CN106747464A - ZrB2‑SiC陶瓷发热体及超高温加热设备 - Google Patents

ZrB2‑SiC陶瓷发热体及超高温加热设备 Download PDF

Info

Publication number
CN106747464A
CN106747464A CN201710005797.8A CN201710005797A CN106747464A CN 106747464 A CN106747464 A CN 106747464A CN 201710005797 A CN201710005797 A CN 201710005797A CN 106747464 A CN106747464 A CN 106747464A
Authority
CN
China
Prior art keywords
zrb
sic
heater
ceramic heater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710005797.8A
Other languages
English (en)
Inventor
郭伟明
李文杰
吴利翔
陈敏烽
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710005797.8A priority Critical patent/CN106747464A/zh
Publication of CN106747464A publication Critical patent/CN106747464A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种ZrB2‑SiC陶瓷发热体、ZrB2‑SiC陶瓷发热体的制备方法及采用ZrB2‑SiC陶瓷作为发热体的超高温加热设备,其中,所述ZrB2‑SiC陶瓷发热体由ZrB2和SiC粉体烧结制备,其中,SiC的体积百分比为5%~40%,余量为ZrB2的体积百分比,ZrB2颗粒的粒径为<5μm,SiC颗粒的粒径为<10μm。以ZrB2‑SiC复合陶瓷材料制备发热体,利用ZrB2‑SiC复合陶瓷材料优良的导电性,同时在发热体氧化时会在表面形成一层致密的SiO2氧化膜,可保护发热体在超高温下的正常工作;通过选用ZrB2‑SiC材料作为发热体,因发热体在高温下优异的力学性能和抗热震性,可以大幅度提高加热设备的可靠度。

Description

ZrB2-S i G陶瓷发热体及超高温加热设备
技术领域
[0001] 本发明涉及复合陶瓷材料技术领域,尤其是指一种ZrB2-SiC陶瓷发热体、ZrB2-Sic 陶瓷发热体的制备方法及采用ZrB2-SiC陶瓷作为发热体的超高温加热设备。
背景技术
[0002]随着科学技术的极速发展,不管在生活还是工业中,选用材料时对其性能要求越 来越苛刻,而性能绝大程度上受加热温度的影响,尤其是在空气中加热时,高温下发热体的 氧化限制了加热设备在高温上的应用,通常会因为其加热温度不够而使得制备得到的材料 无法致密,从而降低材料的力学性能和抗物理环境和化学侵蚀,极大地限制了该材料在工 业上的应用。为了解决加热设备在空气中加热这一问题,许多研宄者主要针对加热设备的 发热体材料进行研究,选用导电性能良好且耐氧化的材料作为发热体,目前使用最广的发 热体主要是M〇Si2,因为其在导电的同时具有很好的抗氧化性,但是,当达到170(TC及以上 的高温时,材料会极度氧化,而且力学性能和抗热震性能极差,造成在使用中容易出现因为 热震或者设备引起的抖动而断裂。
[0003]因此,必须解决高温易氧化和高温性能差这两个问题,而本发明中以ZrB2-SiC作 为发热体可以有效解决这一问题,ZrB2作为一种超高温材料其熔点为3246°C,以ZrB2作为基 体可极大程度上提高发热体的耐高温性,SiC材料的熔点为2730°C,而且SiC在氧化时会在 表面形成一层致密的氧化层,在ZrB2-SiC材料致密度极高时,ZrB2基体中加入SiC可有效阻 止进一步氧化,同时SiC的引入有助于提高整体的抗弯强度和断裂初性,并且在高温下 ZrB2-SiC具有良好的抗热震性。
发明内容
[0004] 本发明所要解决的技术问题在于提供一种ZrB2-Si C陶瓷发热体、ZrB2-S i C陶瓷发 热体的制备方法及采用ZrB2-SiC陶瓷作为发热体的超高温加热设备。
[0005] 本发明是通过以下技术方案予以实现的。
[0006] 一种ZrB2-SiC陶瓷发热体,所述ZrB2-SiC陶瓷发热体由ZrB2和SiC粉体烧结制备, 其中,SiC的体积百分比为5%〜40%,余量为ZrB2的体积百分比,ZrB2颗粒的粒径为<5wn, SiC颗粒的粒径为<10wn。
[0007] 优选地,所述SiC的体积百分比为10%。
[0008] 优选地,所述ZrB2的纯度为95〜100%,粒径为0. lwn。
[0009] 优选地,所述SiC的纯度为95〜100%,粒径为〇.5wii。
[0010] 一种制备上述ZrB2-SiC陶瓷发热体的方法,包括如下步骤:a、将相应体积百分比 的ZrB2和SiC粉体混合均匀得到混合物;b、将混合物置于真空热压炉中施加一定压力烧结 而得到ZrB2-SiC复合陶瓷材料,其中,烧结时,以15°C/min的升温速率将温度升至1800〜 2000°C并保温0.5〜8h,加压3〇MPa,通过在真空下烧结获得的ZrB2-SiC复合陶瓷材料,致密 度高于95%。
[0011] 优选地,烧结时以15°c/min的升温速率升至1900°C保温0.5h。
[0012] —种超高温加热设备,包括有炉腔、设置于所述炉腔内的如上所述的办出-“⑶甸 瓷发热体、设置于所述炉腔内用于检测炉腔温度的温度传感器、用于收集温度传感器所检 测温度数据的数据采集器、用于根据所采集的温度数据控制输入到发热体的电流/电压的 温度控制器、及供于用户操作的控制面板,发热体通过降压变压器而与电源连接。
[0013]与现有技术相比,本发明的有益效果:以ZrB2-SiC复合陶瓷材料制备发热体,利用 ZrBs-SiC复合陶瓷材料优良的导电性,同时在发热体氧化时会在表面形成一层致密的Si〇2 氧化膜,可保护发热体在超高温下的正常工作;通过选用ZrB2_SiC材料作为发热体可将目 前在空气中加热设备的上限从1800°C提高到2000°C;通过选用ZrB2-SiC材料作为发热体, 因发热体在高温下优异的力学性能和抗热震性,可以大幅度提高加热设备的可靠度。
附图说明
[0014]图1是本发明超高温加热设备的结构示意图。
具体实施方式
[0015]下面所示为附图和具体实施例对本发明做进一步详细、完整地说明,但决非限制 本发明,本发明也并非仅局限于下述实施例的内容,下述所使用的实验方法若无特殊说明, 均为本技术领域现有常规的方法,所使用的配料或材料,如无特殊说明,均为通过商业途径 可得到的配料或材料。下面给出实施案例:
[0016] 实施例1
[0017] 以ZrB2和SiC粉体为原料,其中SiC的体积百分比为10%,ZrB2的体积百分比为 90%,ZrB2颗粒的粒径为0 • 5wn,SiC颗粒的粒径为lwn,将ZrB2和SiC粉体混合均匀而得到混 合物,将混合物在真空热压炉中以15°C/min的升温速率升至1900°C保温0.5h,加压30MPa, 烧结制备得到ZrB2-SiC复合陶瓷材料,以ZrB2-SiC复合陶瓷材料作为发热体。由此制备的 2池2-8;[(:陶瓷发热体的各项参数如下:致密度为99.9%,电阻率为如0*011,抗弯强度为 700MPa,断裂韧性为8MPa • m1/2。
[0018] 如图1所示,采用此实施例制备的ZrB2-SiC陶瓷发热体作为发热体的超高温设备, 其包括有炉腔10、设置于所述炉腔10内的ZrB2-SiC陶瓷发热体11、设置于所述炉腔10内用 于检测炉腔温度的温度传感器12、用于收集温度传感器12所检测温度数据的数据采集器 13、用于根据所采集的温度数据控制输入到ZrB2_SiC陶瓷发热体11的电流/电压的温度控 制器14、及供于用户操作的控制面板15,ZrB2-SiC陶瓷发热体11通过降压变压器16而与电 源17连接,此超高温加热设备可在空气中加热到2100°C长时间工作。
[0019] 实施例2
[0020] 以ZrB2和SiC粉体为原料,其中SiC的体积百分比为20 %,ZrB2的体积百分比为 80%,ZrB2颗粒的粒径为0.5um,SiC颗粒的粒径为lwn,将ZrB2和SiC粉体混合均匀而得到混 合物,将混合物在真空热压炉中以15 °C /min的升温速率升至1900°C保温0 • 5h,加压30MPa, 烧结制备得到ZrB2-SiC复合陶瓷材料,以ZrB2-SiC复合陶瓷材料作为发热体。由此制备的 ZrB2-SiC陶瓷发热体的各项参数如下:致密度为99.9%,电阻率为• cm,抗弯强度为 750MPa,断裂軔性为8.5MPa • m1/2。采用此实施例制备的ZrB2-SiC陶瓷发热体作为发热体的 超高温设备可在空气中加热到2000°C长时间工作。
[0021] 实施例3
[0022]以ZrB2和SiC粉体为原料,其中SiC的体积百分比为30 %,ZrB2的体积百分比为 70%,ZrB2颗粒的粒径为0 • 5um,SiC颗粒的粒径为lum,将ZrB2和SiC粉体混合均勾而得到混 合物,将混合物在真空热压炉中以15°C/min的升温速率升至190(TC保温0.5h,加压30MPa, 烧结制备得到ZrB^SiC复合陶瓷材料,以ZrB2-SiC复合陶瓷材料作为发热体。由此制备的 2抑2_8丨(:陶瓷发热体的各项参数如下:致密度为99.9%,电阻率为151^〇*(3111,抗弯强度为 800MPa,断裂韧性为9MPa • m1/2。采用此实施例制备的ZrB2-SiC陶瓷发热体作为发热体的超 高温设备可在空气中加热到2000 °C长时间工作。
[0023] 实施例4
[0024] 以ZrBs和SiC粉体为原料,其中SiC的体积百分比为10%,ZrB2的体积百分比为 90 %,ZrB2颗粒的粒径为0 • lwn,SiC颗粒的粒径为0.5mi,将ZrB2和SiC粉体混合均匀而得到 混合物,将混合物在真空热压炉中以15 °C / m i n的升温速率升至19 0 0 °C保温0 • 5 h,加压 30MPa,烧结制备得到ZrB2_SiC复合陶瓷材料,以ZrB2-SiC复合陶瓷材料作为发热体。由此制 备的2抑2_5丨(:陶瓷发热体的各项参数如下:致密度为99.9%,电阻率为1]4〇*〇11,抗弯强度 为750MPa,断裂軔性为8MPa • m1/2。采用此实施例制备的ZrB2-SiC陶瓷发热体作为发热体的 超高温设备可在空气中加热到2100°C长时间工作。
[0025] 实施例5
[0026] 以ZrB2和Si C粉体为原料,其中Si C的体积百分比为10 %,ZrB2的体积百分比为 90%,ZrB2颗粒的粒径为0.5wn,SiC颗粒的粒径为lum,将ZrB2和SiC粉体混合均匀而得到混 合物,将混合物在真空热压炉中以15°C/min的升温速率升至1800°C保温8h,加压30MPa,烧 结制备得到ZrB2-SiC复合陶瓷材料,以ZrB2-SiC复合陶瓷材料作为发热体。由此制备的 ZrB2-SiC陶瓷发热体的各项参数如下:致密度为99.9%,电阻率为5u Q • cm,抗弯强度为 700MPa,断裂軔性为8.5MPa • m1/2。采用此实施例制备的ZrB2-SiC陶瓷发热体作为发热体的 超高温设备可在空气中加热到2100°C长时间工作。
[0027] 实施例6
[0028] 以ZrB2和SiC粉体为原料,其中SiC的体积百分比为10 %,ZrB2的体积百分比为 90%,ZrB2颗粒的粒径为0.5um,SiC颗粒的粒径为lum,将ZrB2和SiC粉体混合均匀而得到混 合物,将混合物在真空热压炉中以15°C/min的升温速率升至2000°C保温0 • 5h,加压30MPa, 烧结制备得到ZrB2-SiC复合陶瓷材料,以ZrB2-SiC复合陶瓷材料作为发热体。由此制备的 ZrB2-SiC陶瓷发热体的各项参数如下:致密度为99.9%,电阻率为• cm,抗弯强度为 800MPa,断裂韧性为8.5MPa • m1/2。采用此实施例制备的ZrB2-SiC陶瓷发热体作为发热体的 超高温设备可在空气中加热到210(TC长时间工作。

Claims (7)

1. 一种ZrB2-SiC陶瓷发热体,其特征在于,所述ZrB2-SiC陶瓷发热体由ZrB2和SiC粉体 烧结制备,其中,SiC的体积百分比为5%〜40%,余量为ZrB2的体积百分比,ZrBs颗粒的粒径 为<5wn,SiC颗粒的粒径为〈lOum。
2. 如权利要求1所述的ZrB2-SiC陶瓷发热体,其特征在于,所述SiC的体积百分比为 10%〇
3. 如权利要求1所述的ZrB2_SiC陶瓷发热体,其特征在于,所述ZrB2的纯度为95〜 100%,粒径为 o.lwn。
4. 如权利要求1所述的ZrB2-SiC陶瓷发热体,其特征在于,所述SiC的纯度为95〜100%, 粒径为〇.5ym。
5. —种制备如权利要求1至4任一项所述ZrB2-SiC陶瓷发热体的方法,其特征在于,包括 如下步骤: a、 将相应体积百分比的ZrB2和SiC粉体混合均匀得到混合物; b、 将混合物置于真空热压炉中施加一定压力烧结而得到ZrB2-SiC复合陶瓷材料,其中, 烧结时,以15°C/min的升温速率将温度升至1800〜2000°C并保温0.5〜8h,加压30MPa,通过 在真空下烧结获得的ZrB2-SiC复合陶瓷材料,致密度高于95 %。
6.如权利要求5所述的制备ZrB2-SiC陶瓷发热体的方法,其特征在于,烧结时以15°C/ min的升温速率升至1900 °C保温0.5h。
7.—种超高温加热设备,包括有炉腔、设置于所述炉腔内的发热体、设置于所述炉腔内 用于检测炉腔温度的温度传感器、用于收集温度传感器所检测温度数据的数据采集器、用 于根据所采集的温度数据控制输入到发热体的电流/电压的温度控制器、及供于用户操作 的控制面板,发热体通过降压变压器而与电源连接,其特征在于,所述发热体采用如权利要 求1〜4任一项所述的ZrB2-SiC陶瓷发热体。
CN201710005797.8A 2017-01-04 2017-01-04 ZrB2‑SiC陶瓷发热体及超高温加热设备 Pending CN106747464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710005797.8A CN106747464A (zh) 2017-01-04 2017-01-04 ZrB2‑SiC陶瓷发热体及超高温加热设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710005797.8A CN106747464A (zh) 2017-01-04 2017-01-04 ZrB2‑SiC陶瓷发热体及超高温加热设备

Publications (1)

Publication Number Publication Date
CN106747464A true CN106747464A (zh) 2017-05-31

Family

ID=58950912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710005797.8A Pending CN106747464A (zh) 2017-01-04 2017-01-04 ZrB2‑SiC陶瓷发热体及超高温加热设备

Country Status (1)

Country Link
CN (1) CN106747464A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369190A (zh) * 2018-11-13 2019-02-22 广东工业大学 一种高断裂韧性ZrB2-SiC陶瓷及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788225A (zh) * 2010-03-06 2010-07-28 洛阳市西格马仪器制造有限公司 超高温加热炉
CN101838147A (zh) * 2010-05-21 2010-09-22 李艳 真空自蔓延燃烧法合成ZrB2-SiC基超高温陶瓷粉体的制备方法
CN102584240A (zh) * 2012-01-17 2012-07-18 哈尔滨工业大学 一种ZrB2-SiC超高温陶瓷的烧结方法
CN104832971A (zh) * 2015-05-11 2015-08-12 国网冀北节能服务有限公司 一种基于太阳能和电能的电加热系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788225A (zh) * 2010-03-06 2010-07-28 洛阳市西格马仪器制造有限公司 超高温加热炉
CN101838147A (zh) * 2010-05-21 2010-09-22 李艳 真空自蔓延燃烧法合成ZrB2-SiC基超高温陶瓷粉体的制备方法
CN102584240A (zh) * 2012-01-17 2012-07-18 哈尔滨工业大学 一种ZrB2-SiC超高温陶瓷的烧结方法
CN104832971A (zh) * 2015-05-11 2015-08-12 国网冀北节能服务有限公司 一种基于太阳能和电能的电加热系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369190A (zh) * 2018-11-13 2019-02-22 广东工业大学 一种高断裂韧性ZrB2-SiC陶瓷及其制备方法和应用

Similar Documents

Publication Publication Date Title
Grasso et al. Flash spark plasma sintering (FSPS) of α and β SiC
Grasso et al. Modeling of the temperature distribution of flash sintered zirconia
Zamharir et al. Significance of hot pressing parameters and reinforcement size on sinterability and mechanical properties of ZrB2–25 vol% SiC UHTCs
Bodišová et al. Two‐stage sintering of alumina with submicrometer grain size
JP5468448B2 (ja) 高ジルコニア質耐火物及び溶融窯
Bernard‐Granger et al. Apparent activation energy for the densification of a commercially available granulated zirconia powder
Zhou et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology
Huang et al. A MoSi2/SiC oxidation protective coating for carbon/carbon composites
Magnani et al. Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method
TWI234634B (en) Multiple hot zone igniters
TW546984B (en) Ceramic heater with heater element and method for use thereof
Chen et al. Preparation yttria-stabilized zirconia electrolyte by spark-plasma sintering
Zhao et al. Preparation and microstructure of a ZrB2–SiC composite fabricated by the spark plasma sintering–reactive synthesis (SPS–RS) method
CN102320850B (zh) 一种ZrB2-SiC复合粉体及制备方法
CN105237025B (zh) 一种C/C‑SiC‑MoSi2陶瓷基复合材料的制备方法
Chen et al. Field assisted sintering of graphene reinforced zirconia ceramics
Du et al. Hot‐pressing kinetics and densification mechanisms of boron carbide
Wiederhorn et al. Mechanisms of deformation of silicon nitride and silicon carbide at high temperatures
Aman et al. Spark plasma sintering kinetics of pure α‐alumina
TWI296431B (en) Electrostatic chuck and method of manufacturing electrostatic chuck
CN103145454B (zh) 一种原位反应制备ZrB2-SiC抗烧蚀涂层的方法
Magnani et al. Solid-state pressureless sintering of silicon carbide below 2000 C
CN105218103B (zh) 一种石墨烯/陶瓷层状材料的制备方法
CN106187247B (zh) 金属铝结合碳化硅复相材料及其制备方法
CN100546944C (zh) 电热法定向渗积制备炭/炭构件的工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination