CN106691512A - Method for estimating sampling organization parameters and multi-parameter evaluation system for sampling organization - Google Patents

Method for estimating sampling organization parameters and multi-parameter evaluation system for sampling organization Download PDF

Info

Publication number
CN106691512A
CN106691512A CN201510794987.3A CN201510794987A CN106691512A CN 106691512 A CN106691512 A CN 106691512A CN 201510794987 A CN201510794987 A CN 201510794987A CN 106691512 A CN106691512 A CN 106691512A
Authority
CN
China
Prior art keywords
interest
tissue
region
parameter
parameters
Prior art date
Application number
CN201510794987.3A
Other languages
Chinese (zh)
Inventor
卡尤里·班纳吉·克里什南
尼辛·纳加拉杰
程刚
韩晓东
叶雯婷
Original Assignee
通用电气公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通用电气公司 filed Critical 通用电气公司
Priority to CN201510794987.3A priority Critical patent/CN106691512A/en
Publication of CN106691512A publication Critical patent/CN106691512A/en

Links

Abstract

The invention discloses a method for estimating sampling organization parameters. The method includes the steps: acquiring ultrasonic echo signals from a first area of interest and a second area of interest in a sampling organization by the aid of an ultrasonic probe with an acquisition frequency and an acquisition protocol; estimating out one or a plurality of parameters of the sampling organization by the aid of a reference simulation body based on the ultrasonic echo signals from the first area of interest and the second area of interest. The invention further discloses a multi-parameter evaluation system for a sampling organization. The multi-parameter evaluation system comprises an estimation module and a score calculation module, the estimation module is used for estimating out a first parameter and a second parameter of the sampling organization by the aid of the method, the score calculation module is used for calculating out quantitative scores of the sampling organization based on a plurality of parameters including the first parameter and the second parameter of the sampling organization, and the quantitative scores represent one or a plurality of characteristics of the sampling organization.

Description

用于估算采样组织参数的方法及用于采样组织的多参数评估的系统 Multiple system parameter estimation method for estimating the parameters for sampling tissue and for tissue samples

技术领域 FIELD

[0001] 本发明大体涉及超声领域,尤其涉及一种用于估算采样组织参数的方法以及用于采样组织的多参数评估的系统。 [0001] The present invention generally relates to ultrasound, and more particularly relates to a system for parameter estimation method for sampling tissue and tissue samples for the multi-parameter evaluation.

背景技术 Background technique

[0002] 肝纤维化是指响应于不同的病因学所致的肝细胞损伤,纤维化瘢痕组织在肝脏中积聚。 [0002] Liver fibrosis refers to the response to different etiologies due to liver cell damage, fibrosis, scar tissue accumulation in the liver. 肝纤维化是由一系列的病因,例如病毒性肝炎、酒精性或非酒精性脂肪肝疾病、代谢紊乱和肥胖等所引起的。 Liver fibrosis is a series of causes, for example caused by viral hepatitis, alcoholic or non-alcoholic fatty liver disease, metabolic disorders and obesity.

[0003] 肝活组织检查被认为是用于检测肝纤维化并对肝纤维化进行分期的黄金标准。 [0003] liver biopsy is considered to be used to detect liver fibrosis and liver fibrosis staging the gold standard. 然而,肝活组织检查是一种侵入性的、主观的方法,并且价格昂贵。 However, liver biopsy is a subjective approach invasive, and expensive. 此外,肝活组织检查可能容易出现采样误差,并且,可能伴随着重大风险,包括危及生命的并发症或者甚至死亡的风险。 In addition, liver biopsy may be prone to sampling error, and may be accompanied by significant risks, including life-threatening risk of complications or even death. 减少活组织检查的次数或者取而代之以一种非侵入性的方法是人们非常渴望的。 Reduce the number of biopsies, or replace it with a non-invasive method is that people are very eager. 纤维化的进程从FO (无纤维化,无瘢痕化)到Fl (肝门纤维化,最小程度的瘢痕化)、F2 (几乎没有隔膜,瘢痕化已经出现并且延伸到肝脏中含有血管的区域外部)、F3(有许多隔膜,桥接纤维化蔓延并且连接到含有纤维化的其它区域)以及最终的F4 (肝硬化或肝脏晚期瘢痕化)。 Fibrosis process from FO (no fibrosis, no scarring) to Fl (hepatic portal fibrosis, minimal scarring), F2 of (almost no diaphragm, scarring has occurred and extends to the outer region containing a blood vessel in the liver ), F3 (many membrane, bridging fibrosis and spread to other regions comprising connected fibrosis) and finally F4 (cirrhosis or advanced scarring of the liver). 分期F3或F4的纤维化被认为是“严重纤维化”,并且可能最终发展成肝硬化或肝癌。 Stage F3 or F4 fibrosis is considered "severe fibrosis", and may eventually develop into cirrhosis or liver cancer.

[0004] 在纤维化组织中有相当大的异质性。 [0004] there is considerable heterogeneity in fibrotic tissue. 检测早期的纤维化,特别是从F3中分离出F2,是非常重要的,这是因为纤维化治疗在分期F2可能是可逆的,但在分期F3及以上却不是可逆的。 Early detection of fibrosis, in particular isolated from F3 F2, is very important, because in the treatment of fibrosis stage F2 may be reversible, but in stages F3 and above is not reversible. 非酒精性脂肪肝疾病(Non-Alcoholic Fatty Liver Disease,NAFLD)在分期F2可能保持脂肪变性或转向非酒精性脂肪性肝炎(Non-Alcoholic Steato-Hepatitis, NASH)。 Non-alcoholic fatty liver disease (Non-Alcoholic Fatty Liver Disease, NAFLD) may remain in stage F2 or steatosis to non-alcoholic steatohepatitis (Non-Alcoholic Steato-Hepatitis, NASH). 非酒精性脂肪肝疾病(NAFLD)是最普遍的一种肝脏疾病,它影响了15-30 %的人。 Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease, which affects 15-30% of people. 在这些人中,30-40%的人可能发展成非酒精性脂肪性肝炎(NASH)。 Of these, 30-40% of people likely to develop non-alcoholic steatohepatitis (NASH). 多达58-74%的肥胖人群可能患有非酒精性脂肪肝疾病(NAFLD)。 Up to 58-74% of the obese population may be suffering from non-alcoholic fatty liver disease (NAFLD).

[0005] 因此,在脂肪肝组织和在肥胖患者中用可靠的、非侵入性方法来检测纤维化并对纤维化进行分期是尚未满足的临床需要。 [0005] Therefore, fatty liver and reliable in obese patients with non-invasive method to detect fibrosis and fibrosis staging is an unmet clinical need.

[0006] 而且,当采用非侵入性的方法时,如何估算出用于肝组织评估的肝组织参数以及这些估算值的准确性的问题将成为非常重要的考虑因素。 [0006] Also, when using non-invasive methods, how to estimate the parameters of liver tissue for evaluation of liver problems as well as the accuracy of these estimates will be a very important consideration.

发明内容 SUMMARY

[0007] 本发明的一个方面在于提供一种用于估算采样组织参数的方法。 [0007] An aspect of the present invention to provide a method for estimating the sampling of tissue parameters. 所述方法包括通过使用具有一种采集频率的超声探头和一种采集协议来获得来自采样组织中的第一感兴趣区域和第二感兴趣区域的超声回波信号,以及基于来自所述第一和所述第二感兴趣区域的所述超声回波信号并且使用一种参考仿体来估算出所述采样组织的一个或多个参数。 The method comprises obtaining ultrasonic echo signals from tissue samples in a first region of interest and the second region of interest by using an ultrasound probe for acquiring a protocol and frequency acquisition, and based on information from the first and the ultrasound echo signals and the second region of interest is the use of a phantom reference to estimate one or more parameters of the tissue samples.

[0008] 本发明的另一个方面在于提供一种用于采样组织的多参数评估的系统。 [0008] Another aspect of the present invention to provide a multi-parameter evaluation system tissue for a sample. 所述系统包括具有一种采集频率的超声探头和处理单元。 The system includes an ultrasound probe and a processing unit for acquiring frequency. 所述超声探头包括发射换能器和接收换能器。 The ultrasonic probe comprises a transmitting transducer and a receiving transducer. 所述发射换能器用于根据一种选定的采集协议来向采样组织中的第一感兴趣区域和第二感兴趣区域发射超声信号。 The transmitting transducer means for transmitting ultrasonic signals to sample tissue in a first region of interest and the second region of interest selected according to an acquisition protocol. 所述接收换能器用于接收来自所述第一和所述第二感兴趣区域的超声回波信号。 The receiving transducer for receiving ultrasonic echo signals from said first and said second region of interest. 所述处理单元包括估算模块和评分计算模块。 The estimation module comprises a processing unit and a score calculation module. 所述估算模块用于基于来自所述第一和所述第二感兴趣区域的所述超声回波信号并且使用一种参考仿体来估算出所述采样组织的第一参数和第二参数。 The estimation module based on the ultrasound echo signals from the first and second region of interest and the use of a phantom reference to estimate the first and second parameters of the tissue sample. 所述评分计算模块用于基于所述采样组织的多个参数来计算出所述采样组织的定量评分,所述采样组织的所述多个参数包括所述第一参数和所述第二参数,所述定量评分代表所述采样组织的一个或多个特性。 Means for calculating the rates of the plurality of parameters based on samples of the tissue sample to calculate quantitative scoring tissue, the tissue sample comprises a plurality of parameters of the first parameter and the second parameter, the quantitative scoring representative of one or more characteristics of the tissue sample.

附图说明 BRIEF DESCRIPTION

[0009] 当参照附图阅读以下详细描述时,本发明的这些和其它特征、方面及优点将变得更好理解,在附图中,相同的元件标号在全部附图中用于表示相同的部件,其中: [0009] When reading the following detailed description of the drawings These and other features, aspects, and advantages of the present invention will become better understood in the drawings, the same element numbers used in the drawings denote like member, wherein:

[0010] 图1是根据本发明的一个具体实施方式的用于采样组织的多参数评估的示意性系统的不意图; [0010] FIG. 1 is a schematic system is not intended for the assessment of multiple parameters of the tissue sample of a particular embodiment of the present invention embodiment;

[0011] 图2是图1中的处理单元的示意图; [0011] FIG. 2 is a schematic diagram of the processing unit in Figure 1;

[0012] 图3示出在虚拟参考组织中的模拟超声传播的示意图; [0012] Figure 3 shows a schematic view in the virtual reference analog ultrasound propagation in tissue;

[0013] 图4示出在采样组织中的超声传播的示意图; [0013] Figure 4 shows a schematic of an ultrasonic propagating in the tissue sample;

[0014] 图5是根据本发明的一个具体实施方式的用于采样组织的多参数评估的方法的流程图; [0014] FIG. 5 is a flowchart of a method for multi-parameter sampling tissue of a particular embodiment of the present invention is the assessment of the embodiment;

[0015] 图6是图5中的参数估算步骤的一个具体实施方式的流程图;以及 [0015] FIG. 6 is a flowchart of FIG. 5 in a particular embodiment of the parameter estimation step; and

[0016] 图7是图5中的执行质量检查步骤的一个具体实施方式的流程图。 [0016] FIG. 7 is a flowchart of a particular embodiment of the QA step 5 in FIG.

具体实施方式 Detailed ways

[0017] 为帮助本领域的技术人员能够确切地理解本发明所要求保护的主题,下面结合附图详细描述本发明的具体实施方式。 [0017] To assist those skilled in the art to understand the invention precisely the claimed subject matter, embodiments of the present invention are described in detail below in conjunction with the accompanying drawings. 在以下对这些具体实施方式的详细描述中,本说明书对一些公知的功能或构造不做详细描述以避免不必要的细节而影响到本发明的披露。 In the following detailed description of these specific embodiments, the present specification for some well-known functions or constructions are not described in detail to avoid unnecessary detail and affect disclosure of the invention.

[0018] 除非另作定义,本权利要求书和说明书中所使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。 [0018] Unless defined otherwise, the claims and the technical and scientific terms used in the specification have the ordinary meaning those of ordinary skill in the relevant technical field of the invention should be understood requirements. 本说明书以及权利要求书中所使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。 Throughout this specification and claims, the "first," "second," and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish between different components. “一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。 "A" or similar term "an" do not denote a limitation of quantity, but rather denote the presence of at least one. “包括”或者“具有”等类似的词语意指出现在“包括”或者“具有”前面的元件或者物件涵盖出现在“包括”或者“具有”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。 "Comprising" or "having," and similar terms are intended to point out now "comprising" or "having" an element or front cover objects appear in the "comprising" or "having" enumerated elements or objects behind their equivalents element does not exclude other elements or objects. “连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的连接,不管是直接的还是间接的。 "Connected" or similar words "connected" are not restricted to physical or mechanical connections, but may include electrically connected, either directly or indirectly.

[0019] 图1示出根据本发明的一个具体实施方式的用于采样组织的多参数评估的示意性系统100的示意图。 [0019] Figure 1 shows a schematic diagram 100 of the multi-parameter evaluation system for sampling a tissue of the present invention is described embodiment. 如图1所示,系统100可以包括超声探头1、机器2、输入装置3和输出装置4。 1, the system 100 may include an ultrasound probe 1, machine 2, the input device 3 and output device 4.

[0020] 输入装置3可以连接到机器2上,用于接收来自用户或其它装置的命令和输入。 [0020] The input device 3 may be connected to the machine 2, and an input for receiving commands from a user or other device. 输入装置3例如可以包括键盘、触摸屏、麦克风、鼠标、开关和/或按钮。 3, for example, the input device may include a keyboard, touch screen, microphone, mouse, switches and / or buttons. 输出装置4可以与机器2连接,用于输出例如评估结果。 Output means 4 may be connected to the machine 2, for example, for outputting the evaluation result. 输出装置4例如可以包括显示器。 Output means 4 may comprise, for example, a display. 将在下面详细描述的采样组织的一个或多个特性能够呈现在显示器上用于辅助临床诊断。 One or more characteristics of the tissue samples will be described in detail below can be used to assist in clinical diagnosis presented on the display. 来自用户或其它装置的命令和输入例如可以包括但并不局限于采集协议、超声发射模式、采集帧数、超声探头1的采集频率和感兴趣区域的深度等。 Or other devices from the user command input, for example, and may include, but are not limited acquisition protocol, ultrasound transmission mode, the number of frames acquired ultrasound probe collection frequency and depth of a region of interest.

[0021] 机器2可以包括控制单元21和处理单元22。 [0021] The machine 2 may include a control unit 21 and processing unit 22. 控制单元21可以与输入装置3连接,并且可以用于响应于来自用户或其它装置的命令和输入来控制超声探头1和处理单元22〇 The control unit 21 may be connected to the input means 3, and may be used in response to processing unit 1 and the other device or from the user input commands and control the ultrasound probe 22〇

[0022] 超声探头1可以与机器2连接,并且可以包括发射换能器11和接收换能器12。 [0022] The ultrasonic probe 2 can be connected to the machine 1, and may include a transmitting transducer 11 and receiving transducer 12. 发射换能器11可以用于根据一种选定的采集协议来向采样组织300(如图4所示)中的第一感兴趣区域301和第二感兴趣区域302发射超声信号S。 Transmitting transducer 11 may be used in accordance with an acquisition protocol selected to organize the sample 300 (FIG. 4) in the first region of interest 301 and the second region of interest 302 transmit ultrasound signals S. 接收换能器12可以用于接收来自采样组织300中的第一感兴趣区域301和第二感兴趣区域302的超声回波信号Se3Q1、 Sf33tj2 (如图4所示)。 Receiving transducer 12 may be configured to receive a first region of interest from a tissue sample 300 in the second region of interest 301 and 302 of the ultrasonic echo signal Se3Q1, Sf33tj2 (Figure 4).

[0023] 如图2所示,处理单元22可以包括估算模块221。 [0023] As shown in FIG 2, the processing unit 22 may include an estimation module 221. 估算模块221可以用于基于来自第一感兴趣区域301和第二感兴趣区域302的超声回波信号Se3M、\3。2并且使用一种参考仿体来估算出采样组织300的一个或多个参数。 Estimation module 221 may be used based on information from a first region of interest and the second region of interest 301 of the ultrasonic echo signal 302 Se3M, \ 3.2 and the use of a phantom reference to estimate the tissue sample 300 or more parameter. 在一个具体实施方式中,参考仿体可以包括一种虚拟参考仿体2220。 In a specific embodiment, the reference phantom may comprise one virtual reference phantoms 2220. 虚拟参考仿体2220是对于一个或多个已知的组织参数和一个或多个已知的采集参数的模拟超声回波信号,并且,虚拟参考仿体2220与在检测采样组织300时所使用的超声探头1的类型和选定的采集协议有关。 Virtual reference phantoms 2220 is known to one or more of the one or more tissue parameters and acquisition parameters for known analog ultrasonic echo signal, and the virtual reference phantom 2220 and used in the detection of tissue samples 300 ultrasound probe type and selected acquisition agreement relating to 1. 在一个具体实施方式中,虚拟参考仿体2220可以包括基于物理的算法和用于采集协议和超声探头1的预先计算好的偏移校正。 In a specific embodiment, the virtual reference body 2220 may include a physical simulation algorithms and protocols for acquiring ultrasound probe and based on a pre-calculated offset correction good. 基于物理的算法在一种具有一个或多个已知的组织参数的虚拟参考组织200中使用一个或多个已知的采集参数来模拟超声传播,并且,产生虚拟参考组织200的模拟超声回波信号(如图3所示)。 Using one or more acquisition parameters known in physics-based algorithm having one or more tissue parameters known virtual reference tissue 200 to simulate the propagation of ultrasound, and generates an analog ultrasonic echo virtual reference tissue 200 signal (FIG. 3). 具有偏移校正功能的虚拟参考仿体2220能够允许系统和超声探头之间的互用性。 Virtual reference with an offset correction function capable of allowing imitation 2220 interoperability between the system and the ultrasound probe. 处理单元22还可以包括存储模块222。 The processing unit 22 may further include a storage module 222. 虚拟参考仿体2220可以被预先存储在处理单元22的存储模块222中。 Virtual reference phantoms 2220 may be previously stored in the storage module 22 of the processing unit 222. 采用这种虚拟参考仿体2220能够使得临床流程更加简化,这是因为在临床中医生将不需要执行真实的参考扫描。 With this virtual reference phantom clinical 2220 enables more simplified process, because in the clinical physician will need to perform real reference scan. 而且,虚拟参考仿体2220 可能需要更少的内存,因此,虚拟参考仿体2220可以使用在小容量系统中,并且能够应用在小型手持超声装置中。 Further, the virtual reference 2220 may require less memory phantom, therefore, the virtual reference phantom 2220 can be used in small-capacity systems, and can be used in small handheld ultrasound device.

[0024] 在一个具体实施方式中,超声探头1的发射换能器11可以用于以一种谐波B模式向采样组织300的第一感兴趣区域301和第二感兴趣区域302发射超声信号S。 [0024] In one embodiment, the ultrasound probe 1 of the transmitting transducer 11 may be used in a harmonic B-mode tissue sample 300 to the first region of interest 301 and the second region of interest 302 transmit ultrasound signals S.

[0025] 采样组织300的一个或多个参数可以包括第一参数和第二参数。 [0025] The tissue sampling one or more parameters 300 may include a first and second parameters. 在一个具体实施方式中,第一参数可以包括衰减系数,而第二参数可以包括背向散射系数。 In a specific embodiment, the parameters may include a first attenuation coefficient, and the second parameter may comprise backscatter coefficient.

[0026] 第一感兴趣区域301可以包括靠近超声探头1的感兴趣区域,其被称之为近端感兴趣区域,并且具有第一深度Z1。 [0026] 301 may include a first region of interest close to the region of interest of the ultrasound probe 1, which is known as the region of interest proximal end, and having a first depth Z1. 第二感兴趣区域302可以包括远离超声探头1的感兴趣区域,其被称之为远端感兴趣区域,并且具有第二深度Z2。 The second region of interest 302 may include an ultrasound probe away from a region of interest, which is called the distal region of interest, and having a second depth Z2. 作为一个示例,第二感兴趣区域302可以是但并不局限于超过超声探头1的发射中心的感兴趣区域。 As one example, the second region of interest 302 may be, but is not limited to the region of interest exceeds the emission center of the ultrasonic probe 1.

[0027] 图3示出在虚拟参考组织200中的模拟超声传播的示意图。 [0027] Figure 3 shows a schematic view of an ultrasound simulation in the virtual reference 200 propagating tissue. 虚拟参考组织200可以具有已知的衰减系数和已知的背向散射系数。 Virtual reference tissue 200 may have a known coefficient of attenuation and backscattering coefficients are known. 参照图3,在虚拟参考组织200中选定第一感兴趣区域201的第一深度为Z1,选定第二感兴趣区域202的第二深度为Z2。 3 first region of interest, with reference to FIG virtual reference tissue 200 selected for the first depth 201 of Z1, a second depth of the second region of interest 202 is selected Z2. 在虚拟参考组织200中模拟超声传播。 Analog ultrasound propagation in the virtual reference tissue 200. 具有一种采集频率的超声探头1可以向虚拟参考组织200发射模拟超声信号,并且,接收来自虚拟参考组织200中的第一感兴趣区域201和第二感兴趣区域202的模拟超声回波信号Se2M、Se2ffi。 Having one acquisition frequency ultrasound probe 200 may transmit an ultrasound signal to an analog reference virtual tissue, and receiving ultrasonic echo signals from the analog Se2M virtual reference tissue 200 in a first region of interest and the second region of interest 201 202 , Se2ffi. 然后,基于来自第一感兴趣区域201和第二感兴趣区域202的模拟超声回波信号\2M、S^2可以产生虚拟参考组织200在采集频率周围的第一感兴趣区域201和第二感兴趣区域202处的回波强度。 Then, based on ultrasound echo signals from the analog first region of interest and the second region of interest 201 202 \ 2M, S ^ 2 may generate a virtual reference 201 and the second sensing a first tissue of interest collected in a region 200 around the frequency 202 echo intensity region of interest. 以上的过程可以被建立在虚拟参考仿体2220的基于物理的算法中。 The above process may be established based on physical algorithms virtual reference phantoms 2220.

[0028] 以下将结合图6详细描述估算模块221如何通过使用虚拟参考仿体2220来估算出采样组织300的衰减系数和背向散射系数。 [0028] The following will be described in detail in conjunction with FIG. 6 how estimation module 221 to 2220 by using a virtual reference sample tissue attenuation coefficient estimated backscatter coefficients 300 and the phantom.

[0029] 参照图6,在步骤Β61中,获得采样组织300在采集频率周围的第一感兴趣区域301和第二感兴趣区域302处的回波强度。 [0029] Referring to FIG 6, in step Β61, the obtained echo intensity of interest 301 and the second tissue sample 300 in the first region of interest around the collection region 302 of the frequency. 如图4所示,在采样组织300中设置第一感兴趣区域301的第一深度Z1及第二感兴趣区域302的第二深度ζ 2。 4, a first depth Z1 of the first region of interest and the second region of interest 301 of the second depth ζ 302 300 2 in tissue samples. 具有该采集频率的超声探头1使用该选定的采集协议可以向采样组织300发射超声信号S,并且接收来自采样组织300 中的第一感兴趣区域301和第二感兴趣区域302的超声回波信号Se3Q1、Se3Q2。 The ultrasonic probe having a frequency acquisition using the acquisition protocol may be selected tissue sample 300 to emit ultrasound signals S, and receives from the tissue sample 300 in the first region of interest region of interest 301 and a second ultrasonic echo 302 signal Se3Q1, Se3Q2. 估算模块221 可以基于来自第一感兴趣区域301和第二感兴趣区域302的超声回波信号Se3Q1、Se3Q2来获得采样组织300在采集频率周围的第一感兴趣区域301和第二感兴趣区域302处的回波强度。 Estimation module 221 may obtain tissue samples collected 300 in first region of interest around the frequency 301 and the second region of interest 302 based on information from a first region of interest and the second region of interest 301 of the ultrasonic echo signal 302 Se3Q1, Se3Q2 echo intensity at.

[0030] 在图6的步骤B62中,根据如下公式来计算出对于采样组织300和虚拟参考组织200的第二感兴趣区域302、202和第一感兴趣区域301、201之间的回波强度差的绝对值比R0 [0030] In step B62 of FIG. 6, is calculated according to the formula echo intensity between 300 and tissue samples for the second region of interest of the virtual reference tissue 200 and the first region of interest 301,201 302,202 the ratio of the absolute value of the difference R0

Figure CN106691512AD00081

[0032] 其中,ω。 [0032] where, ω. 代表超声探头1的采集频率,zi代表第一感兴趣区域30U201的第一深度,Z2代表第二感兴趣区域302、202的第二深度,IS1 (ω。,Zl)代表对于采样组织300在采集频率周围的第一感兴趣区域301处的回波强度,IS2(co。,Ζ2)代表对于采样组织300在采集频率周围的第二感兴趣区域302处的回波强度,Iri (ω。,Zl)代表对于虚拟参考组织200在采集频率周围的第一感兴趣区域201处的回波强度,以及ΙΚ2(ω。,Ζ2)代表对于虚拟参考组织200在采集频率周围的第二感兴趣区域202处的回波强度。 Representative acquisition frequency ultrasonic probe 1, a second depth of the first region of interest on behalf of a first depth zi of 30U201, Z2 302,202 on behalf of the second region of interest, IS1 (ω., Zl) for a sample representative of the tissue collection 300 the first echo intensity region of interest 301 around a frequency, IS2 (co., Ζ2) representative of the sampling frequency around the tissue 300 in the acquisition of the echo intensity at the second region 302 of interest, Iri (ω., Zl ) representative of the virtual reference 200 in the tissue around the frequency of the first acquisition echo strength region 201 of interest, and ΙΚ2 (ω., Ζ2) on behalf of the virtual reference 200 in the region of tissue 202 around the second acquisition frequency of interest echo intensity.

[0033] 在步骤Β63中,绘制回波强度差的比R的对数变换和第一感兴趣区域的第一深度Z1的图形。 [0033] In step Β63, draw graphics echo intensity difference ratio R and the logarithmic transformation of a first depth Z1 of the first region of interest. 作为一个示例,可以绘制201og1(]R对21的图形。 As one example, R 21 can be plotted on a graphical 201og1 (].

[0034] 在步骤B64中,应用线性回归拟合以获得拟合后的线性回归线。 [0034] In step B64, the application of linear regression to obtain the linear regression line fit.

[0035] 在步骤B65中,从拟合后的线性回归线中分别获得拟合后的线性回归线的斜率和截距。 [0035] In step B65, the obtained linear regression line fit slope and intercept of the linear regression line from the fitting, respectively.

[0036] 在步骤B66中,使用如下的公式来分别估算出采样组织300的衰减系数和背向散射系数: [0036] In the step B66, respectively, using the following formula to estimate the tissue sampling attenuation coefficient and backscatter coefficients 300:

Figure CN106691512AD00082

[0039] 其中,As代表采样组织300的衰减系数(以dB/cm/MHz为单位),AR代表虚拟参考组织200的衰减系数,K代表拟合后的线性回归线的斜率,ω。 [0039] wherein, As representatives of tissue sampling attenuation coefficient (in dB / cm / MHz as a unit) 300, AR tissue attenuation coefficient behalf of the virtual reference 200, the slope of the linear regression line K represents the fit, ω. 代表超声探头1的采集频率, Bs代表采样组织300的背向散射系数(以/Str/cm为单位),BR代表虚拟参考组织200的背向散射系数,以及M代表拟合后的线性回归线的截距。 Representative acquisition frequency of the ultrasonic probe 1, Bs backscatter coefficients representative of tissue sample 300 (in / Str / cm units), BR representative of the linear regression line virtual reference tissue backscatter coefficients 200, and M represents fitting intercept.

[0040] 转回图2,处理单元22可以包括评分计算模块223。 [0040] back to FIG. 2, the processing unit 22 may include a calculation module 223 rates. 评分计算模块223可以用于基于采样组织300的多个参数来计算出采样组织300的定量评分P。 Score calculating module 223 may be used to calculate the parameters based on a plurality of tissue samples 300 sampled tissue quantitative score 300 P. 作为一个示例,可以使用如下公式来计算出定量评分P : As one example, the following formula may be used to calculate the quantitative score P:

Figure CN106691512AD00091

[0042] 其中,k代表多个参数的数量,X1代表采样组织300的第i个参数,以及X i n_al代表正常组织的对应于X1的第i个参数。 [0042] wherein K represents the number of the plurality of parameters, X1 parameter represents the i-th sample of tissue 300, and X i n_al representative of normal tissue corresponding to the i th parameter X1.

[0043] 然而,本发明的定量评分P的计算并不局限于公式(4)。 [0043] However, calculating a quantitative score P of the present invention is not limited to Equation (4). 采样组织300的多个参数可以基于它们各自的相互依赖性/独立性和显著程度以多种方式来结合,从而来计算出定量评分P。 A plurality of tissue sampling parameters 300 may be based on their respective interdependencies / significant degree of independence and be combined in various ways, thereby to calculate a quantitative score P. 例如,在本发明的其他具体实施方式中,定量评分P也可以是采样组织300的各个参数的权重组合。 For example, in other embodiments of the present invention, the quantitative score P may be sampled tissue weight of each parameter 300. recombination. 各个参数的权重可以基于它们的相互依赖性/独立性和显著程度来确定。 Heavy weight of each parameter may be determined based on their interdependencies / and a significant degree of independence.

[0044] 在本发明的一个具体实施方式中,评分计算模块223可以用于基于采样组织300 的第一参数和第二参数来计算出定量评分P。 [0044] In one embodiment of the present invention, the score is calculated based on a sampling module 223 may be used to organize the first and second parameters 300 to calculate quantitative score P. 定量评分P可以代表采样组织300的一个或多个特性。 P quantitative score 300 may represent one or more properties of tissue samples. 在这种情况下,以上的公式(4)可以被修改为如下: In this case, the above equation (4) may be modified as follows:

Figure CN106691512AD00092

[0046] 其中,X1代表采样组织300的第一参数(例如,衰减系数)、或者采样组织300的多帧(多帧可以来自于多次扫描或采集)的第一参数的均值或方差,Xl nmial代表正常组织的对应于X1的参数,X 2代表采样组织300的第二参数(例如,背向散射系数)、或者采样组织300的多帧的第二参数的均值或方差,以及x2_n_alR表正常组织的对应于X2的参数。 Mean or variance of the first parameter of the [0046] wherein, the X1 parameter representative of a first tissue sample 300 (e.g., attenuation factor), tissue sample or a plurality of frames 300 (a plurality of frames, or may be acquired from multiple scans) of, Xl nmial representative of the corresponding normal tissues in the parameters X1, X 2 tissue samples representative of the second parameter 300 (e.g., backscatter coefficient), or tissue sample mean or variance of the parameters of the second plurality of frames 300, and a normal table x2_n_alR tissue parameters corresponding to X2. 本发明的基于多参数的定量评分P改进了单参数超声评估的再现性,并且改进了类别分离。 P parameters based on quantitative scoring of the present invention improves the reproducibility of the parameters of a single ultrasound assessment category and improved separation.

[0047] 本发明的采样组织300可以包括但并不局限于肝、乳腺、卵巢、前列腺和肺等。 [0047] The tissue sample 300 of the invention may include, but are not limited to, liver, breast, ovary, prostate and lung. 例如,在本具体实施方式中,本发明的用于采样组织300的多参数评估的系统100可以应用于评估肝组织的肝纤维化分期。 For example, in the present embodiment, the present invention is a system for sampling tissue of the multi-parameter evaluation 300 100 may be applied to assess the staging of liver fibrosis.

[0048] 此外,本发明的定量评分P并不局限于仅仅使用第一参数和第二参数来计算。 [0048] Further, quantitative score P of the present invention is not limited solely to calculate using the first and second parameters. 本发明的定量评分P除了使用第一和第二参数之外,还可以使用额外的参数,例如采样组织300的剪切波弹性模量以及采样组织300的其他参数。 P-quantitative scoring of the present invention except that the first and second parameters, additional parameters may be used, for example, and the shear modulus of elasticity of 300 samples sampled tissue organization of other parameters 300 of the wave.

[0049] 继续参照图2,本发明的处理单元22还可以包括校正模块224。 [0049] With continued reference to FIG. 2, the processing unit 22 according to the present invention may further comprise a correction module 224. 校正模块224可以与超声探头1的接收换能器12连接。 Correction module 224 may receive an ultrasound probe transducer 12 is connected. 校正模块224可以用于基于在采样组织300上方的上覆组织的参数来校正来自第一感兴趣区域301和第二感兴趣区域302的超声回波信号Se3D1、\3。2。 Correction module 224 may be based on the parameters above the tissue overlying tissue samples 301 and 300 to correct a second region of interest 302 Se3D1 ultrasonic echo signals from the first region of interest, \ 3.2. 上覆组织可以包括皮下组织,上覆组织的参数可以包括皮下组织的皮下脂肪厚度。 Overlying tissue may include subcutaneous tissue, the overlying tissue parameters may include subcutaneous fat thickness of the subcutaneous tissue.

[0050] 校正模块224可以包括预设的校正模型2240。 [0050] The correction module 224 may include a predetermined calibration model 2240. 预设的校正模型2240可以限定在采样组织300和皮下组织的皮下脂肪厚度之间的关系。 Predetermined correction model 2240 may define a relationship between sample 300 and subcutaneous tissue thickness of subcutaneous fat. 校正模块224可以基于来自第一感兴趣区域301和第二感兴趣区域302的超声回波信号Se3M、Se3ra及测量到的皮下脂肪厚度从该预设的校正模型2240中来确定出校正后的超声回波信号。 Correction module 224 based on the corrected ultrasound from a first region of interest and the second region of interest 301 of the ultrasonic echo signal 302 Se3M, Se3ra and the measured thickness of subcutaneous fat is determined from the predetermined calibration model 2240 echo signal. 关于校正的进一步细节被披露在2014年12月12日申请的印度专利申请第6265/CHE/2014号中。 Further details about the correction is disclosed in Indian patent December 12, 2014 filed Application No. 6265 / CHE / 2014. 校正模块224可以连接到估算模块221,其可以作为估算模块221的输入。 Correction module 224 may be connected to the estimation module 221, which may act as an input of the estimation module 221. 在这种情况下,估算模块221可以用于基于采样组织300的校正后的超声回波信号来估算出第一参数和第二参数。 In this case, estimation module 221 may be based on ultrasound echo corrected signal 300 to estimate the tissue sampling first and second parameters.

[0051] 在本发明的一个具体实施方式中,估算模块221可以连接到评分计算模块223或者与评分计算模块223相通信,从而评分计算模块223可以基于采样组织300的估算出的第一参数和估算出的第二参数来计算出定量评分P。 [0051] In one embodiment of the present invention, the estimation module 221 may be connected to the score calculating module 223 in communication with the score calculation block 223 or, such that the first parameter 223 may be estimated based on the sampled tissue score calculation module 300, and the second parameter calculated estimated quantitative score P.

[0052] 在本发明的另一个具体实施方式中,估算模块221可以基于来自第一感兴趣区域301和第二感兴趣区域302的多帧中的每一帧的超声回波信号Se3Q1、\3。2来估算出采样组织300的每一帧的第一参数和第二参数。 [0052] In another specific embodiment of the present invention, the estimation module 221 may be based on ultrasound echo signals Se3Q1 each frame multiframe 301 from the first region of interest and the second region of interest 302, and \ 3 .2 to estimate the tissue samples of each frame 300 of the first and second parameters. 多帧可以来自于多次扫描或采集。 Multi-frame or may be acquired from multiple scans. 评分计算模块223可以用于基于多帧的第一参数和第二参数来分别计算出第一和第二参数的均值,并且使用第一和第二参数的均值来计算出采样组织300的定量评分P。 Score calculating module 223 may be used for the first parameter based on the mean and the second plurality of frames to calculate the first parameter and the second parameter, and using the mean value of the first parameter and the second tissue sample is calculated quantitative score 300 P. 或者,评分计算模块223 可以用于基于多帧的第一参数和第二参数来分别计算出第一和第二参数的方差,并且使用第一和第二参数的方差来计算出采样组织300的定量评分P。 Alternatively, the score calculation block 223 may be based on a first parameter and a second plurality of frames to calculate the first parameter and the second parameter is the variance, and the variance of the first and second parameters to calculate the tissue sample 300 P. quantitative score

[0053] 参照图2,本发明的处理单元22还可以包括质量检查模块225,质量检查模块225 与估算模块221相连接。 [0053] Referring to Figure 2, the processing unit 22 according to the present invention may further include a module 225 QA, QA module 225 is connected to the estimation module 221. 质量检查模块225可以用于对于多帧的估算出的第一参数和估算出的第二参数执行质量检查。 QA module 225 may be used to estimate a plurality of frames of the first and second parameters estimated QA.

[0054] 以下将结合图7详细描述质量检查模块225如何对于多帧的估算出的第一参数和估算出的第二参数执行质量检查。 [0054] below with respect to how to estimate a first parameter 225 a plurality of frames of FIG. 7 and described in detail QA module performs a second quality check of the estimated parameters.

[0055] 参照图7,在步骤B71中,分别检查多帧的估算出的第一参数和估算出的第二参数的一个或多个正态分布以确定一致性。 [0055] Referring to FIG 7, in step B71, the parameter estimates were examined a first plurality of frames and a second parameter of the estimated one or more normal distributions to determine identity.

[0056] 在步骤B72中,选出符合正态分布的第一参数和第二参数。 [0056] In step B72, the normal distribution is selected in line with the first and second parameters.

[0057] 在步骤B73中,分别执行对于正态的第一参数和正态的第二参数的方差一致性测试。 [0057] In step B73, the conformance test for variances were performed first parameter the second parameter and the normal state of being.

[0058] 在步骤B74中,选出通过方差一致性测试的第一参数和第二参数。 [0058] In Step B74, the first and second parameters selected by the variance conformance testing.

[0059] 在步骤B75中,分别执行对于通过的第一参数和通过的第二参数的方差分析。 [0059] In step B75, the variance performed separately for the first and second parameters by analysis by.

[0060] 在步骤B76中,选出符合正态分布的一个或多个合格的第一参数和一个或多个合格的第二参数。 [0060] In step B76, the normal distribution is selected in line with the one or more qualified or more of a first parameter and a second parameter passing.

[0061] 转回参照图2,质量检查模块225可以连接到评分计算模块223。 [0061] Referring back to FIG. 2, the QA module 225 may be coupled to the scoring calculation module 223. 因此,评分计算模块223可以基于采样组织300的一个或多个合格的第一参数和一个或多个合格的第二参数来计算出定量评分P。 Thus, score calculation module 223 may organize one or more qualified first parameter 300, and the one or more qualified sampling a second parameter is calculated based on quantitative score P.

[0062] 根据本发明的用于采样组织300的多参数评估的系统100是一种基于超声的系统,并且可以使用一种可靠的、非侵入性的方法来检测在脂肪肝和肥胖患者中的纤维化并对纤维化进行分期。 [0062] The multi-parameter evaluation system for sampling tissue of the present invention is 300 to 100 an ultrasonic based system, and may use a reliable, non-invasive method to detect in fatty liver and obesity patients fibrosis and fibrosis staging. 而且,相较于单参数超声评估,本发明的用于采样组织300的多参数评估的系统100能够改进超声评估的再现性,并且能够具有较好的类别分离,例如改进纤维化分期的分离。 Furthermore, compared to the single ultrasonic evaluation parameters for sampling the tissue 300 of the present invention multi-parameter evaluation system 100 can improve the reproducibility of the ultrasound evaluation, and can have better separation category, for example, to improve the separation stages of fibrosis.

[0063] 本发明还提供了一种用于采样组织300的多参数评估的方法。 [0063] The present invention further provides a method of multi-parameter evaluation sample 300 for the tissue. 图5示出根据本发明的一个具体实施方式的用于采样组织300的多参数评估的方法的流程图。 Figure 5 shows a flowchart of a method for multi-parameter evaluation samples according to the present invention, a tissue specific embodiment of embodiment 300.

[0064] 如图5所示,在步骤B51中,通过使用具有一种采集频率的超声探头1并且使用一种选定的采集协议来获得来自采样组织300中的第一感兴趣区域301和第二感兴趣区域302的超声回波信号5_1、\3。2。 [0064] FIG. 5, in step B51 by using an ultrasound probe for acquiring a frequency and a selected acquisition protocol uses a first region of interest is obtained from tissue samples of 300 and 301 two region of interest 302 of the ultrasonic echo signal 5_1, \ 3.2. 第一感兴趣区域301可以包括近端感兴趣区域。 A first region of interest 301 may include a proximal region of interest. 第二感兴趣区域302可以包括远端感兴趣区域。 The second region of interest 302 may include a distal region of interest.

[0065] 在步骤B52中,基于来自第一感兴趣区域301和第二感兴趣区域302的超声回波信号\3。1、3_2并且使用在步骤853中预先存储的参考仿体,例如虚拟参考仿体2220来估算出采样组织300的一个或多个参数。 [0065] In Step B52, based on the first region of interest from the second region of interest 301 and the ultrasonic echo signal 302 \ 3.1,3_2 reference phantom using pre-stored in step 853, the virtual reference e.g. imitation 2220 to estimate the parameters of the one or more tissue samples 300. 在步骤B53中,虚拟参考仿体2220可以根据图6的以上步骤B61至B66来确定出。 In step B53, the virtual reference phantom 2220 B61 to B66 may be determined according to the above step 6 of FIG. 在一个具体实施方式中,可以估算出采样组织300的例如衰减系数的第一参数和例如背向散射系数的第二参数。 In one embodiment, it can be estimated, for example, the first and second parameters backscatter attenuation coefficient such as the coefficient of tissue samples 300. 在另一个具体实施方式中,可以基于来自第一感兴趣区域301和第二感兴趣区域302的多帧中的每一帧的超声回波信号Se3Q1、 S^2来估算出采样组织300的每一帧的第一参数和第二参数。 In another specific embodiment may be based on ultrasound echo signals Se3Q1 each frame multiframe 301 from the first region of interest and the second region of interest 302 is, S ^ 2 to estimate the tissue sample per 300 a first parameter and a second parameter. 多帧可以来自于多次扫描或米集。 A plurality of frames from multiple scans can be set or meters.

[0066] 在一个可选的具体实施方式中,在步骤B51之后,过程可以选择性地进入到步骤B54。 [0066] In an alternative embodiment, after step B51, the process proceeds to step may be selectively B54. 在可选的步骤B54中,可以执行信号校正。 In an optional step B54, a signal correction may be performed. 来自第一感兴趣区域301和第二感兴趣区域302的超声回波信号Se3M、S^2可以基于在采样组织300上方的上覆组织的参数来进行校正。 301 from the first region of interest and the second region of interest 302 of the ultrasonic echo signal Se3M, S ^ 2 may be corrected based on the overlying tissue parameters during the sampling of tissue 300 above. 例如,上覆组织包括皮下组织,上覆组织的参数包括皮下组织的皮下脂肪厚度。 For example, the cladding including subcutaneous tissue, the overlying tissue parameter includes subcutaneous fat thickness of the subcutaneous tissue. 基于超声回波信号\3。1、\3。2和测量到的皮下脂肪厚度从预设的校正模型2240中来确定出校正后的超声回波信号。 Based on the ultrasonic echo signal \ 3.1 \ 3.2 and the thickness of subcutaneous fat measured by an ultrasonic echo signal is determined from the corrected calibration model 2240 preset. 预设的校正模型2240可以限定在采样组织300和皮下组织的皮下脂肪厚度之间的关系。 Predetermined correction model 2240 may define a relationship between sample 300 and subcutaneous tissue thickness of subcutaneous fat. 在步骤B54之后,过程可以继续前进到步骤B52。 After step B54, the process can move on to step B52. 在这种情况下,在步骤B52中,可以基于来自第一感兴趣区域301和第二感兴趣区域302的校正后的超声回波信号来估算出采样组织300的第一参数和第二参数。 In this case, in the step B52, may be based on ultrasound echo corrected signal 301 from the first region of interest and the second region of interest 302 to estimate the tissue sample 300 in the first and second parameters.

[0067] 在步骤B52之后,过程可以继续前进到步骤B56或者选择性地进入到步骤B55。 [0067] After step B52, the process may proceed to step B56 or selectively proceeds to step B55.

[0068] 在可选的步骤B55中,根据图7的以上步骤B71至步骤B76执行对于多帧的估算出的第一参数和估算出的第二参数的质量检查,由此可以确定出一个或多个合格的第一参数和一个或多个合格的第二参数。 [0068] In an optional step in B55, B76 QA first and second parameters is estimated for estimating a plurality of frames according to the above step to step B71 in FIG. 7, thereby to determine one or a first plurality of qualified parameters and one or more qualified second parameter. 在步骤B54之后,过程可以继续前进到步骤B56。 After step B54, the process can move on to step B56. 在步骤B56中,计算出采样组织300的定量评分P。 In step B56, the computed sample of tissue quantitative score P. 300 定量评分P可以代表采样组织300的一个或多个特性。 P quantitative score 300 may represent one or more properties of tissue samples. 在一个具体实施方式中,可以基于在步骤B52中的估算出的第一参数和估算出的第二参数来计算出定量评分P。 In a specific embodiment, the first parameter may be based on estimated in step B52 and a second parameter calculated estimated quantitative score P. 在另一个具体实施方式中,可以基于在步骤B55中确定出的一个或多个合格的第一参数和一个或多个合格的第二参数来计算出定量评分P。 In another specific embodiment may be based on the determined first in step B55 of one or more parameters and one or more qualified qualified to calculate a second parameter quantified Rating P.

[0069] 在步骤B57中,将采样组织300的该一个或多个特性呈现在输出装置4中,从而辅助临床诊断。 [0069] In step B57, the tissue sample 300 in the one or more characteristics presented in the output device 4, to aid in clinical diagnosis. 用户可以根据采样组织300的该一个或多个特性来确定出采样组织300的纤维化分期。 The user can determine the sampling stage 300 according to fibrosis of the tissue sample 300 or a plurality of characteristics.

[0070] 本发明的用于采样组织300的多参数评估的方法可以用于检测在脂肪肝和肥胖患者中的纤维化并对纤维化进行分期。 [0070] A method for sampling a tissue of the multi-parameter evaluation 300 of the present invention may be used to detect and obese patients with fatty liver fibrosis and staging fibrosis. 该方法也是可靠的且是非侵入性的。 This method is also a reliable and non-invasive. 此外,该方法可以改进再现性以及类别分离。 In addition, the method can improve the reproducibility of the separation and categories.

[0071] 尽管根据本发明的具体实施方式的方法的步骤被示出为功能块,但是,在图5至图7所示的各个功能块的顺序和各个功能块之间的步骤的分离并不意图是限制性的。 [0071] Although particular steps of the method illustrated according to embodiments of the present invention shown as functional blocks, however, the order between the separation step and the respective functional blocks of the respective functional blocks shown in FIGS. 5 to 7 are not intended to be limiting. 例如,可以以不同的顺序来执行各个功能块,并且,与一个功能块相关联的步骤可以与一个或者多个其它功能块相结合或者可以被细分成多个功能块。 For example, the functional blocks may be performed in a different order, and a functional block associated with the associated steps may be combined with one or more other function blocks or may be subdivided into a plurality of functional blocks.

[0072] 虽然结合特定的具体实施方式对本发明进行了详细说明,但本领域的技术人员可以理解,对本发明可以作出许多修改和变型。 [0072] While the invention has been described in detail in connection with certain specific embodiments, those skilled in the art will appreciate, the present invention many modifications and variations. 因此,要认识到,权利要求书的意图在于覆盖在本发明真正构思和范围内的所有这些修改和变型。 Thus, it is recognized, intended that the appended claims cover all such modifications and variations within the true spirit and scope of the present invention.

Claims (17)

1. 一种用于估算采样组织参数的方法,其包括: 通过使用具有一种采集频率的超声探头和一种采集协议来获得来自采样组织中的第一感兴趣区域和第二感兴趣区域的超声回波信号;及基于来自所述第一和所述第二感兴趣区域的所述超声回波信号并且使用一种参考仿体来估算出所述采样组织的一个或多个参数。 CLAIMS 1. A method of estimating parameters for tissue sampling, comprising: obtaining tissue samples from a first region of interest and the second region of interest by using an ultrasound probe for acquiring for acquiring frequency and protocol ultrasonic echo signal; and based on information from the first ultrasound echo signals and the second region of interest and the use of a phantom reference to estimate one or more parameters of the tissue samples.
2. 根据权利要求1所述的方法,其中,所述参考仿体包括虚拟参考仿体,所述虚拟参考仿体是对于一个或多个已知的组织参数和一个或多个已知的采集参数的模拟超声回波信号,并且,所述虚拟参考仿体与所述超声探头的类型和所述采集协议有关。 The method according to claim 1, wherein said reference phantom comprises a virtual reference phantoms, the virtual reference phantom is known for one or more tissue parameters and the one or more known collection analog ultrasonic echo signal parameters, and the virtual reference phantom of the type of the ultrasound probe and the acquisition protocols related.
3. 根据权利要求2所述的方法,其中,估算出所述采样组织的所述一个或多个参数包括:估算出所述采样组织的第一参数和第二参数。 The method according to claim 2, wherein said estimating a tissue sample out of the one or more parameters comprises: estimating the first and second parameters of the tissue sample.
4. 根据权利要求3所述的方法,其中,所述第一参数包括衰减系数,所述第二参数包括背向散射系数,所述方法还包括: 预先存储所述虚拟参考仿体,其中,所述虚拟参考仿体包括虚拟参考组织在所述采集频率周围的所述第一和所述第二感兴趣区域处的回波强度,所述虚拟参考组织具有已知的衰减系数和已知的背向散射系数。 4. The method according to claim 3, wherein said parameter comprises a first attenuation coefficient, the second parameter comprises a backscatter coefficient, said method further comprising: previously storing the virtual reference phantoms, wherein the virtual reference comprises a virtual reference tissue phantoms collected in the echo intensity of the region of interest at a second frequency around the first and the virtual reference tissue having a known attenuation coefficients and known backscatter coefficient.
5. 根据权利要求4所述的方法,其中,估算出所述采样组织的所述第一参数和所述第二参数包括: 基于来自所述第一和所述第二感兴趣区域的所述超声回波信号来分别获得所述采样组织在所述采集频率周围的所述第一和所述第二感兴趣区域处的回波强度;以及使用所述采样组织在所述第一和所述第二感兴趣区域处的所述回波强度和所述虚拟参考组织在所述第一和所述第二感兴趣区域处的所述回波强度来估算出所述采样组织的所述衰减系数和所述背向散射系数。 The tissue samples of the first parameter and the second parameter 5. The method of claim 4, wherein the estimate comprises: based on said first and from the second region of interest ultrasonic echo signal to obtain the sampled tissue are collected in the echo intensity of the region of interest at a second frequency around the first and the; and using said first and said tissue sample and the echo intensity at the second virtual reference tissue region of interest of the attenuation coefficient in the echo intensity at a second region of interest to said first and said estimated samples of the tissue and the backscatter coefficient.
6. 根据权利要求5所述的方法,其中,所述第一感兴趣区域为靠近所述超声探头的感兴趣区域,而所述第二感兴趣区域为远离所述超声探头的感兴趣区域。 6. The method according to claim 5, wherein the first region of interest is close to the region of interest of the ultrasound probe, and the second region of interest region of interest away from the ultrasound probe.
7. 根据权利要求6所述的方法,其中,估算出所述采样组织的所述衰减系数和所述背向散射系数包括: 计算出对于所述采样组织和所述虚拟参考组织的所述第二和所述第一感兴趣区域之间的回波强度差的绝对值比; 对于所述回波强度差的比的对数变换和所述第一感兴趣区域的深度应用线性回归拟合;以及从拟合后的线性回归线的斜率和截距中分别估算出所述采样组织的所述衰减系数和所述背向散射系数。 The method according to claim 6, wherein the estimated attenuation coefficient of the tissue sample and the backscatter coefficient comprises: calculating the first and the tissue sample with respect to the virtual reference tissue echo intensity than the absolute value of the difference between the two and the first region of interest; for the echo intensity difference of the logarithmic transformation ratio of the first region of interest and applying a linear regression fit of depth; and estimating the slope and intercept from the linear regression line, respectively, after the fitting of the attenuation coefficient and the backscatter coefficient of the tissue sample.
8. —种用于采样组织的多参数评估的系统,其包括: 超声探头,其具有一种采集频率,并包括: 发射换能器,其用于根据一种选定的采集协议来向采样组织中的第一感兴趣区域和第二感兴趣区域发射超声信号;及接收换能器,其用于接收来自所述第一和所述第二感兴趣区域的超声回波信号; 处理单元,其包括: 估算模块,其用于基于来自所述第一和所述第二感兴趣区域的所述超声回波信号并且使用一种参考仿体来估算出所述采样组织的第一参数和第二参数;及评分计算模块,其用于基于所述采样组织的包括所述第一参数和所述第二参数的多个参数来计算出所述采样组织的定量评分,所述定量评分代表所述采样组织的一个或多个特性。 8. - kind of system for multi-parameter evaluation of tissue samples, comprising: an ultrasound probe for acquiring a frequency with which, and comprising: a transmitting transducer, which is used according to one selected protocol to collect samples a first tissue region of interest and the second region of interest transmitting ultrasound signals; and a receiving transducer, for receiving the first signal and the ultrasonic echo from the second region of interest; a processing unit, comprising: estimation module based on the first and from the ultrasonic echo signals of the second region of interest and the use of a phantom with reference parameters to estimate the first and second said tissue sample two parameters; and a score calculation module based on the tissue sample comprises a plurality of parameters of the first parameter and the second parameter quantified to calculate the rates of tissue samples, representative of the quantitative score a tissue sample of said one or more characteristics.
9. 根据权利要求8所述的系统,其中,所述发射换能器用于以谐波B模式向所述采样组织的所述第一和所述第二感兴趣区域发射所述超声信号。 9. The system of claim 8, wherein said transmitting the ultrasonic signal to said transducer for a harmonic B-mode tissue sample to said first transmitter and said second region of interest.
10. 根据权利要求8所述的系统,其中,所述参考仿体包括虚拟参考仿体,所述虚拟参考仿体包括基于物理的算法和用于所述采集协议和所述超声探头的预先计算好的偏移校正,所述基于物理的算法在具有一个或多个已知的组织参数的虚拟参考组织中使用一个或多个已知的采集参数来模拟超声传播,并且,产生所述虚拟参考组织在所述采集频率周围的所述第一和所述第二感兴趣区域处的回波强度。 10. The system according to claim 8, wherein the reference body comprises a simulated virtual reference phantom, said phantom comprising a virtual reference pre-calculated physics-based algorithm and protocol for the acquisition of the ultrasound probe, and good offset correction algorithm, using the physics-based collection of one or more known reference parameters of the virtual tissue having one or more tissue parameters known to simulate the propagation of ultrasound, and generating the virtual reference echo intensity in the tissue at the collection region of interest of the second frequency around the first and the.
11. 根据权利要求10所述的系统,其中,所述第一参数包括衰减参数,所述第二参数包括背向散射系数,所述第一感兴趣区域为靠近所述超声探头的感兴趣区域,而所述第二感兴趣区域为远离所述超声探头的感兴趣区域,所述估算模块用于: 基于来自所述第一和所述第二感兴趣区域的所述超声回波信号来分别获得所述采样组织在所述采集频率周围的所述第一和所述第二感兴趣区域的回波强度;以及使用所述采样组织在所述第一和所述第二感兴趣区域处的所述回波强度和所述虚拟参考组织在所述第一和所述第二感兴趣区域处的所述回波强度来估算出所述采样组织的所述衰减系数和所述背向散射系数。 The region of interest 11. The system of claim 10, wherein the decay parameter comprises a first parameter, the second parameter comprises a backscatter coefficient of the first region of interest close to the ultrasound probe and said second region of interest away from the ultrasound probe to the region of interest, said estimation module is configured to: respectively based on the ultrasound echo signals from the first and the second region of interest the tissue samples obtained in the acquisition of the echo intensities and the first frequency around the second region of interest; and using the sampling of said first tissue region of interest and of the second the echo intensity of the virtual reference and the echo intensity at a tissue in a second region of interest to said first and said estimated damping coefficient and the backscatter coefficient of the tissue sample .
12. 根据权利要求8所述的系统,其中,所述处理单元还包括: 校正模块,其用于基于在所述采样组织上方的上覆组织的参数来校正来自所述第一和所述第二感兴趣区域的所述超声回波信号,并且, 其中,所述估算模块用于基于校正后的超声回波信号来估算出所述采样组织的所述第一参数和所述第二参数。 12. The system according to claim 8, wherein the processing unit further comprising: a correction module based on the parameter overlying tissue above the sample tissue for correcting from the first and the second the ultrasound echo signals of the second area of ​​interest, and wherein said estimation module based on an ultrasonic echo signal of the corrected estimated to tissue sampling first parameter and the second parameter.
13. 根据权利要求12所述的系统,其中,所述上覆组织包括皮下组织,所述上覆组织的所述参数包括所述皮下组织的皮下脂肪厚度,所述校正模块包括: 预设的校正模型,其限定在所述采样组织和所述皮下组织的所述皮下脂肪厚度之间的关系,并且, 其中,所述校正模块用于基于所述超声回波信号和测量到的皮下脂肪厚度从所述预设的校正模型中来确定出所述校正后的超声回波信号。 13. The system of claim 12, wherein said tissue comprises overlying subcutaneous tissue, said tissue overlying said parameter comprises the thickness of subcutaneous fat in the subcutaneous tissue, the correction module comprising: preset calibration model, which defines the relationship between the subcutaneous fat and the subcutaneous tissue sample thickness, and wherein the correction module based on the ultrasound echo signals and the measured thickness of subcutaneous fat from the predetermined calibration model to determine an ultrasonic echo signal of the corrected.
14. 根据权利要求8所述的系统,其中,所述估算模块用于基于来自所述第一和所述第二感兴趣区域的多帧中的每一帧的所述超声回波信号来估算出所述采样组织的每一帧的所述第一参数和所述第二参数,并且, 其中,所述评分计算模块用于基于所述多帧的所述估算出的第一参数和所述估算出的第二参数来计算出所述定量评分。 14. The system according to claim 8, wherein said estimation module for estimating based on information from the first ultrasound echo signals and said plurality of frames of each frame of the second region of interest for each frame that the first parameter and the second parameter of the tissue sample, and wherein the scoring means for calculating a first parameter based on the plurality of frames and the estimated the second parameter to estimate the quantitative score is calculated.
15. 根据权利要求14所述的系统,其中,所述处理单元还包括: 质量检查模块,其用于对所述多帧的所述估算出的第一参数和所述估算出的第二参数执行质量检查,并且, 其中,所述评分计算模块用于基于一个或多个合格的第一参数和一个或多个合格的第二参数来计算出所述定量评分。 15. The system according to claim 14, wherein the processing unit further comprises: QA module, a first parameter for said plurality of frames of the estimated parameter and the estimated second QA, and wherein said means for calculating ratings based on one or more qualified or more of a first parameter and a second parameter qualifying the quantitative score is calculated.
16. 根据权利要求15所述的系统,其中,所述质量检查模块用于: 分别检查所述多帧的所述估算出的第一参数和所述估算出的第二参数的一个或多个正态分布以确定一致性; 选出符合正态分布的第一参数和第二参数; 分别执行对于正态的第一参数和正态的第二参数的方差一致性测试; 选出通过所述方差一致性测试的第一参数和第二参数; 分别执行对于通过的第一参数和通过的第二参数的方差分析;以及选出符合正态分布的所述一个或多个合格的第一参数和所述一个或多个合格的第二参数。 16. The system according to claim 15, wherein said means for QA: checking each of said plurality of frames of said first and second parameters, estimated from the estimated parameters of one or more to determine a normal consistency; normally distributed selected first and second parameters; variance were performed to test for conformance first parameter and the second parameter being normal state; and selected by the conformance testing variance first and second parameters respectively; variance for the first and second parameters by the analysis is performed by; selecting a first parameter and the one or more qualified normally distributed and a second parameter of the one or more qualified.
17. 根据权利要求8所述的系统,其还包括: 输入装置,其用于接收来自用户或其他装置的命令和输入; 控制单元,其与所述输入装置连接,用于响应于所述命令和所述输入来控制所述超声探头和所述处理单元;以及输出装置,其与所述处理单元连接,用于将所述采样组织的所述一个或多个特性呈现出来。 17. The system according to claim 8, further comprising: input means for receiving commands from a user or other input device; and a control unit connected to said input means, responsive to the command and said control input of said ultrasonic probe and the processing unit; and an output means connected to said processing unit, for the presentation of the one or more samples of tissue characteristics.
CN201510794987.3A 2015-11-18 2015-11-18 Method for estimating sampling organization parameters and multi-parameter evaluation system for sampling organization CN106691512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510794987.3A CN106691512A (en) 2015-11-18 2015-11-18 Method for estimating sampling organization parameters and multi-parameter evaluation system for sampling organization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510794987.3A CN106691512A (en) 2015-11-18 2015-11-18 Method for estimating sampling organization parameters and multi-parameter evaluation system for sampling organization

Publications (1)

Publication Number Publication Date
CN106691512A true CN106691512A (en) 2017-05-24

Family

ID=58933436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510794987.3A CN106691512A (en) 2015-11-18 2015-11-18 Method for estimating sampling organization parameters and multi-parameter evaluation system for sampling organization

Country Status (1)

Country Link
CN (1) CN106691512A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332099A (en) * 2008-07-10 2008-12-31 中国计量科学研究院 Tissue-mimicking module system for B-ultrasound static image evaluation and production method thereof
US20090270695A1 (en) * 2003-09-18 2009-10-29 New Paradigm Concepts, LLC Multiparameter whole blood monitor and method
CN102949212A (en) * 2011-08-18 2013-03-06 三星电子株式会社 Method of generating ultrasound image and ultrasound system using the method
US20130190595A1 (en) * 2012-01-23 2013-07-25 Alexander A. Oraevsky Laser Optoacoustic Ultrasonic Imaging System (LOUIS) and Methods of Use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090270695A1 (en) * 2003-09-18 2009-10-29 New Paradigm Concepts, LLC Multiparameter whole blood monitor and method
CN101332099A (en) * 2008-07-10 2008-12-31 中国计量科学研究院 Tissue-mimicking module system for B-ultrasound static image evaluation and production method thereof
CN102949212A (en) * 2011-08-18 2013-03-06 三星电子株式会社 Method of generating ultrasound image and ultrasound system using the method
US20130190595A1 (en) * 2012-01-23 2013-07-25 Alexander A. Oraevsky Laser Optoacoustic Ultrasonic Imaging System (LOUIS) and Methods of Use
WO2013112626A1 (en) * 2012-01-23 2013-08-01 Tomowave Laboratories, Inc. Laser optoacoustic ultrasonic imaging system (louis) and methods of use

Similar Documents

Publication Publication Date Title
Friedrich-Rust et al. Acoustic radiation force impulse-imaging and transient elastography for non-invasive assessment of liver fibrosis and steatosis in NAFLD
Barr et al. Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement
Sasso et al. The controlled attenuation parameter (CAP): A novel tool for the non-invasive evaluation of steatosis using Fibroscan®
Pettersen et al. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study
Izuhara et al. Relationship of cardio-ankle vascular index (CAVI) to carotid and coronary arteriosclerosis
Desai et al. Echocardiographic assessment of cardiovascular hemodynamics in normal pregnancy
Piscaglia et al. Accuracy of VirtualTouch Acoustic Radiation Force Impulse (ARFI) imaging for the diagnosis of cirrhosis during liver ultrasonography
Koopman et al. Assessment of myocardial deformation in children using Digital Imaging and Communications in Medicine (DICOM) data and vendor independent speckle tracking software
Faita et al. Real‐time measurement system for evaluation of the carotid intima‐media thickness with a robust edge operator
Bernini et al. Arterial stiffness, intima-media thickness and carotid artery fibrosis in patients with primary aldosteronism
Rajzer et al. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph
Gardiner et al. Morphologic and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum
Tatsumi et al. Non-invasive evaluation of hepatic fibrosis for type C chronic hepatitis
Ianculescu et al. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions
US6730035B2 (en) Ultrasonic apparatus and method for providing quantitative indication of risk of coronary heart disease
Vourvouri et al. Experience with an ultrasound stethoscope
Sugeng et al. Accuracy of mitral valve area measurements using transthoracic rapid freehand 3-dimensional scanning: comparison with noninvasive and invasive methods
US20100036248A1 (en) Medical image diagnostic apparatus, medical image measuring method, and medicla image measuring program
JP2002224116A (en) Ultrasonic diagnostic apparatus and image processor
Ferraioli et al. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity
Weinberg et al. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurements in children with pulmonary hypertension: a new method for evaluating reactivity: in vitro and clinical studies
Segers et al. Carotid tonometry versus synthesized aorta pressure waves for the estimation of central systolic blood pressure and augmentation index
US20030013964A1 (en) Ultrasound display of tissue, tracking and tagging
Adji et al. Determination of central aortic systolic and pulse pressure from the radial artery pressure waveform
Scott et al. Liver transient elastography (Fibroscan): a place in the management algorithms of chronic viral hepatitis

Legal Events

Date Code Title Description
PB01 Publication