CN106767533A - Fringe projection profilometry-based efficient phase position-three-dimensional mapping method and system - Google Patents

Fringe projection profilometry-based efficient phase position-three-dimensional mapping method and system Download PDF

Info

Publication number
CN106767533A
CN106767533A CN201611242689.4A CN201611242689A CN106767533A CN 106767533 A CN106767533 A CN 106767533A CN 201611242689 A CN201611242689 A CN 201611242689A CN 106767533 A CN106767533 A CN 106767533A
Authority
CN
China
Prior art keywords
phase
dimensional
projection
pixel
system
Prior art date
Application number
CN201611242689.4A
Other languages
Chinese (zh)
Other versions
CN106767533B (en
Inventor
彭翔
蔡泽伟
刘晓利
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to CN201611242689.4A priority Critical patent/CN106767533B/en
Publication of CN106767533A publication Critical patent/CN106767533A/en
Application granted granted Critical
Publication of CN106767533B publication Critical patent/CN106767533B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/24Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical means for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré

Abstract

The invention is suitable for the technical field of optical three-dimensional digital imaging and provides a fringe projection profilometry-based efficient phase position-three-dimensional mapping method. The fringe projection profilometry is on the basis of a binocular system, and the binocular system comprises a projection device and an imaging device. The method comprises the following steps: S1, protecting fringe sequence to the surface of a to-be-detected object by the projection device, acquiring a deformed fringe graph modulated by the to-be-detected object by the imaging device, and calculating according to the deformed fringe graph to obtain the phase positions of all the pixel points on the image of the imaging device; and S2, finding out a phase position-three-dimensional mapping coefficient corresponding to each pixel point from a preset phase position-three-dimensional mapping coefficient lookup table and substituting the phase position of each pixel point and the corresponding phase position-three-dimensional mapping coefficient into a phase position-three-dimensional mapping function so as to calculate the three-dimensional coordinates of an object point corresponding to each pixel point on the image of the imaging device. By the method provided by the invention, efficient three-dimensional reconstruction of fringe projection profilometry can be realized.

Description

基于条纹投影轮廓术的高效相位-三维映射方法及系统 Efficient phase based on fringe projection profilometry - 3D mapping method and system

技术领域 FIELD

[0001] 本发明属于光学三维数字成像技术领域,尤其涉及一种基于条纹投影轮廓术的高效相位-三维映射方法及系统。 [0001] The present invention belongs to the field of optical three-dimensional digital imaging technology, particularly to a high efficiency based on the phase of the fringe projection profilometry - 3D mapping method and system.

背景技术 Background technique

[0002] 条纹投影轮廓术是一种非接触式、全场测量的光学三维数字成像与测量方法;其基于一个双目系统,双目系统通常包括一个相机和一个投影机,其中,投影机投影一组正弦条纹序列到被测物体表面,相机采集受物体表面调制的变形条纹图;通过条纹分析技术获取变形条纹图的调制相位,通过场景重建方法从调制相位中恢复被测物体的三维形貌。 [0002] contour fringe projection technique is a non-contact, three-dimensional digital imaging and optical measuring method of measuring the audience; based on a binocular system, a binocular system typically comprises a camera and a projector, wherein the projector projection sequence to a set of sinusoidal fringes object surface, the camera capture surface modification fringe patterns modulated by the object; modulation phase obtaining modified fringe by fringe analysis, recovery from the three-dimensional topography of the measured object by the phase modulation method of scene reconstruction .

[0003] 有两种典型的基于条纹投影轮廓术的三维重建方法:相位-高度映射法和立体视觉法;其中,相位-高度映射法根据相位与高度的调制原理将相位直接映射为高度,实现高效三维重建。 [0003] There are two typical fringe projection reconstruction method based profilometry: Phase - height Mapping and stereo method; wherein the phase - height mapping method according to the principle of phase modulating the phase height map directly to height, to achieve efficient three-dimensional reconstruction. 然而,在实际应用中相位-高度映射法存在一些限制,诸如相机或投影机的光轴需垂直于参考平面,相机和投影机中心的连线平行于参考平面,参考平面限制了测量空间等。 However, in practical applications the phase - height mapping method, there are some restrictions, such as a camera or projector axis is perpendicular to the need to connect the reference plane, the center of the camera and the projector is parallel to the reference plane, the reference plane of the measuring space limits. 此外,相位-高度映射法的标定通常需要使用精密位移平台或量块获取精确的高度值,不适合现场标定。 Further, the phase - height map calibration process typically requires the use of precision displacement internet or get an accurate gauge block height values, not suitable for field calibration.

[0004] 而立体视觉法是根据三角测量原理进行三维重建。 [0004] The stereo method is the three-dimensional reconstruction in accordance with the principle of triangulation. 相较而言,由于采用双目系统结构,立体视觉法克服了在相位-高度映射法中的那些应用限制;而且立体视觉法的标定过程更加灵活,只需将标靶放置在测量空间中合适的位置即可完成系统标定。 In contrast, since the system configuration of binocular stereoscopic method overcomes phase - that limit the application of highly mapping method; stereo method and the calibration process more flexible, the target simply placed in the measuring space suitable position to complete the system calibration. 然而,在重建过程中,立体视觉法需要进行一系列的坐标变换,特别是搜索相机与投影机之间的对应点,大大增加了计算复杂度和时间成本,显著降低了三维重建的效率。 However, in the reconstruction process, the stereoscopic method requires a series of coordinate transformation, in particular the corresponding point search between the camera and the projector, greatly increasing the computational complexity and time costs, significantly reduces the efficiency of the three-dimensional reconstruction.

发明内容 SUMMARY

[0005] 本发明所要解决的技术问题在于提供一种基于条纹投影轮廓术的高效相位-三维映射方法及系统,旨在将相位直接映射到空间点的三维坐标,进而实现待测物体的高效三维重建。 [0005] The present invention solves the technical problem is to provide a highly efficient based on the phase of the fringe projection profilometry - 3D mapping method and a system designed to map directly to the three-dimensional phase space coordinates of the point, so as to realize efficient three-dimensional object to be measured reconstruction.

[0006] 本发明提供了一种基于条纹投影轮廓术的高效相位-三维映射方法,所述条纹投影轮廓术基于双目系统,所述双目系统包括投影装置和成像装置,所述方法包括: [0006] The present invention provides a high efficiency based on the phase of the fringe projection profilometry - 3D mapping method, the contour fringe projection technique based on binocular system, a binocular system including a projection apparatus and an image forming apparatus, the method comprising:

[0007] 步骤SI,利用投影装置投影条纹序列到待测物体表面,并利用成像装置采集受所述待测物体表面调制的变形条纹图,根据所述变形条纹图计算得到成像装置图像上所有像素点的相位; [0007] Step the SI, projected by the projection apparatus to the measured surface of the object fringe sequence, and using the image forming apparatus acquired by the modification of the measured surface of the object fringe patterns modulated by all the pixels on the image forming apparatus according to the modified fringe pattern computing phase point;

[0008] 步骤S2,在预置的相位-三维映射系数查找表中查找出每一个像素点对应的相位-三维映射系数,并将每一个像素点的所述相位和对应的相位-三维映射系数代入预置的相位-三维映射函数,从而计算出成像装置图像上每一个像素点对应的物点的三维坐标。 [0008] In step S2, a preset phase - 3D mapping coefficient lookup table to find out the phase of each pixel corresponding to the point - 3D mapping coefficient, and the phase and the phase corresponding to each pixel of the three - dimensional mapping coefficients substituting a preset phase - three-dimensional mapping function to calculate the three-dimensional coordinates corresponding to each pixel on the image forming apparatus object point.

[0009] 进一步地,所述相位-三维映射函数为: [0009] Further, the phase - three-dimensional mapping function is:

Figure CN106767533AD00061

[0011] 其中,,ΜΦ。 [0011] wherein ,, ΜΦ. ),ζ〇(Φ。))是所述待测物体的空间点三维坐标,Φ。 ), Ζ〇 (Φ.)) Are the spatial coordinates in the object to be measured, Φ. 是像素点对应的相位,an,bn,Cn,CX,CY,CZ是相位-二维映射系数,其中,an,bn,Cn是分别是相位-二维映射函数XJΦ。 Is a pixel corresponding to a phase, an, bn, Cn, CX, CY, CZ is the phase - dimensional mapping coefficients, wherein, an, bn, Cn, respectively, the phase - dimensional mapping function XJΦ. ),YJΦ。 ), YJΦ. ),Zc^(K)中多项式的系数,CX,CY,CZ分别是相位-三维映射函数X。 ), Zc ^ (K) coefficients of the polynomial, CX, CY, CZ are phase - three-dimensional mapping function X. (Φ。),Yc (Φ。),Zc (Φ。)中的常数项。 (Φ.), Yc (Φ.), The constant term Zc (Φ.) In.

[0012] 进一步地,所述步骤Sl之前还包括: [0012] Further, before the step Sl further comprising:

[0013] 步骤SOl,通过射线重投影策略标定出所述双目系统的系统参数; [0013] Step SOl, system parameters are calibrated by the binocular-ray system reprojection policy;

[0014] 步骤S02,结合所述系统参数,通过采样映射策略标定出相位-三维映射系数,并得到相位-三维映射系数查找表。 [0014] In step S02, the binding parameters of the system, by sampling the phase calibration mapping strategies - 3D mapping coefficient, and to give the phase - 3D mapping coefficient lookup table.

[0015] 进一步地,所述步骤SOl具体包括: [0015] Further, the step SOl comprises:

[0016] 步骤soil,将印有标志点的标靶置于标定空间,利用所述成像装置采集所述标靶的成像装置图像,然后利用投影装置投影正交条纹序列到所述标靶上,利用所述成像装置采集受印有所述标志点的标靶表面调制的正交条纹图; [0016] Step IN SHANXI, printed with the target mark point calibration space is placed, an image forming apparatus using the imaging apparatus to collect the target, and a projection apparatus using a projection stripes orthogonal to the target sequence, using the imaging device by collecting printed perpendicular to the target surface of the fringe pattern modulated mark point;

[0017] 步骤S012,提取所述标志点在所述成像装置图像上像素点的坐标; [0017] Step S012, the image extracting apparatus coordinates on the imaging pixels of said mark point;

[0018] 步骤SO13,通过所述正交条纹图计算正交相位,并通过正交相位确定所述标志点在投影装置图像上像素点的坐标; [0018] Step S013, is calculated by the quadrature phase quadrature fringe pattern, and phase determined by an orthogonal coordinate point pixel points in an image projection apparatus of the flag;

[0019] 步骤S014,通过反向投影立体视觉模型,结合系统参数确定标志点在成像装置图像上像素点的坐标和投影装置图像上像素点的坐标分别反向投影的空间射线,通过预置的射线重投影策略调整所述系统参数,以所述标志点到所对应的两条空间射线的距离之和最小时的系统参数作为标定出的所述双目系统的系统参数。 [0019] Step S014, back projection stereoscopic model by combining the system parameter determining landmarks in the image forming apparatus on the coordinates of the pixel coordinates of the image pixels in the projection means are backward ray projection space by a preset ray reprojection policy adjust the system parameter to point to the mark corresponding to two spatial radiation and the minimum distance of the system parameters of the binocular system as a system parameter calibration out.

[0020] 进一步地,所述步骤S02具体包括: [0020] Further, the step S02 comprises:

[0021] 步骤S021,利用标定出的系统参数确定成像装置图像上任一像素点的坐标反向投影的空间射线; [0021] Step S021, the image forming apparatus determines the coordinates of a pixel of office space inverse projection ray calibration using the system parameters;

[0022] 步骤S022,在标定空间内沿所述空间射线进行采样,得到一系列的空间采样点,将该系列空间采样点分别投影到投影装置图像上,得到对应的相位值; [0022] Step S022, in the space within the calibrated space ray is sampled to obtain a series of spatial sampling points, respectively, the series of spatial sampling points projected on the image means, to obtain a corresponding phase value;

[0023] 步骤S023,使用该系列采样点分别对应的相位值和该系列采样点的三维坐标拟合出所述任一像素点的相位-三维映射系数; [0023] Step S023, using the three-dimensional coordinate values ​​of the phase series of sampling points corresponding to the series of sampling points and fitted to any phase of the pixel of a three - dimensional mapping coefficients;

[0024] 步骤S024,对所述成像装置图像上的每个像素点重复步骤S021-S023,得到每个像素点的相位-三维映射系数,并生成相位-三维映射系数查找表。 [0024] Step S024, for each pixel on said image forming apparatus repeating steps S021-S023, to obtain the phase of each pixel - 3D mapping coefficient, and generates a phase - 3D mapping coefficient lookup table.

[0025] 本发明还提供了一种基于条纹投影轮廓术的高效相位-三维映射系统,所述条纹投影轮廓术基于双目系统,所述双目系统包括投影装置和成像装置,所述相位-三维映射系统包括: [0025] The present invention further provides a highly efficient based on the phase of the fringe projection profilometry - dimensional mapping system, the contour fringe projection technique based on binocular system, a binocular system including a projection apparatus and an image forming apparatus, said phase - 3D mapping system comprising:

[0026] 相位获取模块,用于利用投影装置投影条纹序列到待测物体表面,并利用成像装置采集受所述待测物体表面调制的变形条纹图,根据所述变形条纹图计算得到成像装置图像上所有像素点的相位; [0026] The phase acquisition module for fringe projection by the projection means into the sequence of the surface of object to be measured, and by using the imaging apparatus to collect the object to be measured the surface modification fringe pattern modulated to obtain an image forming apparatus according to the modified fringe pattern computing phase of all pixels;

[0027] 三维坐标获取模块,用于在预置的相位-三维映射系数查找表中查找出每一个像素点对应的相位-三维映射系数,并将每一个像素点的所述相位和对应的相位-三维映射系数代入预置的相位-三维映射函数,从而计算出成像装置图像上每一个像素点对应的物点的三维坐标。 [0027] The three-dimensional coordinate obtaining module for a preset phase - 3D mapping coefficient lookup table to find out the phase of each pixel corresponding to the point - 3D mapping coefficient, and the phase and the phase of each pixel corresponding point - 3D mapping coefficients are substituted into a preset phase - three-dimensional mapping function to calculate the three-dimensional coordinates corresponding to each pixel on the image forming apparatus object point.

[0028] 进一步地,所述相位-三维映射函数为: [0028] Further, the phase - three-dimensional mapping function is:

Figure CN106767533AD00071

[0030] 其中,(Xe (Φ c),Yc (Φ c),Zc (Φ c))是所述待测物体的空间点三维坐标,Φ c是像素点对应的相位,an,bn,Cn,CX,CY,CZ是相位-二维映射系数,其中,an,bn,Cn是分别是相位-二维映射函数XJΦ。 [0030] wherein, (Xe (Φ c), Yc (Φ c), Zc (Φ c)) is a three-dimensional coordinate point of the object to be measured, Φ c is a pixel corresponding to a phase, an, bn, Cn , CX, CY, CZ is the phase - dimensional mapping coefficients, wherein, an, bn, Cn, respectively, the phase - dimensional mapping function XJΦ. ),YJΦ。 ), YJΦ. ),Zc^(K)中多项式的系数,CX,CY,CZ分别是相位-三维映射函数X。 ), Zc ^ (K) coefficients of the polynomial, CX, CY, CZ are phase - three-dimensional mapping function X. (Φ。),Yc (Φ。),Zc (Φ。)中的常数项。 (Φ.), Yc (Φ.), The constant term Zc (Φ.) In.

[0031] 进一步地,所述相位-三维映射系统还包括标定模块,所述标定模块用于对相位-三维映射系数进行标定,所述标定模块包括第一标定子模块和第二标定子模块; [0031] Further, the phase - 3D mapping system further includes a calibration module, said calibration module is configured to phase - 3D mapping coefficient calibration, the calibration module comprising a first and a second sub-module calibration calibration sub-module;

[0032] 所述第一标定子模块,用于通过射线重投影策略标定出所述双目系统的系统参数; [0032] The first sub-module calibration, a system for calibrating parameter of the binocular-ray system by reprojection policy;

[0033] 所述第二标定子模块,用于结合所述系统参数,通过采样映射策略标定出相位-三维映射系数,并得到相位-三维映射系数查找表。 [0033] The second sub-module calibration, the system parameter for binding, by sampling the phase of the calibration mapping strategies - 3D mapping coefficient, and to give the phase - 3D mapping coefficient lookup table.

[0034] 进一步地,所述第一标定子模块具体包括: [0034] Further, the calibration of the first sub-module comprises:

[0035] 采集子模块,用于将印有标志点的标靶置于标定空间,利用所述成像装置采集所述标靶的成像装置图像,然后利用投影装置投影正交条纹序列到所述标靶上,利用所述成像装置采集受印有所述标志点的标靶表面调制的正交条纹图; [0035] The acquisition sub-module, configured to mark point printed calibration target space is placed, an image forming apparatus using the imaging apparatus to collect the target, and then projected by the projection apparatus to the standard sequence of orthogonal stripe on the target, using the image forming apparatus acquired by the orthogonal fringe printed mark point modulation of the target surface;

[0036] 第一坐标获取子模块,用于提取所述标志点在所述成像装置图像上像素点的坐标; [0036] The first coordinate obtaining sub-module, coordinates on an image for the imaging pixel extracting said mark point;

[0037] 第二坐标获取子模块,用于通过所述正交条纹图计算正交相位,并通过正交相位确定所述标志点在投影装置图像上像素点的坐标; [0037] The second coordinate obtaining sub-module, for calculating a fringe pattern through the orthogonal quadrature-phase and quadrature phase by determining the coordinate point in an image pixel on the projection of said marker;

[0038] 系统参数标定子模块,用于通过反向投影立体视觉模型,结合系统参数确定标志点在成像装置图像上像素点的坐标和投影装置图像上像素点的坐标分别反向投影的空间射线,通过预置的射线重投影策略调整所述系统参数,以所述标志点到所对应的两条空间射线的距离之和最小时的系统参数作为标定出的所述双目系统的系统参数。 [0038] system parameter calibration sub-module, configured to reverse the stereoscopic projection model parameter determination system in conjunction with marker points on the image forming apparatus of the coordinates of pixels on the image pixel coordinates of the point and the projection means are backprojected ray space by adjusting the radiation reprojection policy preset system parameters, in order to mark the point corresponding to the two space-ray system parameters and the minimum distance of the binocular system as a calibration of the system parameters.

[0039] 进一步地,所述第二标定子模块具体包括: [0039] Further, the second calibration sub-module comprises:

[0040] 空间射线投影子模块,用于利用标定出的系统参数确定成像装置图像上任一像素点的坐标反向投影的空间射线; [0040] Space-ray projection sub-module, for determining the imaging device coordinates of a pixel image office space reverse ray projection using a calibrated system parameters;

[0041] 相位值获取子模块,用于在标定空间内沿所述空间射线进行采样,得到一系列的空间采样点,将该系列空间采样点分别投影到投影装置图像上,得到对应的相位值; [0041] The phase value obtaining sub-module, a space along the ray within the calibrated space is sampled to obtain a series of spatial sampling points, respectively, the series of spatial sampling points projected on the image means, to obtain a corresponding phase value ;

[0042] 相位-三维映射系数标定子模块,用于使用该系列采样点分别对应的相位值和该系列采样点的三维坐标拟合出所述任一像素点的相位-三维映射系数; [0042] phase - a three-dimensional mapping sub-module calibration coefficients, using three-dimensional coordinate values ​​of the phase series of sampling points corresponding to the series of sampling points and fitted to any phase of the pixel of a three - dimensional mapping coefficients;

[0043] 相位-三维映射系数查找表获取子模块,用于对所述成像装置图像上的每个像素点进行处理,得到每个像素点的相位-三维映射系数,并生成相位-三维映射系数查找表。 [0043] phase - a three-dimensional lookup table mapping coefficient obtaining sub-module, for each pixel on the image forming apparatus is processed to obtain the phase of each pixel - 3D mapping coefficient, and generates a phase - 3D mapping coefficients lookup table.

[0044] 本发明与现有技术相比,有益效果在于:本发明提供的一种基于条纹投影轮廓术的高效相位-三维映射方法及系统,是先在预置的相位-三维映射系数查找表中查找出每一个像素点对应的相位-三维映射系数,再将每一个像素点的相位和对应的相位-三维映射系数代入相位-三维映射函数中,即可得到每一个像素点对应的物点的三维坐标,从而得到待测物体表面的三维坐标;通过上述方式可实现待测物体的高效三维重建,该方法满足高效、 高精度的基于条纹投影轮廓术的三维数字成像与测量的要求。 [0044] Compared with the prior art, the beneficial effects that: one kind of the present invention provides a phase-based high fringe projection profilometry - 3D mapping method and system is pre-set in the first phase - a three-dimensional lookup tables mapping coefficients Find the phase of each pixel corresponding to a three - dimensional mapping coefficients, and then the phase phase corresponding to each pixel of the three - dimensional mapping of the coefficients in the phase - three-dimensional mapping functions, to obtain the object point corresponding to each pixel three-dimensional coordinates, to obtain three-dimensional coordinates of the surface of the object to be measured; enable efficient three-dimensional reconstruction of the object to be measured by the above-described embodiment, the method to meet the high precision three-dimensional digital image based on the requirements of the measured fringe projection profilometry.

附图说明 BRIEF DESCRIPTION

[0045] 图1是本发明实施例提供的对相位-三维映射函数的相位-三维映射系数进行标定的流程示意图; [0045] FIG. 1 is a phase according to an embodiment of the present invention - a three-dimensional mapping function phase - a schematic flow diagram 3D mapping calibration coefficients;

[0046] 图2是本发明实施例提供的一种基于条纹投影轮廓术的高效相位-三维映射方法的流程示意图; [0046] FIG. 2 provides an efficient phase-based fringe projection profilometry embodiment of the present invention - a three-dimensional schematic flow mapping method;

[0047] 图3是本发明实施例提供的成像装置-投影装置构成的双目系统的反向投影立体视觉模型; [0047] FIG. 3 is an image forming apparatus according to an embodiment of the present invention - a binocular system configuration of a projection apparatus backprojection stereoscopic model;

[0048] 图4是本发明实施例提供的平面标靶标志点在相机图像和投影机图像上的坐标分布示意图; [0048] FIG. 4 is a coordinate plane target mark point provided on the camera image and the distribution of the image projector schematic embodiment of the present invention;

[0049] 图5是本发明实施例提供的石膏像的相位图; [0049] FIG. 5 is a phase diagram according to an embodiment of the plaster according to the present invention;

[0050] 图6是本发明实施例提供的石膏像的三维模型图; [0050] FIG 6 is a three-dimensional model according to an embodiment of the plaster according to the present invention;

[0051] 图7是本发明实施例提供的一种基于条纹投影轮廓术的高效相位-三维映射系统的丰旲块不意图; [0051] FIG. 7 is provided which is based on the phase fringe projection profilometry efficient embodiment of the present invention - a three-dimensional mapping system is not intended to block the abundance Dae;

[0052] 图8是本发明实施例提供的对相位-三维映射函数的相位-三维映射系数进行标定的模块示意图。 [0052] FIG. 8 is a phase according to an embodiment of the present invention - a three-dimensional mapping function phase - a schematic view of a three-dimensional mapping module calibration coefficients.

具体实施方式 Detailed ways

[0053] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。 [0053] To make the objectives, technical solutions and advantages of the present invention will become more apparent hereinafter in conjunction with the accompanying drawings and embodiments of the present invention will be further described in detail. 应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 It should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not intended to limit the present invention.

[0054] 本发明的主要实现思想为:基于反向投影立体视觉模型推导出相位和三维坐标的映射关系,即推导出相位-三维映射函数;在所述相位-三维映射函数的基础上,预先设计了一种两步标定算法,包括光线重投影标定和米样映射标定,来获取相位_二维映射系数;将相位和所述相位-三维映射系数带入所述相位-三维映射函数,从而得到待测物体表面的三维坐标,并进而实现待测物体的高效三维重建。 [0054] The main idea of ​​the present invention is implemented: the mapping relation is derived phase and three-dimensional coordinates back projection stereoscopic model, i.e. derived phase - three-dimensional mapping function; in the phase - on the basis of three-dimensional mapping function in advance a two-step calibration algorithm design, including light and heavy projection meter calibration mapping calibration sample to obtain the two-dimensional map _ phase coefficient; phase and the phase - 3D mapping coefficients into the phase - three-dimensional mapping function, such that to obtain three-dimensional coordinates of the surface of the object to be measured, and thus efficient three-dimensional reconstruction of the object to be measured.

[0055] 下面具体介绍这种基于条纹投影轮廓术的高效相位-三维映射方法,所述条纹投影轮廓术基于双目系统,所述双目系统包括投影装置和成像装置;如图1所示,在执行本方法之前,还有一个预处理的步骤;即在步骤S1之前,还包括: [0055] The following detailed description of such phase based on the efficient operation of the contour fringe projection - 3D mapping method, the contour fringe projection technique based on binocular system, a binocular system including a projection apparatus and an image forming apparatus; FIG. 1, prior to performing the method, there is a pretreatment step; i.e., prior to step S1, further comprising:

[0056] 步骤SO,对相位-三维映射函数的相位-三维映射系数进行标定; [0056] Step SO, phase - the phase of the three-dimensional mapping function - 3D mapping calibration coefficient;

[0057] 具体地,相位-三维映射函数的映射系数,是通过预先设计了一种两步标定算法, 包括光线重投影标定和采样映射标定,来实现的相位-三维映射系数的灵活、精确标定;标定的目的是为了确定成像装置图像中每个像素点的相位-三维映射系数,并生成一个像素点索引的相位-三维映射系数查找表。 [0057] In particular, the phase - three-dimensional mapping function mapping coefficients are a pre-designed by a two-step calibration algorithm, including light and heavy projection calibration mapping calibration samples, to achieve the phase - 3D mapping coefficients flexible, accurate calibration of ; purpose of calibration is to determine the phase of each pixel in an image forming - 3D mapping coefficient, and generates a phase of a pixel index - 3D mapping coefficient lookup table.

[0058] 所述步骤SO包括: [0058] SO said step comprises:

[0059] 步骤SOI,通过射线重投影策略标定出所述双目系统的系统参数; [0059] Step SOI, the system parameters are calibrated by the binocular-ray system reprojection policy;

[0060] 具体地,射线重投影指的是:通过双目系统的系统参数将像素点的坐标反向投影出一条空间射线;射线重投影策略指的是:使射线重投影误差最小化,即调整双目系统的系统参数,使物点到反向投影射线的误差距离最小。 [0060] Specifically, the ray re-projection means: the system parameter binocular system the coordinate pixel points out a back projection ray space; re-projected ray strategy means: directing the beam reprojection error is minimized, i.e., binocular system parameter adjustment system, so that an object point to minimize the error distance inverse projection ray.

[0061] 具体地,所述步骤SOl具体包括: [0061] In particular, said step SOl comprises:

[0062] 步骤soil,将印有标志点的标靶置于标定空间,利用所述成像装置采集所述标靶的成像装置图像,然后利用投影装置投影正交条纹序列到所述标靶上,利用所述成像装置采集受印有所述标志点的标靶表面调制的正交条纹图。 [0062] Step IN SHANXI, printed with the target mark point calibration space is placed, an image forming apparatus using the imaging apparatus to collect the target, and a projection apparatus using a projection stripes orthogonal to the target sequence, using the imaging device by collecting printed perpendicular to the target surface of the fringe pattern modulated mark point.

[0063] 具体地,若所述标靶为平面标靶,则需将平面标靶摆放在不同位置,在每个位置下利用所述成像装置采集所述标靶的成像装置图像,然后利用投影装置投影正交条纹序列到所述标靶上,利用所述成像装置采集受印有所述标志点的标靶表面调制的正交条纹图。 [0063] Specifically, if the target is a target plane, the plane need to be placed at different positions of the target, an image forming apparatus using the imaging apparatus to collect the target at each position, then use fringe projection device projects an orthogonal sequence to the target, using the image forming apparatus acquired by the orthogonal fringe printed surface of the target mark point modulation.

[0064] 步骤SO 12,提取所述标志点在所述成像装置图像上像素点的坐标; [0064] step SO 12, the marker coordinate point extracting pixel points in an image of the imaged;

[0065] 步骤S013,通过所述正交条纹图计算正交相位,并通过正交相位确定所述标志点在投影装置图像上像素点的坐标; [0065] Step S013, is calculated by the quadrature phase quadrature fringe pattern, and phase determined by an orthogonal coordinate point pixel points in an image projection apparatus of the flag;

[0066] 步骤S014,通过反向投影立体视觉模型,结合系统参数确定标志点在成像装置图像上像素点的坐标和投影装置图像上像素点的坐标分别反向投影的空间射线,通过预置的射线重投影策略调整所述系统参数,以所述标志点到所对应的两条空间射线的距离之和最小时的系统参数作为标定出所述双目系统的系统参数。 [0066] Step S014, back projection stereoscopic model by combining the system parameter determining landmarks in the image forming apparatus on the coordinates of the pixel coordinates of the image pixels in the projection means are backward ray projection space by a preset ray reprojection policy adjust the system parameter to point to the mark corresponding to two spatial radiation and the minimum distance of the system parameters of the binocular system as a calibrated system parameters.

[0067] 具体地,由投影装置和成像装置构成的双目系统采用反向投影立体视觉模型;该模型意指,在理想情况下,对应同一个物点的投影装置图像上像素点的坐标与成像装置图像上像素点的坐标通过反向投影的两条空间射线交汇于该物点,符合立体视觉三维成像的物理过程。 [0067] Specifically, the binocular system including a projection apparatus and an image forming apparatus using back projection stereoscopic model; this model is meant, in the ideal case, corresponding to the coordinates on the image projection apparatus of the same object point pixels and the coordinates of the image forming apparatus by pixel backprojected rays converge at two of the spatial object point, in line with the physical process of stereoscopic three-dimensional imaging.

[0068] 步骤S02,结合所述系统参数,通过采样映射策略标定出相位-三维映射系数,并得到相位-三维映射系数查找表。 [0068] step S02, the binding parameters of the system, by sampling the phase calibration mapping strategies - 3D mapping coefficient, and to give the phase - 3D mapping coefficient lookup table.

[0069] 具体地,采样映射指的是,在成像装置图像上的任一个像素点的反向投影射线上进行采样,得到一系列空间采样点,将该系列采样点映射到投影装置图像上,得到对应的相位值;采样映射策略指的是,利用该系列采样点对应的相位值和该系列采样点对应的三维坐标拟合出该像素点的相位-三维映射系数。 [0069] Specifically, mapping of the sampling means is sampled on either a pixel in the image forming apparatus of back projection rays to obtain a series of spatial sampling points, mapping the sample point to the series of image projection apparatus, corresponding to the obtained phase value; refers to a sample mapping strategy using the series of points corresponding to values ​​of the sampling phase and the sampling points corresponding to the series of three-dimensional coordinates of the pixel fitting the phase - dimensional mapping coefficients.

[0070] 所述步骤S02具体包括: [0070] The step S02 comprises:

[0071] 步骤S021,利用标定出的系统参数确定成像装置图像上任一像素点的坐标反向投影的空间射线; [0071] Step S021, the image forming apparatus determines the coordinates of a pixel of office space inverse projection ray calibration using the system parameters;

[0072] 步骤S022,在标定空间内沿所述空间射线进行采样,得到一系列的空间采样点,将该系列空间采样点分别投影到投影装置图像上,得到对应的相位值; [0072] Step S022, in the space within the calibrated space ray is sampled to obtain a series of spatial sampling points, respectively, the series of spatial sampling points projected on the image means, to obtain a corresponding phase value;

[0073] 步骤S023,使用该系列采样点分别对应的相位值和该系列采样点的三维坐标拟合出所述任一像素点的相位-三维映射系数; [0073] Step S023, using the three-dimensional coordinate values ​​of the phase series of sampling points corresponding to the series of sampling points and fitted to any phase of the pixel of a three - dimensional mapping coefficients;

[0074] 步骤S024,对所述成像装置图像上的每个像素点重复步骤S021-S023,得到每个像素点的相位-三维映射系数,并生成相位-三维映射系数查找表。 [0074] Step S024, for each pixel on said image forming apparatus repeating steps S021-S023, to obtain the phase of each pixel - 3D mapping coefficient, and generates a phase - 3D mapping coefficient lookup table.

[0075] 具体地,通过上述标定过程即确定了成像装置图像中每个像素点的相位-三维映射系数;通过相位-三维映射系数查找表即可查出成像装置图像上每个像素点对应的相位- 三维映射系数,这里提到的每个像素点对应的相位-三维映射系数指的是每个像素点的坐标对应的相位-三维映射系数。 [0075] Specifically, the above-described calibration process that is determined by the image forming apparatus in the phase of each pixel of the three - dimensional mapping coefficients; by the phase - three-dimensional lookup table to find the mapping coefficients for each pixel on the image forming apparatus corresponding to phase three - dimensional mapping coefficients, each pixel corresponding to a phase referred to herein - refers to a three-dimensional mapping coefficients corresponding to the coordinates of each pixel of the phase - dimensional mapping coefficients.

[0076] 下面具体介绍执行这种基于条纹投影轮廓术的高效相位-三维映射方法的步骤, 如图2所示,所述方法包括: [0076] The following detailed description based on the efficient execution of such a phase contour fringe projection surgery - dimensional mapping method step, as shown in FIG. 2, the method comprising:

[0077] 步骤SI,利用投影装置投影条纹序列到待测物体表面,并利用成像装置采集受所述待测物体表面调制的变形条纹图,根据所述变形条纹图计算得到成像装置图像上所有像素点的相位; [0077] Step the SI, projected by the projection apparatus to the measured surface of the object fringe sequence, and using the image forming apparatus acquired by the modification of the measured surface of the object fringe patterns modulated by all the pixels on the image forming apparatus according to the modified fringe pattern computing phase point;

[0078] 步骤S2,在预置的相位-三维映射系数查找表中查找出每一个像素点对应的相位-三维映射系数,并将每一个像素点的所述相位和对应的相位-三维映射系数代入预置的相位-三维映射函数,从而计算出成像装置图像上每一个像素点对应的物点的三维坐标。 [0078] step S2, a preset phase - 3D mapping coefficient lookup table to find out the phase of each pixel corresponding to the point - 3D mapping coefficient, and the phase and the phase corresponding to each pixel of the three - dimensional mapping coefficients substituting a preset phase - three-dimensional mapping function to calculate the three-dimensional coordinates corresponding to each pixel on the image forming apparatus object point.

[0079] 具体地,所述相位-三维映射系数查找表是一个像素点索引的相位-三维映射系数查找表;在相位-三维映射系数查找表中是按像素点索引找出相应的相位-三维映射系数。 [0079] In particular, the phase - three phase mapping coefficient is a lookup table indexed pixel - 3D mapping coefficient lookup table; phase - 3D mapping coefficient lookup table is indexed by pixel to find the corresponding phase - D mapping coefficients.

[0080] 所述相位-三维映射函数为: [0080] The phase - three-dimensional mapping function is:

Figure CN106767533AD00101

[0082] 其中,(Xc(Ci)c),ΜΦ。 [0082] where, (Xc (Ci) c), ΜΦ. ),Ζ〇(Φ c))是所述待测物体的空间点三维坐标,Φ c是像素点对应的相位,an,bn,Cn,CX,CY,CZ是相位-二维映射系数,其中,an,bn,Cn是分别是相位-二维映射函数XJΦ。 ), Ζ〇 (Φ c)) is a three-dimensional coordinate point of the object to be measured, Φ c is a pixel corresponding to a phase, an, bn, Cn, CX, CY, CZ is the phase - dimensional mapping coefficients, wherein , an, bn, Cn, respectively, the phase - dimensional mapping function XJΦ. ),YJΦ。 ), YJΦ. ),Zc^(K)中多项式的系数,CX,CY,CZ分别是相位-三维映射函数X。 ), Zc ^ (K) coefficients of the polynomial, CX, CY, CZ are phase - three-dimensional mapping function X. (Φ。),Yc (Φ。),Zc (Φ。)中的常数项。 (Φ.), Yc (Φ.), The constant term Zc (Φ.) In.

[0083] 下面具体介绍上述公式⑴即相位-三维映射函数的推导过程: [0083] The following detailed description above formula ⑴ i.e. phase - derivation of three-dimensional mapping function:

[0084] 相位-三维映射函数是基于反向投影立体视觉模型推导出的相位和三维坐标之间的映射关系,如图3所示为反向投影立体视觉模型,该反向投影立体视觉模型表示为: [0084] phase - a three-dimensional mapping function is based on a mapping relationship between the stereoscopic projection reverse phase derived model and three-dimensional coordinates, FIG. 3 is a back projection stereoscopic model, the model represents a stereoscopic backprojection for:

Figure CN106767533AD00102

[0086] 其中,XjPX。 [0086] wherein, XjPX. 是物点分别在世界坐标系和成像装置坐标系下的坐标,1和&是物点分别在成像装置图像和投影装置图像上的像素点,X、和X%是分别对应于X。 Is the object point coordinates in the world coordinate system and the imaging apparatus coordinate system, and 1 & amp; object point is pixel image on the imaging apparatus and the image projection system, respectively, X, and X% respectively corresponding to X. 和&的畸变坐标,Hic^Pmp分别是成像装置图像和投影装置图像上像素点的坐标,R。 And & amp; distortion coordinates, Hic ^ Pmp are coordinates on an image projection apparatus and the image forming pixels, R. 和t。 And t. 分别是世界坐标系到成像装置坐标系的旋转矩阵和平移向量,RjPts分别是成像装置坐标系到投影装置坐标系的旋转矩阵和平移向量,!(。和心分别是成像装置和投影装置的投影矩阵,k。和1^分别是成像装置和投影装置镜头畸变系数向量,1、λρ为比例因子,I表示单位矩阵,〇是零向量,S表示齐次坐标。通常,R,t表示外参,K,k表示内参。 Are the world coordinate system to a rotation matrix and translation vector of the image forming apparatus coordinate system, RjPts are imaging device coordinate system to a rotation matrix and translation vector projection apparatus coordinate system,! (. And heart are the image projection device and the projection means matrix, K., and 1 ^ are respectively the imaging device and the projection device lens distortion coefficient vector, 1, λρ is the scale factor, I represents a unit matrix, square is the zero vector, S denotes homogeneous coordinates. typically, R, t represents external reference , K, k represents an internal control.

[0087] 本发明中,假设投影竖直条纹,那么投影装置图像上的相位值ΦΡ正比于横坐标uP。 [0087] In the present invention, it is assumed vertical stripe projection, then the phase value ΦΡ on the image projection device is proportional to the abscissa uP. 对于成像装置和投影装置的一对对应点Hic^Pmp,它们的相位值相等,即Φ Ρ= Φ。 For one pair of corresponding points of the image forming device and the projection means Hic ^ Pmp, their phase values ​​are equal, i.e. Φ Ρ = Φ. . 因此Φ。 Therefore Φ. 到uP是一个线性映射关系: UP to be a linear mapping relationship:

Figure CN106767533AD00111

[0089] 其中,上标L表示线性映射关系。 [0089] wherein L represents a linear mapping superscript relationship. 根据极线几何约束,成像装置图像上的像素点在投影装置图像上对应一条极线Ip。 The epipolar geometry, pixels on the image forming apparatus Ip corresponding to a source line on the image projection apparatus. 由于镜头畸变,实际的极线是一条弯曲曲线1%。 Due to lens distortion, the source line is actually a curved curve 1%. 由于17 P是一条连续曲线,根据We ierstrass逼近定理,该曲线可以近似为多项式曲线。 Since the 17 P is a continuous curve, according to the theorem of approximation We ierstrass, this curve can be approximated by a polynomial curve. 由于mP在1 %上,图像坐标UtJljvp是多项式映射关系: Since mP at 1%, the image coordinate mapping relationship is a polynomial UtJljvp:

Figure CN106767533AD00112

[0091] 其中,上标P表示多项式映射关系。 [0091] where the subscript P denotes a polynomial mapping relationship. 根据公式(2),图像点叫转化为投影装置坐标系下,即X%= (x^y%)1",表示为 According to equation (2), called the image point into coordinates the projection apparatus, i.e., X% = (x ^ y%) 1 ", as represented by

Figure CN106767533AD00113

[0093]公式⑶包含了从(uP,vP)到xWPy%的线性映射,表示为: [0093] Equation ⑶ contains a linear mapping from (uP, vP) to xWPy%, expressed as:

Figure CN106767533AD00114

[0097] 从像点Χ4ΡΧρ反向投影的两条空间射线交汇于空间点Xc。 [0097] From the image point Χ4ΡΧρ backprojected rays converge at two spatial spatial point Xc. 根据反向投影立体视觉模型,即公式(2),射线交汇表示为: The back-projection stereoscopic model, i.e., equation (2), as represented by the intersection of rays:

Figure CN106767533AD00115

[0101] 其中,ru和。 [0101] wherein, ru and. 分别是Rs和ts的元素。 Rs and ts are the elements of.

[0102] 本发明中,双目系统保持不动,对于一个特定的成像装置图像上像素点,Rs,ts和图像坐标X。 [0102] In the present invention, the binocular system remains immobile for a particular pixel on an image forming apparatus, Rs, ts and the image coordinates X. 和y。 And y. 是确定的。 It is determined. 所以,空间坐标ΧυΥ。 Therefore, the spatial coordinates ΧυΥ. 和Z。 And Z. 分别是xP的函数,表示为: XP functions are expressed as:

Figure CN106767533AD00116

[0104] 将公式⑶、⑷、⑶和⑵代入(10),即可推导出公式⑴。 [0104] Equation ⑶, ⑷, ⑶ ⑵ and substituting into (10), to derive the formula ⑴.

[0105] 通过上述方式得到待测物体表面物点的三维坐标,即可重建待测物体的三维形貌。 [0105] surface of the object to be measured to obtain three-dimensional coordinates of the object points in the above manner, to reconstruct three-dimensional topography of the object to be measured.

[0106]下面举一具体实施例说明上述基于条纹投影轮廓术的高效相位-三维映射方法的执行过程,本发明实施例中,成像装置为相机,投影装置为投影机,待测物体为石膏像: A particular embodiment [0106] For the above description below based on the efficient operation of the phase contour fringe projection - execution of a three-dimensional mapping method, embodiments of the present invention, the imaging device is a camera, the projector projection apparatus, the object to be measured plaster :

[0107] 在计算物点的三维坐标之前,先对相位-三维映射系数进行标定,具体地,使用平面标靶按步骤S011-S014标定相机和投影机组成的双目系统,优化出系统参数;使用已标定的系统参数,按步骤S021-S024拟合出相位-三维映射系数,生成像素点索引的相位-三维映射系数查找表,即完成了标定步骤。 [0107] prior to calculating the three-dimensional coordinates of the object point, the first phase - 3D mapping calibration coefficient, in particular, by using a planar target camera calibration steps S011-S014 and binocular system consisting of projectors, the system optimization parameter; using the calibrated system parameters, according to the steps S021-S024 fitting phase - 3D mapping coefficients, the phase of the generated pixel index - 3D mapping coefficient lookup table, to complete the calibration procedure. 计算物点的三维坐标时,先投影正弦条纹序列到石膏像表面,利用相机采集变形条纹图,根据所述变形条纹图计算得到相机图像上所有像素点的相位;然后,在相位-三维映射系数查找表中按像素点索引找出相应的相位-三维映射系数, 将像素点的相位值和对应的相位-三维映射系数代入公式(1)计算三维坐标,最终生成三维模型。 Calculating three-dimensional coordinates of the object point, the first sequence to the sinusoidal fringe projection plaster surface modification using the camera acquisition fringe pattern to obtain a phase of all pixels on the camera image according to the calculated modification fringe pattern; then, in the phase - 3D mapping coefficients lookup table index to find the corresponding pixel points by phase - 3D mapping coefficients, the phase value and the corresponding pixel of the phase - 3D mapping coefficients in equation (1) calculates three-dimensional coordinates, to generate the final three-dimensional model.

[0108] 其中,图4是其中一个位置下,平面标靶标志点在相机图像和投影机图像上的坐标分布,图5是石膏像的相位图,图6是石膏像的三维模型图。 [0108] wherein, FIG. 4 is a position where the, plane coordinate distribution of the target mark point image on the camera and the projector image, FIG. 5 is a phase diagram of plaster, FIG 6 is a three-dimensional model of the plaster.

[0109] 本发明提供的基于条纹投影轮廓术的高效相位-三维映射方法满足高效、高精度的三维数字成像与测量的要求。 [0109] Based on the present invention provides an efficient fringe projection profilometry phase - three-dimensional mapping method to meet the high requirements of the three-dimensional digital imaging and high-precision measurement.

[oho]下面具体介绍这种基于条纹投影轮廓术的高效相位-三维映射系统,所述条纹投影轮廓术基于双目系统,所述双目系统包括投影装置和成像装置;所述相位-三维映射系统在工作之前,需要进行标定;所以,如图7所示,所述相位-三维映射系统包括一个标定模块1,所述标定模块1用于对相位-三维映射系数进行标定,所述标定模块包括第一标定子模块11和第二标定子模块12; [OHO] The following detailed description of such phase based on the efficient operation of the contour fringe projection - 3D mapping systems, the contour fringe projection technique based on binocular system, a binocular system including a projection apparatus and an image forming apparatus; said phase - 3D mapping system prior to operation, needs to be calibrated; therefore, shown in Figure 7, the phase - 3D mapping system 1 comprises a calibration module, said calibration module is configured to phase 1 - 3D mapping coefficient calibration, the calibration module calibration module 11 includes a first and a second sub-module 12 sub-calibration;

[0111] 其中,所述第一标定子模块11,用于通过射线重投影策略标定出所述双目系统的系统参数; [0111] wherein said first indexing sub-module 11, a system for calibrating parameter of the binocular-ray system by reprojection policy;

[0112] 如图8所示,所述第一标定子模块11具体包括: [0112] As shown in FIG. 8, the first indexing sub-module 11 comprises:

[0113] 采集子模块111,用于将印有标志点的标靶置于标定空间,利用所述成像装置采集所述标靶的成像装置图像,然后利用投影装置投影正交条纹序列到所述标靶上,利用所述成像装置采集受印有所述标志点的标靶表面调制的正交条纹图; [0113] acquisition sub-module 111, configured to mark point printed calibration target space is placed, an image forming apparatus using the acquired image of the target is then projected by the projection means into the sequence of orthogonal stripe the target, using the image forming apparatus acquired by the orthogonal fringe printed mark point modulation of the target surface;

[0114] 第一坐标获取子模块112,用于提取所述标志点在所述成像装置图像上像素点的坐标; [0114] The first coordinate obtaining sub-module 112, to coordinates on an image of the imaging pixel extracting said mark point;

[0115] 第二坐标获取子模块113,用于通过所述正交条纹图计算正交相位,并通过正交相位确定所述标志点在投影装置图像上像素点的坐标; [0115] The second coordinate obtaining sub-module 113 for calculating by said quadrature phase quadrature fringe pattern, and phase determined by an orthogonal coordinate points in an image pixel on the projection of the flag;

[0116] 系统参数标定子模块114,用于通过反向投影立体视觉模型,结合系统参数确定标志点在成像装置图像上像素点的坐标和投影装置图像上像素点的坐标分别反向投影的空间射线,通过预置的射线重投影策略调整所述系统参数,以所述标志点到所对应的两条空间射线的距离之和最小时的系统参数作为标定出的所述双目系统的系统参数。 [0116] system parameter calibration sub-module 114, a stereoscopic model by back projection, in conjunction with the system parameter determining landmarks on an image forming apparatus and the projection coordinates on the coordinates of the image pixels are pixels projected backward spaces the system parameters of the binocular system rays, rays reprojection through the system parameter adjustment policy preset to space the two marker points to the corresponding rays at the minimum distance and the system parameters are calibrated as a .

[0117] 所述第二标定子模块12,用于结合所述系统参数,通过采样映射策略标定出相位-三维映射系数,并得到相位-三维映射系数查找表。 [0117] The second indexing sub-module 12, the system parameter for binding, by sampling the phase of the calibration mapping strategies - 3D mapping coefficient, and to give the phase - 3D mapping coefficient lookup table.

[0118] 所述第二标定子模块12具体包括: [0118] The second indexing sub-module 12 comprises:

[0119] 空间射线投影子模块121,用于利用标定出的系统参数确定成像装置图像上任一像素点的坐标反向投影的空间射线; [0119] Space-ray projection sub-module 121, the image forming apparatus for determining the coordinates of a pixel image office space reverse ray projection using a calibrated system parameters;

[0120] 相位值获取子模块122,用于在标定空间内沿所述空间射线进行采样,得到一系列的空间采样点,将该系列空间采样点分别投影到投影装置图像上,得到对应的相位值; [0120] phase value obtaining sub-module 122 for calibration along the ray of the spatial sampling space to obtain a series of sampling points, respectively, the series of spatial sampling points projected on the image means, to obtain the corresponding phase value;

[0121] 相位-三维映射系数标定子模块123,用于使用该系列采样点分别对应的相位值和该系列采样点的三维坐标拟合出所述任一像素点的相位-三维映射系数; [0121] phase - 3D mapping submodule 123 calibration coefficients, using three-dimensional coordinate values ​​of the phase series of sampling points corresponding to the series of sampling points and fitted to any phase of the pixel of a three - dimensional mapping coefficients;

[0122] 相位-三维映射系数查找表获取子模块124,用于对所述成像装置图像上的每个像素点进行处理,得到每个像素点的相位-三维映射系数,并生成相位-三维映射系数查找表。 [0122] phase - a three-dimensional lookup table mapping coefficient obtaining sub-module 124, for each pixel on the image forming apparatus is processed to obtain the phase of each pixel - 3D mapping coefficient, and generates a phase - 3D mapping coefficient lookup table.

[0123] 所述相位-三维映射系统还包括: [0123] The phase - 3D mapping system further comprises:

[0124] 相位获取模块2,用于利用投影装置投影条纹序列到待测物体表面,并利用成像装置采集受所述待测物体表面调制的变形条纹图,根据所述变形条纹图计算得到成像装置图像上所有像素点的相位; [0124] 2 phase acquisition module, for fringe projection by the projection means into the sequence of the surface of object to be measured, and by using the imaging apparatus to collect the object to be measured fringe modified surface prepared, obtained fringe image forming apparatus according to the modification of FIG Calculation phases of all pixels in the image;

[0125] 三维坐标获取模块3,用于在预置的相位-三维映射系数查找表中查找出每一个像素点对应的相位-三维映射系数,并将每一个像素点的所述相位和对应的相位-三维映射系数代入预置的相位-三维映射函数,从而计算出成像装置图像上每一个像素点对应的物点的三维坐标。 [0125] 3-dimensional coordinate obtaining module for a preset phase - 3D mapping coefficient lookup table to find out the phase of each pixel corresponding to the point - 3D mapping coefficient, and the phase of each pixel point and the corresponding phase three - dimensional mapping coefficients are substituted into a preset phase - three-dimensional mapping function to calculate the three-dimensional coordinates corresponding to each pixel on the image forming apparatus object point.

[0126] 具体地,所述相位-三维映射函数为: [0126] In particular, the phase - three-dimensional mapping function is:

Figure CN106767533AD00131

[0128] 其中,(Xc(Ci)c),ΜΦ。 [0128] where, (Xc (Ci) c), ΜΦ. ),Ζ〇(Φ c))是所述待测物体的空间点三维坐标,Φ c是像素点对应的相位,an,bn,Cn,CX,CY,CZ是相位-二维映射系数,其中,an,bn,Cn是分别是相位-二维映射函数XJΦ。 ), Ζ〇 (Φ c)) is a three-dimensional coordinate point of the object to be measured, Φ c is a pixel corresponding to a phase, an, bn, Cn, CX, CY, CZ is the phase - dimensional mapping coefficients, wherein , an, bn, Cn, respectively, the phase - dimensional mapping function XJΦ. ),YJΦ。 ), YJΦ. ),Zc^(K)中多项式的系数,CX,CY,CZ分别是相位-三维映射函数X。 ), Zc ^ (K) coefficients of the polynomial, CX, CY, CZ are phase - three-dimensional mapping function X. (Φ。),Yc (Φ。),Zc (Φ。)中的常数项。 (Φ.), Yc (Φ.), The constant term Zc (Φ.) In.

[0129] 本发明提供的基于条纹投影轮廓术的高效相位-三维映射系统满足高效、高精度的三维数字成像与测量的要求。 [0129] Based on the present invention provides an efficient fringe projection profilometry phase - 3D mapping systems to meet the high requirements of the three-dimensional digital imaging and high-precision measurement.

[0130] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 [0130] The foregoing is only preferred embodiments of the present invention but are not intended to limit the present invention, any modifications within the spirit and principle of the present invention, equivalent substitutions and improvements should be included in the present within the scope of the invention.

Claims (10)

1. 一种基于条纹投影轮廓术的高效相位-三维映射方法,所述条纹投影轮廓术基于双目系统,所述双目系统包括投影装置和成像装置,其特征在于,所述方法包括: 步骤SI,利用投影装置投影条纹序列到待测物体表面,并利用成像装置采集受所述待测物体表面调制的变形条纹图,根据所述变形条纹图计算得到成像装置图像上所有像素点的相位; 步骤S2,在预置的相位-三维映射系数查找表中查找出每一个像素点对应的相位-三维映射系数,并将每一个像素点的所述相位和对应的相位-三维映射系数代入预置的相位-三维映射函数,从而计算出成像装置图像上每一个像素点对应的物点的三维坐标。 An Efficient Phase fringe projection profilometry - 3D mapping method, the contour fringe projection technique based on binocular system, a binocular system including a projection apparatus and an image forming apparatus, wherein, said method comprising the steps of: the SI, projected by the projection apparatus to the measured surface of the object fringe sequence, and using the image forming apparatus acquired by the measured object surface modification fringe pattern modulated phases of all pixels is calculated to obtain the image forming apparatus according to the modified fringe pattern; step S2, a preset phase - 3D mapping coefficient lookup table to find out the phase of each pixel corresponding to the point - 3D mapping coefficient, and the phase and the phase corresponding to each pixel of the three - dimensional mapping coefficients are substituted into a preset phase - three-dimensional mapping function to calculate the three-dimensional coordinates corresponding to each pixel on the image forming apparatus object point.
2. 如权利要求1所述的高效相位-三维映射方法,其特征在于,所述相位-三维映射函数为: 2. Efficient phase according to claim 1 - dimensional mapping method, wherein the phase - three-dimensional mapping function is:
Figure CN106767533AC00021
其中,(Xe (Φ c),Yc (Φ c),Zc (Φ C))是所述待测物体的空间点三维坐标,Φ C是像素点对应的相位,an,bn,Cn,CX,CY,CZ是相位-二维映射系数,其中,an,bn,Cn是分别是相位-二维映射函数Χα(Φ。),Υα(Φ。),Zc((i)。)中多项式的系数,CX,CY,CZ分别是相位-三维映射函数,Yc (Φ。),Ζ〇(Φ。)中的常数项。 Wherein, (Xe (Φ c), Yc (Φ c), Zc (Φ C)) of the object to be measured is a three-dimensional spatial coordinates of points, Φ C phase corresponding to a pixel, an, bn, Cn, CX, CY, CZ is the phase - dimensional mapping coefficients, wherein, an, bn, Cn, respectively, the phase - dimensional mapping function Χα (. Φ), Υα (Φ.), the polynomial coefficients Zc ((i).) , CX, CY, CZ are phase - three-dimensional mapping function, Yc (. Φ), Ζ〇 constant term ([Phi].) the.
3. 如权利要求1所述的高效相位-三维映射方法,其特征在于,所述步骤SI之前还包括: 步骤SOl,通过射线重投影策略标定出所述双目系统的系统参数; 步骤S02,结合所述系统参数,通过采样映射策略标定出相位-三维映射系数,并得到相位-三维映射系数查找表。 3. Efficient phase according to claim 1 - dimensional mapping method, wherein, before the step SI further comprising: a step SOl, reprojection rays through the system parameters of the strategy calibration binocular system; step S02, the in conjunction with the system parameter, strategy calibration by sampling the phase mapping - 3D mapping coefficient, and to give the phase - 3D mapping coefficient lookup table.
4. 如权利要求3所述的高效相位-三维映射方法,其特征在于,所述步骤SO 1具体包括: 步骤S011,将印有标志点的标靶置于标定空间,利用所述成像装置采集所述标靶的成像装置图像,然后利用投影装置投影正交条纹序列到所述标靶上,利用所述成像装置采集受印有所述标志点的标靶表面调制的正交条纹图; 步骤S012,提取所述标志点在所述成像装置图像上像素点的坐标; 步骤S013,通过所述正交条纹图计算正交相位,并通过正交相位确定所述标志点在投影装置图像上像素点的坐标; 步骤S014,通过反向投影立体视觉模型,结合系统参数确定标志点在成像装置图像上像素点的坐标和投影装置图像上像素点的坐标分别反向投影的空间射线,通过预置的射线重投影策略调整所述系统参数,以所述标志点到所对应的两条空间射线的距离之和最小时的系统参数作为 4. Efficient phase according to claim 3 - dimensional mapping method, wherein said step SO 1 specifically comprises: step S011, the printed mark point calibration target space is placed, acquired using the imaging apparatus the image forming apparatus of the target, and a projection apparatus using a projection stripes orthogonal to the target sequence, by using the imaging apparatus to collect the printed quadrature fringe mark point modulation of the target surface; step S012, the image extracting apparatus coordinates on the imaging pixels of said mark point; step S013, is calculated by the quadrature phase quadrature fringe pattern, and is determined by said quadrature phase marker point on the projected image pixels means coordinate points; step S014, back projection stereoscopic model by combining the system parameter determining landmarks in the image forming apparatus on the coordinates of the pixel coordinates of the image projection means, respectively backprojection pixel space rays, by presetting re-projection rays policy adjusting the system parameter, to space the two marker points to the corresponding ray system parameters and the minimum distance as 定出的所述双目系统的系统参数。 The system parameters fixed for the binocular system.
5. 如权利要求3或4所述的高效相位-三维映射方法,其特征在于,所述步骤S02具体包括: 步骤S021,利用标定出的系统参数确定成像装置图像上任一像素点的坐标反向投影的空间射线; 步骤S022,在标定空间内沿所述空间射线进行采样,得到一系列的空间采样点,将该系列空间采样点分别投影到投影装置图像上,得到对应的相位值; 步骤S023,使用该系列采样点分别对应的相位值和该系列采样点的三维坐标拟合出所述任一像素点的相位-三维映射系数; 步骤S024,对所述成像装置图像上的每个像素点重复步骤S021-S023,得到每个像素点的相位-三维映射系数,并生成相位-三维映射系数查找表。 5. Efficient phase 3 or claim 4, wherein the three - dimensional mapping method, characterized in that, the step S02 comprises: step S021, using the calibration system parameter determining means the reverse image formation took a coordinate pixel points ray projection space; step S022, in the space within the calibrated space ray is sampled to obtain a series of spatial sampling points, respectively, the series of spatial sampling points projected on the image means, to obtain a corresponding phase value; step S023 using the series of sampling points corresponding to each phase value and the three-dimensional coordinates of the series of sampling points fitted to any phase of a pixel of the three - dimensional mapping coefficients; step S024, each pixel of the image of the imaging apparatus repeating steps S021-S023, to obtain the phase of each pixel - 3D mapping coefficient, and generates a phase - 3D mapping coefficient lookup table.
6. —种基于条纹投影轮廓术的高效相位-三维映射系统,所述条纹投影轮廓术基于双目系统,所述双目系统包括投影装置和成像装置,其特征在于,所述相位-三维映射系统包括: 相位获取模块,用于利用投影装置投影条纹序列到待测物体表面,并利用成像装置采集受所述待测物体表面调制的变形条纹图,根据所述变形条纹图计算得到成像装置图像上所有像素点的相位; 三维坐标获取模块,用于在预置的相位-三维映射系数查找表中查找出每一个像素点对应的相位-三维映射系数,并将每一个像素点的所述相位和对应的相位-三维映射系数代入预置的相位-三维映射函数,从而计算出成像装置图像上每一个像素点对应的物点的三维坐标。 6. - Efficient species phase fringe projection profilometry - dimensional mapping system, the contour fringe projection technique based on binocular system, a binocular system including a projection apparatus and an image forming apparatus, wherein said phase - 3D mapping the system comprising: a phase acquisition module for fringe projection by the projection means into the sequence of the surface of object to be measured, and using the modified fringe acquired by the imaging device of FIG measured modulation of the object surface to obtain an image forming apparatus according to the modified fringe pattern computing the phase of all pixels; three-dimensional coordinate obtaining module for a preset phase - 3D mapping coefficient lookup table to find out the phase of each pixel corresponding to the point - 3D mapping coefficient, and the phase of each pixel point and the corresponding phase - 3D mapping coefficients are substituted into a preset phase - three-dimensional mapping function to calculate the three-dimensional coordinates corresponding to each pixel on the image forming apparatus object point.
7. 如权利要求6所述的高效相位-三维映射系统,其特征在于,所述相位-三维映射函数为: 7. Efficient phase according to claim 6 - 3D mapping system, wherein said phase - three-dimensional mapping function is:
Figure CN106767533AC00031
其中,(Xe (Φ c),Yc (Φ c),Zc (Φ C))是所述待测物体的空间点三维坐标,Φ C是像素点对应的相位,an,bn,Cn,CX,CY,CZ是相位-二维映射系数,其中,an,bn,Cn是分别是相位-二维映射函数Χα(Φ。),Υα(Φ。),Zc((i)。)中多项式的系数,CX,CY,CZ分别是相位-三维映射函数,Yc (Φ。),Ζ〇(Φ。)中的常数项。 Wherein, (Xe (Φ c), Yc (Φ c), Zc (Φ C)) of the object to be measured is a three-dimensional spatial coordinates of points, Φ C phase corresponding to a pixel, an, bn, Cn, CX, CY, CZ is the phase - dimensional mapping coefficients, wherein, an, bn, Cn, respectively, the phase - dimensional mapping function Χα (. Φ), Υα (Φ.), the polynomial coefficients Zc ((i).) , CX, CY, CZ are phase - three-dimensional mapping function, Yc (. Φ), Ζ〇 constant term ([Phi].) the.
8. 如权利要求6所述的高效相位-三维映射系统,其特征在于,所述相位-三维映射系统还包括标定模块,所述标定模块用于对相位-三维映射系数进行标定,所述标定模块包括第一标定子模块和第二标定子模块; 所述第一标定子模块,用于通过射线重投影策略标定出所述双目系统的系统参数; 所述第二标定子模块,用于结合所述系统参数,通过采样映射策略标定出相位-三维映射系数,并得到相位-三维映射系数查找表。 8. The effective phase of the claim 6 - 3D mapping system, wherein said phase - 3D mapping system further includes a calibration module, said calibration module is configured to phase - 3D mapping coefficient calibration, the calibration calibration module comprises a first sub-module and a second sub-module calibration; the first sub-module calibration, a system for calibrating parameter of the binocular-ray system by reprojection policy; said second indexing sub-module, for in conjunction with the system parameter, strategy calibration by sampling the phase mapping - 3D mapping coefficient, and to give the phase - 3D mapping coefficient lookup table.
9. 如权利要求8所述的高效相位-三维映射系统,其特征在于,所述第一标定子模块具体包括: 采集子模块,用于将印有标志点的标靶置于标定空间,利用所述成像装置采集所述标靶的成像装置图像,然后利用投影装置投影正交条纹序列到所述标靶上,利用所述成像装置采集受印有所述标志点的标靶表面调制的正交条纹图; 第一坐标获取子模块,用于提取所述标志点在所述成像装置图像上像素点的坐标; 第二坐标获取子模块,用于通过所述正交条纹图计算正交相位,并通过正交相位确定所述标志点在投影装置图像上像素点的坐标; 系统参数标定子模块,用于通过反向投影立体视觉模型,结合系统参数确定标志点在成像装置图像上像素点的坐标和投影装置图像上像素点的坐标分别反向投影的空间射线, 通过预置的射线重投影策略调整所述系统参数, 9. The effective phase of the claim 8 - 3D mapping system, wherein said first indexing sub-module comprises: acquisition sub-module, configured to mark point printed calibration target space is placed, using the image forming apparatus an image forming apparatus to collect the target, and a projection apparatus using a projection stripes orthogonal to the target sequence, by using the imaging apparatus to collect the printed surface of the target mark point modulated positive FIG cross stripes; a first coordinate obtaining sub-module, for extracting the marker coordinate point pixel on said image forming apparatus; a second coordinate obtaining sub-module, for calculating a fringe pattern through the orthogonal quadrature-phase and determining coordinates of the marker in an image pixel on the projection by the quadrature phase; system parameter calibration sub-module, configured to reverse the stereoscopic projection model parameter determination system in conjunction with marker points on the image forming apparatus pixels It coordinates and the coordinates of the projection means each pixel on the image space back projection rays, by adjusting the radiation reprojection policy preset system parameters, 以所述标志点到所对应的两条空间射线的距离之和最小时的系统参数作为标定出的所述双目系统的系统参数。 In the mark point corresponding to two spatial radiation and the minimum distance of the binocular system as a system parameter is a calibrated system parameters.
10.如权利要求8或9所述的高效相位-三维映射系统,其特征在于,所述第二标定子模块具体包括: 空间射线投影子模块,用于利用标定出的系统参数确定成像装置图像上任一像素点的坐标反向投影的空间射线; 相位值获取子模块,用于在标定空间内沿所述空间射线进行采样,得到一系列的空间采样点,将该系列空间采样点分别投影到投影装置图像上,得到对应的相位值; 相位-三维映射系数标定子模块,用于使用该系列采样点分别对应的相位值和该系列采样点的三维坐标拟合出所述任一像素点的相位-三维映射系数; 相位-三维映射系数查找表获取子模块,用于对所述成像装置图像上的每个像素点进行处理,得到每个像素点的相位-三维映射系数,并生成相位-三维映射系数查找表。 Space-ray projection submodule, a system for utilizing the calibration parameter determining the image forming apparatus: a three-dimensional mapping system, wherein said second indexing sub-module comprises - 10. Efficient phase 8 or claim 9 took a backprojection pixel coordinate space ray; phase value obtaining sub-module, a space along the ray within the calibrated space is sampled to obtain a series of spatial sampling points, and the series of points are projected onto the spatial sampling the image projection apparatus, to obtain a corresponding phase value; phase - 3D mapping submodule calibration coefficients, using three-dimensional coordinate values ​​of the phase series of sampling points corresponding to the series of sample points and fitted to any one of the pixel points phase three - dimensional mapping coefficients; phase - three-dimensional lookup table mapping coefficient obtaining sub-module, for each pixel on the image forming apparatus is processed to obtain the phase of each pixel - 3D mapping coefficient, and generates a phase - 3D mapping coefficient lookup table.
CN201611242689.4A 2016-12-28 2016-12-28 Efficient phase-three-dimensional mapping method and system based on fringe projection technology of profiling CN106767533B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611242689.4A CN106767533B (en) 2016-12-28 2016-12-28 Efficient phase-three-dimensional mapping method and system based on fringe projection technology of profiling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611242689.4A CN106767533B (en) 2016-12-28 2016-12-28 Efficient phase-three-dimensional mapping method and system based on fringe projection technology of profiling

Publications (2)

Publication Number Publication Date
CN106767533A true CN106767533A (en) 2017-05-31
CN106767533B CN106767533B (en) 2019-07-05

Family

ID=58925593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611242689.4A CN106767533B (en) 2016-12-28 2016-12-28 Efficient phase-three-dimensional mapping method and system based on fringe projection technology of profiling

Country Status (1)

Country Link
CN (1) CN106767533B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107869968A (en) * 2017-12-01 2018-04-03 杭州测度科技有限公司 Rapid three-dimensional scanning method and system applicable to complex object surfaces
WO2019051728A1 (en) * 2017-09-14 2019-03-21 深圳大学 Three-dimensional digital imaging method and device for wrapped phase based on phase mapping

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687325A (en) * 1985-03-28 1987-08-18 General Electric Company Three-dimensional range camera
JP3265476B2 (en) * 1999-06-25 2002-03-11 和歌山大学長 Real-time deformation measuring method
CN101074869A (en) * 2007-04-27 2007-11-21 东南大学 Method for measuring three-dimensional contour based on phase method
US20100201811A1 (en) * 2009-02-12 2010-08-12 Prime Sense Ltd. Depth ranging with moire patterns
CN101949693A (en) * 2010-08-03 2011-01-19 河北工业大学 Method for calibrating three-dimensional imaging system
CN102622747A (en) * 2012-02-16 2012-08-01 北京航空航天大学 Camera parameter optimization method for vision measurement
CN103994732A (en) * 2014-05-29 2014-08-20 南京理工大学 Three-dimensional measurement method based on fringe projection
CN104111039A (en) * 2014-08-08 2014-10-22 电子科技大学 Calibrating method for randomly placing fringe projection three-dimensional measuring system
US20160094830A1 (en) * 2014-09-26 2016-03-31 Brown University System and Methods for Shape Measurement Using Dual Frequency Fringe Patterns
CN106164979A (en) * 2015-07-13 2016-11-23 深圳大学 Three-dimensional face reconstruction method and system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687325A (en) * 1985-03-28 1987-08-18 General Electric Company Three-dimensional range camera
JP3265476B2 (en) * 1999-06-25 2002-03-11 和歌山大学長 Real-time deformation measuring method
CN101074869A (en) * 2007-04-27 2007-11-21 东南大学 Method for measuring three-dimensional contour based on phase method
US20100201811A1 (en) * 2009-02-12 2010-08-12 Prime Sense Ltd. Depth ranging with moire patterns
CN101949693A (en) * 2010-08-03 2011-01-19 河北工业大学 Method for calibrating three-dimensional imaging system
CN102622747A (en) * 2012-02-16 2012-08-01 北京航空航天大学 Camera parameter optimization method for vision measurement
CN103994732A (en) * 2014-05-29 2014-08-20 南京理工大学 Three-dimensional measurement method based on fringe projection
CN104111039A (en) * 2014-08-08 2014-10-22 电子科技大学 Calibrating method for randomly placing fringe projection three-dimensional measuring system
US20160094830A1 (en) * 2014-09-26 2016-03-31 Brown University System and Methods for Shape Measurement Using Dual Frequency Fringe Patterns
CN106164979A (en) * 2015-07-13 2016-11-23 深圳大学 Three-dimensional face reconstruction method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051728A1 (en) * 2017-09-14 2019-03-21 深圳大学 Three-dimensional digital imaging method and device for wrapped phase based on phase mapping
CN107869968A (en) * 2017-12-01 2018-04-03 杭州测度科技有限公司 Rapid three-dimensional scanning method and system applicable to complex object surfaces

Also Published As

Publication number Publication date
CN106767533B (en) 2019-07-05

Similar Documents

Publication Publication Date Title
Li et al. Accurate calibration method for a structured light system
Luhmann Close range photogrammetry for industrial applications
Hartley et al. Parameter-free radial distortion correction with center of distortion estimation
Zhou et al. Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations
CA2731680C (en) System for adaptive three-dimensional scanning of surface characteristics
Mendonca et al. Epipolar geometry from profiles under circular motion
CN104075688B (en) Binocular stereo ranging method gaze monitoring system
McNeill et al. Measurement of surface profile using digital image correlation
Guo et al. Least-squares calibration method for fringe projection profilometry
CN101608908B (en) Combined three-dimensional digital imaging method of digital speckle projection and phase measuring profilometry
CN101566461B (en) Method for quickly measuring blade of large-sized water turbine
CN103292710A (en) Distance measuring method applying binocular visual parallax error distance-measuring principle
Li et al. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry
CN102203551B (en) Method and system for providing three-dimensional and range inter-planar estimation
JPWO2006120759A1 (en) 3-dimensional shape measuring method and apparatus
CN101995231A (en) Three-dimensional detection system for surface of large thin-shell object and detection method thereof
Peng et al. Model and algorithms for point cloud construction using digital projection patterns
US20140253929A1 (en) Apparatus and method for 3d surface measurement
CN102364299B (en) Calibration technology for multiple structured light projected three-dimensional profile measuring heads
CN100480625C (en) Stereo vision detection system based on adaptive sine streak projection
Yin et al. Calibration of fringe projection profilometry with bundle adjustment strategy
CN102750697A (en) Parameter calibration method and device
CN100388319C (en) Multi-viewpoint attitude estimating and self-calibrating method for three-dimensional active vision sensor
Yang et al. Flexible and accurate implementation of a binocular structured light system
CN100520285C (en) Vision measuring method for projecting multiple frequency grating object surface tri-dimensional profile

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant