;
3)关闭注气端阀门,打开注水泵,同时,打开出口端阀门,对所述岩心进行降压开采;
4)当所述出口端阀门处的气体流量降为0时,关闭所述出口端阀门,当所述岩心压力达到稳定压力时,再打开所述出口端阀门,继续降压开采,得到多个时刻的压力值、所述岩心在不同水体倍数下多个阶段的的实验累计排水量和实验累计产气量。
进一步地,所述模拟排水采气实验的实施方式还包括:当压力下降到某一阈值,气相恢复连续流动状态时,获取此时压力阈值、所述岩心在不同水体倍数下的实验累计排水量和实验累计产气量。
进一步地,所述在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量的计算公式如下:
式中:GP为在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量;ΔGmP为所述岩心的实验阶段产气量;Gm为所述岩心的储量;G为所述裂缝~孔隙型有水气藏在矿场条件下的储量。
进一步地,所述在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量的计算公式如下:
式中:Vw为所述在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积排水量;Vφ为所述裂缝~孔隙型有水气藏在矿场条件下的孔隙体积;Vmw为所述岩心的实验累计排水量;V为所述岩心的孔隙体积。
本发明实施例提供的技术方案的有益效果:
通过提出一种确定裂缝~孔隙型有水气藏排水规模的方法,利用对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到所述岩心在不同水体倍数下多个阶段的实验累计产气量和实验累计排水量,利用气藏工程的方法,将实验方法与气藏工程相结合,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量和矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量和矿场平均日排水量,并绘制所述裂缝~孔隙型有水气藏排水采气评价图版,基于所述裂缝~孔隙型有水气藏排水采气评价图版,确定所述裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模,实现裂缝~孔隙型有水气藏排水量安排的科学合理化,进一步指导裂缝~孔隙型有水气藏的实地高效开采,提高气体的采收率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种确定裂缝~孔隙型有水气藏排水规模的方法流程图;
图2是本发明实施例的排水采气实验装置图;
图3是本发明实施例的贯通张开裂缝气藏不同水体倍数的排水采气评价图版;
图4是本发明实施例的非贯通裂缝气藏不同水体倍数的排水采气评价图版;
图5是本发明实施例的裂缝~孔隙型气藏排水采气评价图版实际矿场应用中日产气量随时间的变化图;
图6是本发明实施例的裂缝~孔隙型气藏排水采气评价图版实际矿场应用中日产水量随时间的变化图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明提供一种确定裂缝~孔隙型有水气藏排水规模的方法,如图1所示,以某气矿裂缝~孔隙型有水气藏为例,该方法包括:
步骤101:对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到岩心在不同水体倍数下多个阶段的实验累计产气量和实验累计排水量;
具体地,先获取裂缝~孔隙型有水气藏岩心,得到岩心的孔隙体积和岩心的储量;获取裂缝~孔隙型有水气藏在矿场条件下的储量和有水气藏在矿场条件下的孔隙体积,继而对裂缝~孔隙型有水气藏岩心造缝处理后进行模拟排水采气实验,如图2所示,排水采气模拟实验的实施方式如下:
1)利用盐水在预设时间内浸泡岩心,在浸泡后烘干岩心,再对岩心造缝,在本实施例中,对该气矿岩心分别贯通张开裂缝和非贯通裂缝;
2)向岩心夹持器内注入气体,使岩心夹持器的内部压力为原始地层压力;
3)关闭注气端阀门,打开注水泵,同时,打开出口端阀门,对岩心进行降压开采,在本实施例中,设定在水体倍数分别为10倍、20倍和40倍;
4)当出口端阀门处的气体流量降为0时,关闭出口端阀门,当岩心压力达到稳定压力时,再打开出口端阀门,继续降压开采,得到多个时刻的压力值、岩心在不同水体倍数下的多个阶段的实验累计排水量和实验累计产气量。
进一步地,当压力下降到某一阈值,气相恢复连续流动状态时,获取此时压力阈值、岩心在不同水体倍数下的实验累计排水量和实验累计产气量,并将此实验累计排水量作为临界排水量,用于分析裂缝~孔隙型有水气藏的余压效应。
步骤102:基于多个阶段的实验累计产气量,得到在矿场条件下裂缝~孔隙型有水气藏在对应水体倍数下的对应阶段的矿场累积产气量,由此得到在对应水体倍数下对应阶段的矿场平均日产气量;
具体地,根据多个阶段的实验累计产气量,利用岩心的储量、岩心的阶段产气量和裂缝~孔隙型有水气藏在矿场条件下的储量,计算得到在矿场条件下裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量,由此得到在相应水体倍数下相应阶段的矿场平均日产气,其中,
在矿场条件下裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量的计算公式如下:
式中:GP为在矿场条件下裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量;ΔGmP为岩心的实验阶段产气量;Gm为岩心的储量;G为裂缝~孔隙型有水气藏在矿场条件下的储量。
步骤103:基于多个阶段的实验累计排水量,得到在矿场条件下裂缝~孔隙型有水气藏在对应水体倍数下的对应阶段的矿场累计排水量,由此得到在对应水体倍数下对应阶段的矿场平均日排水量;
具体地,利用岩心的孔隙体积、岩心的实验累计排水量和裂缝~孔隙型有水气藏在矿场条件下的孔隙体积,计算得到在矿场条件下裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日排水量,其中,
在矿场条件下裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量的计算公式如下:
式中:Vw为在矿场条件下裂缝~孔隙型有水气藏在对应水体倍数下的相应阶段的矿场累积排水量;Vφ为裂缝~孔隙型有水气藏在矿场条件下的孔隙体积;Vmw为岩心的实验累计排水量;V为岩心的孔隙体积。
步骤104:基于在不同水体倍数下每个阶段的矿场平均日产气量和矿场平均日排水量,得到裂缝~孔隙型有水气藏排水采气评价图版;
该步骤取水体倍数分别为10倍、20倍、40倍的每个阶段的矿场平均日产气量和矿场平均日排水量,得到贯通张开裂缝气藏不同水体倍数的排水采气评价图版和非贯通裂缝气藏不同水体倍数的排水采气评价图版,如图3、图4所示,其中,圆形虚线表示的是矿场条件下的压力阈值。
为了证明排水采气评价图版的科学合理性,需要对排水采气评价图版进行验证,在本实施例中,选取该气矿XX2井生产、XX1井排水的实际矿场生产数据进行历史拟合计算。首先选取XX1井的实际排水量数据,应用该生产数据到排水采气评价图版上,得到此排水规模下的单井理论日产气量,并将得到的单井理论日产气量与XX2井的实际矿场生产数据进行比对,选取排水采气评价图版中拟合度最高的结果,如图5、图6所示,即选取非贯通裂缝气藏40倍水体的排水采气评价图版,同时也表明该排水采气评价图版的科学合理性。
步骤105:基于裂缝~孔隙型有水气藏排水采气评价图版,确定裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模。
在本实施例中,当确定排水采气评价图版后,通过排水采气评价图版可获得相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模,即确定气井以某排水规模生产时,该气矿可以高效开采,气体采收率得到提高。
本实施例通过提出一种确定裂缝~孔隙型有水气藏排水规模的方法,利用对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到岩心在不同水体倍数下多个阶段岩心的实验累计产气量和岩心的实验累计排水量,利用气藏工程的方法,将实验方法与气藏工程相结合,得到在矿场条件下裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量和矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量和矿场平均日排水量,并绘制裂缝~孔隙型有水气藏排水采气评价图版,基于裂缝~孔隙型有水气藏排水采气评价图版,确定裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模,实现裂缝~孔隙型有水气藏排水量安排的科学合理化,进一步指导裂缝~孔隙型有水气藏的实地高效开采,提高气体的采收率。
以上所述仅是为了便于本领域的技术人员理解本发明的技术方案,并不用以限制本发明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种确定裂缝~孔隙型有水气藏排水规模的方法,其特征在于,所述方法包括:
对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到所述岩心在不同水体倍数下多个阶段的实验累计产气量和实验累计排水量;
基于所述多个阶段的实验累计产气量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量;
基于所述多个阶段的实验累计排水量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日排水量;
基于所述在不同水体倍数下每个阶段的矿场平均日产气量和矿场平均日排水量,得到所述裂缝~孔隙型有水气藏排水采气评价图版;
基于所述裂缝~孔隙型有水气藏排水采气评价图版,确定所述裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模。
2.根据权利要求1所述的方法,其特征在于,所述对裂缝~孔隙型有水气藏岩心造缝处理后进行排水采气模拟实验,得到所述岩心在不同水体倍数下多个阶段的实验累计产气量和所述岩心的实验累计排水量之前,所述方法还包括:获取所述裂缝~孔隙型有水气藏岩心,得到所述岩心的孔隙体积和所述岩心的储量。
3.根据权利要求2所述的方法,其特征在于,所述获取所述裂缝~孔隙型有水气藏岩心,得到所述岩心的孔隙体积和所述岩心的储量之后,所述方法还包括:获取所述裂缝~孔隙型有水气藏在矿场条件下的储量和所述裂缝~孔隙型有水气藏在矿场条件下的孔隙体积。
4.根据权利要求3所述的方法,其特征在于,所述基于所述多个阶段的实验累计产气量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量具体包括:根据所述多个阶段的实验累计产气量,计算得到所述岩心的阶段产气量,利用所述岩心的储量、所述岩心的阶段产气量和所述裂缝~孔隙型有水气藏在矿场条件下的储量,计算得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量,由此得到在相应水体倍数下相应阶段的矿场平均日产气量。
5.根据权利要求3所述的方法,其特征在于,所述基于所述多个阶段的实验累计排水量,得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日排水量具体包括:利用所述岩心的孔隙体积、所述岩心的实验累计排水量和所述裂缝~孔隙型有水气藏在矿场条件下的孔隙体积,计算得到在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量,由此得到在相应水体倍数下相应阶段的矿场平均日排水量。
6.根据权利要求1所述的方法,其特征在于,所述基于所述裂缝~孔隙型有水气藏排水采气评价图版,确定所述裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模具体包括:利用矿场条件下的预设产气量阈值和水体倍数,在所述图版中确定所述裂缝~孔隙型有水气藏在相应水体倍数下矿场平均日产气量一定时需要的矿场平均日排水规模,所述排水规模即为所述裂缝~孔隙型有水气藏在矿场条件下的排水规模。
7.根据权利要求1所述的方法,其特征在于,所述排水采气模拟实验的实施方式如下:
1)利用盐水在预设时间内浸泡所述岩心,在浸泡后烘干所述岩心,再对所述岩心造缝;
2)向岩心夹持器内注入气体,使所述岩心夹持器的内部压力为原始地层压力;
3)关闭注气端阀门,打开注水泵,同时,打开出口端阀门,对所述岩心进行降压开采;
4)当所述出口端阀门处的气体流量降为0时,关闭所述出口端阀门,当所述岩心压力达到稳定压力时,再打开所述出口端阀门,继续降压开采,得到多个时刻的压力值、所述岩心在不同水体倍数下多个阶段的的实验累计排水量和实验累计产气量。
8.根据权利要求7所述的方法,其特征在于,所述模拟排水采气实验的实施方式还包括:当压力下降到某一阈值,气相恢复连续流动状态时,获取此时压力阈值、所述岩心在不同水体倍数下的实验累计排水量和实验累计产气量。
9.根据权利要求1所述的方法,其特征在于,所述在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量的计算公式如下:
G P = G ΔG m p G m
式中:GP为在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积产气量;ΔGmP为所述岩心的实验阶段产气量;Gm为所述岩心的储量;G为所述裂缝~孔隙型有水气藏在矿场条件下的储量。
10.根据权利要求1所述的方法,其特征在于,所述在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累计排水量的计算公式如下:
V w = V φ V m w V m φ
式中:Vw为所述在矿场条件下所述裂缝~孔隙型有水气藏在相应水体倍数下的相应阶段的矿场累积排水量;Vφ为所述裂缝~孔隙型有水气藏在矿场条件下的孔隙体积;Vmw为所述岩心的实验累计排水量;V为所述岩心的孔隙体积。
CN201611088746.8A 2016-11-30 2016-11-30 一种确定裂缝~孔隙型有水气藏排水规模的方法 Active CN106769756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611088746.8A CN106769756B (zh) 2016-11-30 2016-11-30 一种确定裂缝~孔隙型有水气藏排水规模的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611088746.8A CN106769756B (zh) 2016-11-30 2016-11-30 一种确定裂缝~孔隙型有水气藏排水规模的方法

Publications (2)

Publication Number Publication Date
CN106769756A true CN106769756A (zh) 2017-05-31
CN106769756B CN106769756B (zh) 2019-03-15

Family

ID=58914348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611088746.8A Active CN106769756B (zh) 2016-11-30 2016-11-30 一种确定裂缝~孔隙型有水气藏排水规模的方法

Country Status (1)

Country Link
CN (1) CN106769756B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533247A (zh) * 2017-12-19 2018-09-14 中国地质大学(武汉) 一种确定机抽生产油井产状的方法
CN108825177A (zh) * 2018-07-09 2018-11-16 中国海洋石油集团有限公司 一种水平井调驱工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493788A (zh) * 2011-12-15 2012-06-13 中国石油天然气股份有限公司 高煤阶煤层气井排水采气的方法
CN102608011A (zh) * 2012-01-18 2012-07-25 西南石油大学 裂缝—孔隙(孔洞)型储层岩心束缚水的确定与建立方法
CN103174412A (zh) * 2013-02-21 2013-06-26 西南石油大学 一种煤层气储层分层同采高温高压排采动态评价仪
CN106769684A (zh) * 2016-12-01 2017-05-31 中国石油天然气股份有限公司 页岩气扩散能力测试系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493788A (zh) * 2011-12-15 2012-06-13 中国石油天然气股份有限公司 高煤阶煤层气井排水采气的方法
CN102608011A (zh) * 2012-01-18 2012-07-25 西南石油大学 裂缝—孔隙(孔洞)型储层岩心束缚水的确定与建立方法
CN103174412A (zh) * 2013-02-21 2013-06-26 西南石油大学 一种煤层气储层分层同采高温高压排采动态评价仪
CN106769684A (zh) * 2016-12-01 2017-05-31 中国石油天然气股份有限公司 页岩气扩散能力测试系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
徐广鹏等: "川西侏罗系气藏排水采气实践与认识", 《新疆石油天然气》 *
方建龙等: "裂缝孔隙型砂岩气藏可动储量综合界限", 《西南石油大学学报(自然科学版)》 *
李连江: "埕岛油田海上气井排水采气工艺模式", 《油气地质与采收率》 *
王径 等: "须家河组裂缝—孔隙型气藏效益开发方案的思路", 《天然气技术与经济》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533247A (zh) * 2017-12-19 2018-09-14 中国地质大学(武汉) 一种确定机抽生产油井产状的方法
CN108533247B (zh) * 2017-12-19 2021-05-14 中国地质大学(武汉) 一种确定机抽生产油井产状的方法
CN108825177A (zh) * 2018-07-09 2018-11-16 中国海洋石油集团有限公司 一种水平井调驱工艺

Also Published As

Publication number Publication date
CN106769756B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN102913221B (zh) 一种低渗储层的体积改造工艺
CN105626036B (zh) 一种确定油藏合理产液量油藏工程计算方法
Zeng et al. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications
CN103437746A (zh) 一种水平井多段段内多缝体积压裂方法
CN103967470B (zh) 一种水平井泥岩穿层压裂方法
CN103089224A (zh) 一种综合控制裂缝高度的压裂方法
CN104504457A (zh) 产水气井产能预测方法
CN106437674A (zh) 仿水平井注水开发井网适配方法
CN101158280A (zh) 油井高含水层堵压方法
CN109751037A (zh) 一种常压页岩气藏高频变排量体积压裂方法
CN107066769A (zh) 适用于超深层裂缝型碳酸盐岩储层的高效酸化设计方法
CN105569613A (zh) 一种中高阶煤煤层气排采方法
CN108661626B (zh) 一种高温高压下井壁水侵模拟实验装置
CN104265254A (zh) 深层超稠油多段塞注油溶性降粘剂和液态co2采油工艺方法
Chen et al. Current status and key factors for coalbed methane development with multibranched horizontal wells in the southern Qinshui basin of China
CN106769756A (zh) 一种确定裂缝~孔隙型有水气藏排水规模的方法
CN104912527A (zh) 一种用于油井层内生气体系的施工工艺
Shin et al. Fast-SAGD application in the Alberta oil sands areas
RU2474676C1 (ru) Способ разработки многопластового нефтяного месторождения
CN112065343B (zh) 一种页岩油开发注采系统及方法
US9784090B2 (en) Method for selecting the location of a stimulating geothermal well
Wang et al. A new well structure and methane recovery enhancement method in two coal seams
CN104612648A (zh) 低压低渗透煤层气井活性水-氮气泡沫压裂方法及其设备
CN103470233B (zh) 一种稠油油藏天然气吞吐采油工艺系统及采油方法
CN110188996A (zh) 水驱油藏能耗-产量-效益一体化表征方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant