CN106681573A - Touch control device and capacitive touch control sensing circuit thereof and touch control sensing method - Google Patents

Touch control device and capacitive touch control sensing circuit thereof and touch control sensing method Download PDF

Info

Publication number
CN106681573A
CN106681573A CN201510767563.8A CN201510767563A CN106681573A CN 106681573 A CN106681573 A CN 106681573A CN 201510767563 A CN201510767563 A CN 201510767563A CN 106681573 A CN106681573 A CN 106681573A
Authority
CN
China
Prior art keywords
circuit
switched capacitor
capacitive touch
switch
terminal
Prior art date
Application number
CN201510767563.8A
Other languages
Chinese (zh)
Other versions
CN106681573B (en
Inventor
赖曜宏
Original Assignee
敦泰电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敦泰电子有限公司 filed Critical 敦泰电子有限公司
Priority to CN201510767563.8A priority Critical patent/CN106681573B/en
Publication of CN106681573A publication Critical patent/CN106681573A/en
Application granted granted Critical
Publication of CN106681573B publication Critical patent/CN106681573B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Abstract

The invention provides a touch control device and a capacitive touch control sensing circuit thereof and a touch control sensing method. The capacitive touch control sensing circuit comprises a switching capacitive integrating circuit, a coding circuit, a feedback circuit and a decoding circuit. The switching capacitive integrating circuit receives input signals and performs integration on the input signals to generate output signals. The coding circuit receives the output signals and performs coding on the output signals to generate coding results. The feedback circuit provides a charge dissipation path for the switching capacitive integrating circuit for charge dissipation. The feedback circuit receives the coding results and adjusts charge dissipation capacity provided by the charge dissipation path according to the coding results. The decoding circuit receives the output signals and performs decoding on the output signals to generate touch control detecting results. The capacitivetouch control sensing circuit and the touch control sensing method thereof provided by the invention can effectively increase the resolution and detectable scope of capacitance change detection.

Description

触控装置及其电容式触控感测电路与触控感测方法 Touch device and the capacitive touch sensing circuit and the touch sensing method

技术领域 FIELD

[0001] 本发明涉及一种电容式触控感测电路,尤其涉及一种一比特累加增量(1-bitsigma delta)式电容式触控感测电路。 [0001] The present invention relates to a capacitive touch sensing circuit, particularly to a one-bit accumulation increment (1-bitsigma delta) capacitive touch sensing circuit.

背景技术 Background technique

[0002] 随着电子产品的普及化,良好的人机操作介面成为电子装置中的必要功能。 [0002] With the popularization of electronic products, a good man-machine interface function becomes necessary in an electronic device. 而在近代的电子装置中,电容式触控面板可以说是一种较受欢迎的作法。 In modern electronic device, the capacitive touch panel may be said to be a more popular approach.

[0003] 在电容式触控面板的应用上,现有技术提出利用一比特累加增量式电容式触控感测电路来进行触控感测动作。 [0003] In the application of the capacitive touch panel, the prior art proposes to use a touch sensing operation of bit accumulated incremental capacitive touch sensing circuit. 这种一比特累加增量式电容式触控感测电路不论是在电路的尺寸、电力的消耗也或是抗噪声的能力的表现上,都比传统的模拟数字转换器式的触控感测电路更为优良。 Such a bit accumulated incremental capacitive touch sensing circuit both in the circuit size, power consumption or noise performance ability, than the conventional touch sensing analog to digital converter of the formula more excellent circuit. 不过,由于现有技术领域中的一比特累加增量式电容式触控感测电路在反馈电路中提供固定的电荷耗散能力,使得其在电容变化检测的解析度以及可检测范围无法兼顾,导致效率受到限制而无法提升。 However, since the prior art one-bit accumulated incremental capacitive touch sensing circuit providing a fixed charge dissipation capability in the feedback circuit, such that it can not take into account the range resolution and detecting a change in capacitance may be detected, resulting in efficiency is limited and can not be improved.

发明内容 SUMMARY

[0004] 本发明提供一种电容式触控感测电路及其触控感测方法,可有效提升电容变化检测的解析度以及可检测范围。 [0004] The present invention provides a capacitive touch sensing circuit and a touch sensing method, which can effectively enhance the resolution and the detectable range of change in capacitance detected.

[0005] 本发明提供一种触控装置,应用电容式触控感测电路及其触控感测方法以有效提升电容变化检测的解析度以及可检测范围。 [0005] The present invention provides a touch device, the application of the capacitive touch sensing circuit and a touch sensing method to effectively improve the resolution and the detectable range of change in capacitance detected.

[0006] 本发明的电容式触控感测电路,包括切换电容式积分电路、编码电路、反馈电路以及解码电路。 The capacitive touch sensing circuit [0006] of the present invention, comprises a switched capacitor integrator circuit, an encoding circuit, a feedback circuit and a decoding circuit. 切换电容式积分电路耦接至受测电容式触控单元以由受测电容式触控单元接收输入信号,并针对输入信号进行积分以产生输出信号。 Switched capacitor integrator circuit is coupled to capacitive touch sensing by the unit under test capacitive touch unit receives an input signal, and for integrating the input signal to generate an output signal. 编码电路耦接切换电容式积分电路以接收输出信号,并针对输出信号来进行编码以产生编码结果。 Encoding circuit is coupled to the switched capacitor integrator circuit to receive the output signal and to encode for the output signal to generate the coded result. 反馈电路耦接至切换电容式积分电路及编码电路,提供切换电容式积分电路电荷耗散路径以进行电荷耗散动作,其中反馈电路接收并依据编码结果,调整电荷耗散路径所提供的电荷耗散能力。 The feedback circuit is coupled to the switched capacitor integrator circuit and the encoding circuit, the switched capacitor integrator circuit provides charge dissipation path for dissipating the charge operation, wherein the feedback circuit receiving and encoding the result according to adjusted charge dissipation path provided by the charge consumption San ability. 解码电路耦接切换电容式积分电路,接收并针对输出信号进行解码以产生触控检测结果。 A decoding circuit coupled to the switched capacitor integrator circuit for receiving and decoding the output signal to generate a detection result of the touch.

[0007] 本发明的触控装置包括触控面板以及至少一如前述的电容式触控感测电路。 The touch device [0007] The present invention includes a touch panel and at least as the capacitive touch sensing circuit. 触控面板包括多数个电容式触控单元。 The touch panel comprises a plurality of capacitive touch unit. 电容式触控感测电路耦接至电容式触控单元的其中之一的受测电容式触控单元。 Subjects capacitive touch unit of one of the capacitive touch sensing circuit is coupled to capacitive touch unit.

[0008] 本发明的电容式触控感测方法包括:由受测电容式触控单元接收输入信号,并提供切换电容式积分电路以针对输入信号进行积分以产生输出信号;针对输出信号来进行编码以产生编码结果;提供电荷耗散路径至切换电容式积分电路以进行电荷耗散动作,并依据编码结果来调整电荷耗散路径所提供的电荷耗散能力;以及,针对输出信号进行解码以产生触控检测结果。 [0008] The capacitive touch sensing method of the present invention comprises: a capacitive touch unit under test receives the input signal and provides a switched capacitor integrator circuit for integrating input signal to produce an output signal; is performed for the output signal to generate an encoded result; to provide charge dissipation paths switched capacitor integrator circuit for charge dissipation operation, and based on the encoding result to adjust the charge dissipation capabilities charge dissipation path provided; and for the output signal decoding The touch detection result is generated.

[0009] 基于上述,本发明提供编码电路以依据输出信号来进行编码,并藉以产生编码结果。 [0009] so as to generate a result of the coding, the present invention is to provide an encoding circuit based on an output signal encoded based. 而反馈电路所提供的电荷耗散路径的电荷耗散能力可以依据编码结果来动态的进行调整。 A feedback circuit and the charge dissipation paths provided by charge dissipation capabilities may be dynamically adjusted based on the result of the coding. 也就是说,本发明提供可随着负载电流来进行动态调整的电荷耗散机制,并使电容式触控感测电路在很大的转移电容中,仍可以检测到微小的电容变化量,达到可兼顾检测解析度以及检测范围的要求。 That is, the present invention provides a charge dissipation mechanisms as the load current is dynamically adjusted, and the capacitive touch sensing circuit in transferring large capacitance, it can still be detected tiny capacitance change amount to achieve It may be required to detect both resolution and detection range.

[0010] 为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。 [0010] In order to make the above features and advantages of the invention more comprehensible, several embodiments accompanied with figures are described in detail below.

附图说明 BRIEF DESCRIPTION

[0011] 图1为本发明一实施例的电容式触控感测电路的示意图; [0011] Fig 1 a schematic view of a capacitive touch sensing circuit according to an embodiment of the present invention;

[0012] 图2为本发明另一实施例的电容式触控感测电路的示意图; [0012] FIG. 2 is a schematic view of another capacitive touch sensing circuit of the embodiment of the present invention;

[0013] 图3为本发明再一实施例的电容式触控感测电路的示意图; [0013] FIG. 3 is a schematic diagram of the capacitive touch sensing circuit further embodiment of the present invention;

[0014] 图4为本发明更一实施例的电容式触控感测电路的示意图; [0014] FIG. 4 is a schematic of the capacitive touch sensing circuit of a further embodiment of the present invention;

[0015]图5为本发明实施例的编码电路的编码动作的波形图; [0015] FIG. 5 is a waveform diagram of an encoding operation of the encoding circuit according to an embodiment of the present invention;

[0016] 图6为本发明一实施例的触控装置的示意图; [0016] FIG. 6 is a schematic view of a touch device according to an embodiment of the present invention;

[0017] 图7为本发明实施例的电容式触控感测方法的流程图。 [0017] FIG. 7 is a flowchart of a capacitive touch sensor sensing method of the embodiment of the present invention.

[0018] 附图标记说明: [0018] REFERENCE NUMERALS:

[0019] 100、200、300、400、620:电容式触控感测电路; [0019] 100,200,300,400,620: a capacitive touch sensing circuit;

[0020] 110、210、310、410:切换电容式积分电路; [0020] 110,210,310,410: a switched capacitor integrator circuit;

[0021] 120、220、320、420:解码电路; [0021] 120 220 320 420: decoding circuit;

[0022] 130、230、330、430:反馈电路; [0022] 130,230,330,430: a feedback circuit;

[0023] 140、240、340、440:编码电路; [0023] 140,240,340,440: encoding circuit;

[0024] TUNT:受测电容式触控单元; [0024] TUNT: capacitive touch unit under test;

[0025] VIN:信号; [0025] VIN: signal;

[0026] OUT:输出信号; [0026] OUT: output signal;

[0027] IN:输入信号; [0027] IN: input signal;

[0028] ER:编码结果; [0028] ER: encoding result;

[0029] DR:触控检测结果; [0029] DR: a touch detection result;

[0030] SI 〜S6、Sop:开关; [0030] SI ~S6, Sop: switch;

[0031] Vref:参考电压; [0031] Vref: Reference voltage;

[0032] GND:参考接地端; [0032] GND: ground reference;

[0033] OPl:运算放大器; [0033] OPl: an operational amplifier;

[0034] Cop:电容; [0034] Cop: capacitance;

[0035] CMPl:比较器; [0035] CMPl: comparator;

[0036] LAl:闩锁器; [0036] LAl: a latch;

[0037] CK:时脉信号; [0037] CK: clock signal;

[0038] 231,331:切换式电容电路; [0038] 231, 331: switched-capacitor circuit;

[0039] 332:权重电压调整器; [0039] 332: voltage regulator weight;

[0040] Cfb:电容; [0040] Cfb: capacitance;

[0041] CTR:控制信号; [0041] CTR: a control signal;

[0042] WV:权重电压; [0042] WV: Weight voltage;

[0043] Cfbv:电容值; [0043] Cfbv: capacitance value;

[0044] 232:电容权重调整器; [0044] 232: capacitor weight regulator;

[0045] I1、12:电流源; [0045] I1,12: a current source;

[0046] Tl〜T7:时间点; [0046] Tl~T7: time point;

[0047] 600:触控装置; [0047] 600: touch device;

[0048] 610:触控面板; [0048] 610: a touch panel;

[0049] S710〜S740:触控感测步骤。 [0049] S710~S740: a touch sensing step.

具体实施方式 Detailed ways

[0050] 请参照图1,图1为本发明一实施例的电容式触控感测电路的示意图。 [0050] Referring to FIG. 1, a schematic view of a capacitive touch sensing circuit according to an embodiment of the present invention FIG. 电容式触控感测电路100包括切换电容式积分电路110、解码电路120、反馈电路130以及编码电路140。 The capacitive touch sensing circuit 100 includes a switched capacitor integrator circuit 110, a decoding circuit 120, a feedback circuit 130 and the coding circuit 140. 切换电容式积分电路110耦接至受测电容式触控单元TUNT的一端。 Switched capacitor integrator circuit 110 is coupled to one end of the capacitive touch sensing unit TUNT subject. 受测电容式触控单元TUNT的另一端接收信号VIN。 The other end of the unit under test capacitive touch TUNT received signal VIN. 当受测电容式触控单元TUNT的触控检测动作被执行时,信号VIN可以是一个时脉信号,而受测电容式触控单元TUNT对应信号VIN可产生输入信号IN,并提供输入信号IN至切换电容式积分电路110。 When tested capacitive touch detection unit TUNT touch action is performed, the signal VIN may be a clock signal, the capacitive touch unit under test corresponding to TUNT signal VIN may generate an input signal IN, and provides an input signal IN to the switched capacitor integrator circuit 110. 切换电容式积分电路110则可针对所接收的输入信号IN进行积分,并藉以产生输出信号OUT。 Switched capacitor integrator circuit 110 for integrating an input signal can be received by the IN, and thereby generates an output signal OUT.

[0051] 在本实施例中,受测电容式触控单元TUNT会依据有无被触碰的状态而改变其电容值,相对应的,输入信号IN也会因受测电容式触控单元TUNT的电容值变化而产生变化。 [0051] In the present embodiment, the capacitive touch unit under test will be based on the presence or absence TUNT is touched state changes its capacitance value corresponding to the input signal IN is also due to the capacitive touch sensing unit TUNT the change in the capacitance value changes. 通过切换电容式积分电路110依据输入信号IN进行积分,其中的积分结果可以有效反应出输入信号IN的变化状态,并得知受测电容式触控单元TUNT的被触碰状态。 By switched capacitor integrator circuit 110 according to the input signal IN is integrated, the integration result which can efficiently reflect the change in state of the input signal IN, and that the touched state of the capacitive touch sensing unit TUNT subject. 在另一方面,切换电容式积分电路110可以设定一个参考电压,并通过使积分结果与参考电压来进行比较以产生输出信号OUT。 On the other hand, the switched capacitor integrator circuit 110 may set a reference voltage, and to compare the integration result by a reference voltage to produce an output signal OUT. 在本发明实施例中,输出信号OUT可以是一个数字信号,并且,输出信号OUT的电压电平在连续的多个时间周期中可以是相同,或也可以是不相同的。 In an embodiment of the present invention, the output signal OUT may be a digital signal, and the voltage level of the output signal OUT in the plurality of successive time periods may be the same or may be different.

[0052] 编码电路140耦接切换电容式积分电路110,并接收输出信号OUT。 [0052] The encoding circuit 140 is coupled to the switched capacitor integrator circuit 110, and receives the output signal OUT. 编码电路140针对输出信号OUT来进行编码以产生编码结果ER。 Encoding circuit 140 for the output signal OUT is performed to generate an encoded result ER. 其中,编码电路140可在多个时间周期中,依序依据输出信号OUT在相邻的二时间周期中的电压变化状态来产生编码结果ER。 Wherein, in the encoding circuit 140 may be a plurality of time periods, sequentially according to the state change of the output voltage signal OUT in the two adjacent time periods to produce an encoded result ER. 更具体来说明,编码电路140可判断连续两个相邻的时间周期中,输出信号OUT的电压是否均维持在相同的逻辑电平(均为高逻辑电平或均为低逻辑电平),若是,编码电路140则使编码结果ER递增1,相对的,若连续两个相邻的时间周期中,输出信号OUT的电压发生高、低逻辑电平间的转态动作时,编码电路140则使编码结果ER递减I。 More specifically clear, encoding circuit 140 may be continuously determined in two adjacent time periods, whether the voltage of the output signal OUT are maintained at the same logic level (logic level high or both are low logic level), If time, encoding the encoding circuit 140 increments a result ER, opposite, if the adjacent two consecutive time periods, the output signal OUT of the voltage transient operation occurs between the high and low logic level, encoding circuit 140 ER encoding result of diminishing I. 举例来说明,若输出信号OUT在连续多个时间周期中的高逻辑电平依序为1、1、1、1、O、1、O,编码电路140产生的编码结果ER依序为(初始值设定为O) 0、1、2、3、2、1、0,其中,编码结果ER最小值为O。 To illustrate, if the output signal OUT at a high logic level of the plurality of successive time periods sequence is 1,1,1,1, O, 1, O, encoding circuit 140 generates encoded sequence as a result ER (initial value is set to O) 0,1,2,3,2,1,0, wherein the minimum coding result ER is O.

[0053] 另外,反馈电路130耦接至切换电容式积分电路110及编码电路140。 [0053] Further, the feedback circuit 130 is coupled to the switched capacitor integrator circuit 110 and encoding circuit 140. 反馈电路130提供切换电容式积分电路110 —个电荷耗散路径以进行切换电容式积分电路110中的电荷耗散动作。 The feedback circuit 130 provides a switched capacitor integrator circuit 110 - of charge dissipation paths for switched capacitor integrator circuit 110 charge dissipation operation. 其中反馈电路130接收并依据编码结果ER,来调整电荷耗散路径所提供的电荷耗散能力。 And wherein the feedback circuit 130 based on the received coding result ER, adjusting charge dissipation charge dissipation capabilities provided path. 此外,反馈电路130也接收输出信号0UT,并可依据输出信号OUT来决定电荷充放电动作。 Further, the feedback circuit 130 also receives the output signal 0UT, and based on the output signal OUT is determined charge discharge operation.

[0054] 在本实施例中,反馈电路130可以依据编码结果ER的数值大小来调整其提供给切换电容式积分电路110的电荷耗散路径的电荷耗散能力大小。 [0054] In the present embodiment, the feedback circuit 130 may adjust the size of the charge supplied to the charge dissipation capabilities of the switched capacitor integrator circuit 110 dissipation paths according to the numerical size of the encoded result ER. 在编码结果ER为具有三个比特的数值的范例中,反馈电路130可以提供八种(23)不同大小的电荷耗散能力。 Examples of numerical values ​​having a coding result ER three bits, the feedback circuit 130 are provided in eight (23) different sizes of charge dissipation capabilities. 而当反馈电路130提供电荷耗散能力较小时,电容式触控感测电路100可以提升其感测的解析度,相对的,当反馈电路130提供电荷耗散能力较大时,电容式触控感测电路100可以提升其感测的电容变化的范围。 When the feedback circuit 130 provides a charge dissipation capability is small, the capacitive touch sensing circuit 100 senses can improve resolution, contrast, when the feedback circuit 130 provides a charge dissipation capacity is large, the capacitive touch the sensing circuit 100 can enhance the range of capacitance variation which is sensed.

[0055] 解码电路120则耦接至切换电容式积分电路110。 [0055] The decoding circuit 120 is coupled to the switched capacitor integrator circuit 110. 解码电路120接收输出信号0UT,并针对输出信号OUT进行解码以产生触控检测结果DR。 The decoding circuit 120 receives the output signal 0UT, and decoding the output signal OUT for a touch to produce a detection result DR. 在动作细节方面,解码电路120可在多个时间周期中,依序依据输出信号OUT在相邻的二时间周期中的电压变化状态来产生多数个数值,并通过累加这些数值以获得触控检测结果DR。 In operation detail, the decoding circuit 120 may be a plurality of time periods, sequentially according to the state change of the output voltage signal OUT in the two adjacent time periods to produce a plurality of values, by accumulating these detected values ​​to obtain the touch The results DR.

[0056] 由上述的说明可以得知,电容式触控感测电路100的反馈电路130可以依据切换电容式积分电路110所产生的输出信号OUT的状态来调整所提供的电荷耗散路径的电荷耗散能力。 [0056] According to above description, the feedback circuit 130 of the capacitive touch sensing circuit 100 may adjust the charge provided by charge dissipation paths according to the state of the switched capacitor integrator circuit 110 generates an output signal OUT dissipation capability. 如此一来,电容式触控感测电路100可因应其工作时的状态,在高解析度以及大检测范围的需求间进行调整,以较佳化其工作效能。 Thus, the capacitive touch sensing circuit 100 may, upon its working state, be adjusted between the demand for high resolution and a large detection range, the preferred effectiveness of its work.

[0057] 以下请参照图2,图2为本发明另一实施例的电容式触控感测电路的示意图。 [0057] Referring to the FIG. 2, a schematic view of a capacitive touch sensing circuit according to another embodiment of the present invention of FIG 2. 电容式触控感测电路200包括切换电容式积分电路210、解码电路220、反馈电路230以及编码电路240。 The capacitive touch sensing circuit 200 includes a switched capacitor integrator circuit 210, a decoding circuit 220, a feedback circuit 230 and the coding circuit 240. 切换电容式积分电路210耦接至电容式触控单元TUNT。 Switched capacitor integrator circuit 210 is coupled to the capacitive touch unit TUNT. 本实施例中的电容式触控单元TUNT则接收由开关SI及S2交错导通及断开所产生的信号VIN,并对应产生输入信号IN。 TUNT capacitive touch unit in the present embodiment receives an interlace signal VIN is turned on and off is generated by the switching SI and S2, and generating a corresponding input signal IN. 信号VIN可为在参考接地端GND的电压以及参考电压Vref间转态的周期性信号。 Signal VIN may be a periodic signal between the reference voltage and a ground terminal GND reference voltage Vref is transient.

[0058] 切换电容式积分电路210包括运算放大器0P1、电容Cop、开关Sop、比较器CMPl以及闩锁器LAl。 [0058] The switched capacitor integrator circuit 210 includes an operational amplifier 0P1, capacitance Cop, switch Sop, and a comparator CMPl latch LAl. 运算放大器OPl接收输入信号IN,并通过开关Sop以及电容Cop对输入信号IN进行积分动作。 OPl operational amplifier receives an input signal IN, and the integral operation of the input signal IN via the switch and a capacitor Sop Cop. 运算放大器OPl的输出端产生积分结果,并将积分结果传送至比较器CMPl0比较器CMPl通过比较积分结果以及参考信号VR,并通过闩锁器LA闩锁比较器CMPl所产生的比较结果来产生输出信号OUT。 The output of the operational amplifier OPl produce an integration result, and transmits the integration result to the comparator CMPl0 comparator CMPl by comparing the integration result of the VR and the reference signal, and generates a comparison result output by the latch LA latches generated by the comparator CMPl signal OUT. 其中,闩锁器LA依据时脉信号CK进行数据闩锁动作。 Wherein, when the latch LA according to the clock signal CK for the data latch operation.

[0059] 输出信号OUT被传送至解码电路220、编码电路240以及反馈电路230。 [0059] The output signal OUT is transmitted to a decoding circuit 220, encoding circuit 240 and a feedback circuit 230. 解码电路220接收输出信号OUT并据以产生检测结果DR。 The decoding circuit 220 receives the output signal OUT and accordingly generating a detection result DR. 编码电路240则接收输出信号0UT,并依据输出信号OUT来执行编码动作以产生编码结果ER。 Encoding circuit 240 receives the output signal 0UT, and encoding is performed according to an operation to generate an encoded output signal OUT results ER.

[0060] 反馈电路230中包括切换式电容电路231。 [0060] Feedback circuit 230 includes a switched-capacitor circuit 231. 切换式电容电路231接收输出信号0UT,且切换式电容电路231的第一端耦接至切换电容式积分电路210接收输入信号IN的端点。 Switched-capacitor circuit 231 receives the output signal 0UT, switched capacitor circuit 231 and a first terminal coupled to the switched capacitor integrator circuit 210 receives the input signal IN endpoint. 切换式电容电路231则包括电容权重调整器232。 Switched capacitor circuit 231 includes a capacitor 232 weight adjustment. 电容权重调整器212提供一电容值Cfbv,且电容权重调整器232所提供的电容值Cfbv可依据编码结果ER来进行调整。 Weight adjusting capacitor 212 provides a capacitance value Cfbv, and the capacitance value of weight adjusting capacitance provided Cfbv 232 can be adjusted based on the coding result ER.

[0061] 通过调整电容权重调整器232所提供的电容值Cfbv,反馈电路230所提供的电荷耗散路径的充电荷耗散能力可以获得调整,并使电容式触控感测电路200可以兼顾电容变化的解析度以及电容变化范围的两个需求。 [0061] The capacitance value of weight adjustment provided Cfbv 232, a feedback circuit 230 by adjusting the weight electric charge capacitor provided dissipation paths charge dissipative able to obtain an adjusted, and the capacitive touch sensing circuit 200 may take into account the capacitance two resolutions demand and changes in the scope of the change in capacitance.

[0062] 在关于切换式电容电路231的其他细节部分,切换式电容电路231另包括开关S3、S4、S5以及S6。 [0062] Other details regarding the switched-capacitor circuit 231, switched capacitor circuit 231 further includes a switch S3, S4, S5 and S6. 开关S3的第一端接收输入信号IN,开关S3的第二端耦接至开关S4的第一端。 A first terminal for receiving an input signal switch S3 IN, the switch S3 is coupled to a first end of a second terminal of the switch S4. 开关S4的第二端则親接至开关S5、S6的第一端,开关S5、S6的第二端分别親接至参考接地端GND以及参考电压Vref。 A second terminal of the switch S4 is connected to the parent switch S5, S6 a first end, a switch S5, S6, respectively, the second end of the affinity to the reference ground terminal GND and the reference voltage Vref. 电容权重调整器312则串接在开关S4的第二端与参考接地端GND间。 Weight adjuster capacitor 312 connected in series between the second terminal of the switch S4 and the reference ground terminal GND. 开关S5以及S6可以依据相同的控制信号以被导通或切断,而开关S3、S4则依据输出信号OUT来被导通或切断,开关S3、S4的导通或切断状态是相反的。 Switches S5 and S6 can be based on the same control signal to be turned on or off, and switches S3, S4 based on the output signal OUT to be turned on or off, the switches S3, S4 is turned on or off state are opposite.

[0063] 在本实施例中,开关S5、S6可受控于控制信号CTR以导通或断开,开关S3、S4则受控于输出信号OUT以导通或断开,其中开关S3、S4的导通或断开状态是相反的。 [0063] In the present embodiment, the switches S5, S6 may be controlled by the control signal CTR to turn on or off switches S3, S4 are controlled by the output signal OUT to turn on or off, wherein the switches S3, S4 the oN or OFF state are opposite. 在当开关S4受控于输出信号OUT以导通时,反馈电路230提供切换电容式积分电路210 —电荷耗散路径以耗散切换电容式积分电路210中的电荷。 When the switch S4 is controlled to the output signal OUT is turned on, the feedback circuit 230 provides a switched capacitor integrator circuit 210 charge - dissipation paths to dissipate the switched capacitor integrator circuit 210 charges.

[0064] 关于解码电路220以及编码电路240的实施细节,其中,可在多个时间周期中,解码电路220可依序依据输出信号OUT在相邻的二时间周期中的电压变化状态来产生多数个数值,并通过累加这些数值以获得触控检测结果DR。 [0064] For the implementation details of the decoding circuit 240 and encoding circuit 220, wherein the plurality of time periods may, according to the decoding circuit 220 can sequentially change the state of the output voltage signal OUT in the two adjacent time periods to generate the majority of numerical values, and by summing these values ​​to obtain the touch detection result DR.

[0065] 编码电路240则是在多个时间周期中,依序依据输出信号OUT在相邻的二时间周期中的电压变化状态来产生编码结果ER。 [0065] The coding circuit 240 is a plurality of time periods, sequentially according to the state change of the output voltage signal OUT in the two adjacent time periods to produce an encoded result ER. 更具体来说明,编码电路240可判断连续两个相邻的时间周期中,输出信号OUT的电压维持在相同的逻辑电平时,使编码结果ER递增1,相对的,若连续两个相邻的时间周期中,输出信号OUT的电压发生高、低逻辑电平间的转态动作时,编码电路240则使编码结果ER递减I。 More specifically, next, the encoding circuit 240 may be determined two consecutive adjacent time periods, the voltage of the output signal OUT is maintained at the same logic level coding result ER is incremented by one, opposite, when the two adjacent consecutive when the time period, the output signal OUT of the voltage transient operation occurs between the high and low logic level, an encoding circuit 240 encoding the results in descending ER I.

[0066] 关于上述的解码电路220以及编码电路240的电路细节,其中,解码电路220以及编码电路240皆可利用数字电路来实施。 [0066] The circuit details of the above decoding circuit 220 and encoding circuit 240, wherein the decoding circuit 220 and encoding circuit 240 Jieke be implemented using digital circuitry. 也因此,依据上述说明的电路动作原理,解码电路220以及编码电路240可通过任何一种本领域普通技术人员所熟知的数字设计方式来实现,例如硬件描述语言(hardware descript1n language, HDL)或传统的真值表(truthtable)、卡诺图(Karnaugh map)及米利型或墨尔型的有限状态机(finite state machine)等方法来完成。 Therefore, according to the principle of operation of the circuit, the decoding circuit 220 and encoding circuit 240 described above can be obtained by any of those of ordinary skill in the art of digital design ways, for example, a hardware description language (hardware descript1n language, HDL) or traditional the truth table (truthtable), Karnaugh map (Karnaugh map) Milligan Melbourne type or type FSM (finite state machine) or the like to complete. 也因此,解码电路220以及编码电路240并没有固定的电路型态。 As a result, the decoding circuit 220 and encoding circuit 240 and circuit patterns is not fixed. 以利用硬件描述语言进行设计为范例,设计者所采用的电路合成(synthesizer)软件及电路基本逻辑门的数据库将会决定电路中所采用的逻辑门的形态与个数,并没有固定的结果。 In the design using a hardware description language as an example, the synthesis circuit (Synthesizer) designer basic logic gates used in the circuit and database software will determine the shape and the number of logic gates used in the circuit, and the result is not fixed.

[0067] 以下请参照图3,图3为本发明再一实施例的电容式触控感测电路的示意图。 [0067] Referring to the FIG. 3, a schematic view of a capacitive touch sensing circuit of another embodiment of the present invention FIG. 电容式触控感测电路300包括切换电容式积分电路310、解码电路320、反馈电路330以及编码电路340。 The capacitive touch sensing circuit 300 includes a switched capacitor integrator circuit 310, a decoding circuit 320, a feedback circuit 330 and the coding circuit 340. 本实施例的反馈电路330除接收输出信号OUT外,另接收编码结果ER。 The feedback circuit 330 of the present embodiment divides the received output signal OUT, the other receives the encoding result ER. 与前一实施例不同的,本实施例的反馈电路330包括切换式电容电路331以及权重电压调整器332。 Previous embodiment different embodiment, the feedback circuit 330 of this embodiment includes a switched-capacitor circuit 331 and voltage regulator 332 weights. 其中,切换式电容电路331包括开关S3〜S6以及电容Cfb。 Wherein the switched-capacitor circuit 331 includes a switch S3~S6 and a capacitor Cfb. 开关S3的一端接收输入信号IN,另一端耦接至开关S4的一端。 One end of the switch S3 receives the input signal IN, and the other end coupled to one end of the switch S4. 开关S4的另一端耦接至开关S5及S6的第一端,开关S5及S6的第二端分别耦接至参考接地端GND以及权重电压调整器332。 The other terminal of the switch S4 and S5 is coupled to a first terminal of a switch S6, a second terminal of the switch S5 and S6 are respectively coupled to the reference ground terminal GND and a voltage regulator 332 weights. 电容Cfb则串接在开关S3与S4的耦接端以及参考接地端GND间。 Capacitor Cfb is coupled in series with the switches S3 and S4 connected between the reference terminal and a ground terminal GND.

[0068] 权重电压调整器332提供权重电压WV至开关S6的第二端,并且,权重电压调整器332可依据编码结果ER来调整权重电压WV的电压值。 [0068] Weight voltage regulator 332 provides weight to weight WV voltage switch S6, a second end, and the weighting voltage regulator 332 may be adjusted based on the encoding result ER weight value of the voltage of WV. 通过调整权重电压WV的电压值,反馈电路330可有效的调整其所提供的电荷耗散路径的电荷耗散能力大小。 WV weight value of the voltage by adjusting the weights, 330 is effective to adjust the feedback circuit with the charge dissipation path dissipating it provides the ability to size.

[0069] 举例来说明,以三个比特的编码结果ER为范例,分别对应16进位的O - 7等八种不同数值的编码结果ER,权重电压WV的电压值可以在l/8*Vref - 8/8*Vref间进行调整。 [0069] To illustrate, in three bits encoding result ER as an example, corresponding to 16 into bit O - encoding result of eight different values ​​of 7 and the like the voltage value ER, weights voltage WV may be in l / 8 * Vref - 8/8 * between Vref adjustments. 也就是说,反馈电路330可针对电荷耗散路径的电荷耗散能力大小执行八段式的调整。 That is, the feedback circuit 330 may be performed eight dissipation capacity size for charge adjustment of Formula charge dissipation path.

[0070] 当然,编码结果ER的比特数并没有一定的限制,若要实现更佳的电容变化检测的解析度,可以应用更多比特的编码结果ER来实施。 [0070] Of course, the number of bits of the encoded result ER is not necessarily limited to achieve better resolution of the detected change in capacitance, more bits may be used to implement the encoding results ER. 反馈电路330也可针对电荷耗散路径的电荷耗散能力大小执行更多段次的调整动作。 The feedback circuit 330 may also charge dissipation capacity for the size of the charge dissipation path section performs the adjustment operation more times.

[0071] 以下请参照图4,图4为本发明另一实施例的电容式触控感测电路的示意图。 [0071] Referring to the FIG. 4, FIG. 4 is a schematic view of a capacitive touch sensing circuit according to another embodiment of the present invention. 电容式触控感测电路400包括切换电容式积分电路410、解码电路420、反馈电路430以及编码电路440。 The capacitive touch sensing circuit 400 includes a switched capacitor integrator circuit 410, a decoding circuit 420, a feedback circuit 430 and the coding circuit 440. 与前述实施例不相同的,本实施例中的反馈电路430包括电流源Il以及12以及开关S3、S4。 The foregoing embodiments are not the same, in this example embodiment of the feedback circuit 430 includes a current source Il and 12 and the switches S3, S4. 开关S3、S4的第一端共同親接至切换电容式积分电路410的输入端,开关S3、S4的第二端则分别耦接至电流源Il以及12。 Switches S3, S4 a first end 410 connected to the common parents input of switched capacitor integrator circuits, switches S3, S4 of the second terminal are respectively coupled to the current source Il and 12. 值得注意的是,电流源12由开关S4汲取电流至参考接地端GND。 It is noted that the current source 12 draws current from the switch S4 to the reference ground terminal GND.

[0072] 重点在于,开关S3以及开关S4受控于输出信号0UT,而电流源11、12则受控于编码结果ER,且开关S3以及开关S4的导通或断开状态是相反的。 [0072] The point is that the switch S3 and the switch S4 is controlled by the output signal 0UT, and the current source 11 is controlled by the ER coding result, and the switch S3 is turned on or off state and the switch S4 is reversed. 其中,依据编码结果ER以及输出信号0UT,电流源11、12汲取的电流值大小或执行电荷耗散的时间可以被进行调整。 Wherein, based on the encoding results ER and the output signal 0UT, the current source 11 draws a current value of the size or the execution time of charge dissipation can be adjusted. 并藉以动态调整反馈电路410所提供的电荷耗散路径,例如是充放电路径的充放电能力。 Thereby dynamically adjust the feedback circuit and charge dissipation path 410 is provided, for example, the charge-discharge capacity of the charge and discharge path.

[0073] 以下请参照图5,图5为本发明实施例的编码电路的编码动作的波形图。 [0073] Referring to the FIG. 5, FIG. 5 is a waveform diagram of an encoding operation of the encoding circuit according to an embodiment of the present invention. 通过周期性的检测输出信号OUT的电压电平,其中在时间点Tl以及T2时分别检测出输出信号OUT为相同的逻辑高电平,编码电路可使编码结果ER在时间点T2由O递增为I。 By periodically detecting the voltage level of the output signal OUT, which at the time point Tl and T2 respectively when the detected output signal OUT can encode the same results ER for the logic high level, the encoding circuit at the time point T2 increases from O to I. 接着,在时间点T3时,编码电路检测输出信号OUT的电压电平仍为逻辑高电平,因此,编码电路在时间点T3使编码结果ER由I递增为2。 Next, at time T3, the voltage level encoding circuit for detecting the output signal OUT remains a logic high level, therefore, an encoding circuit encoding results ER at the time point T3 is incremented by I 2. 在时间点T4时,编码电路持续检测输出信号OUT的电压电平,并检测出输出信号OUT的电压电平维持在逻辑高电平,编码电路则在时间点T4使编码结果ER由2递增为3。 At time T4, the voltage level encoding circuit continuously detects the output signal OUT, and detects a voltage level of the output signal OUT is maintained at a logic high level, then the encoding circuit at the time point T4 by the encoding results ER is incremented to 2 3.

[0074] 在时间点T5时,编码电路检测输出信号OUT的电压电平转态为逻辑低电平,同时,编码电路则在时间点T5使编码结果ER由3递减为2。 [0074] at the time point T5, the voltage level encoding circuit for detecting the output signal OUT is transited to logic low, while the encoding circuit at the time point T5 encoding results ER is decremented by the 2 3. 同样的,在时间点T6时,编码电路检测输出信号OUT的电压电平分别由逻辑低电平转态为逻辑高电平,在时间点T7时输出信号OUT的电压电平再由逻辑高电平转态为逻辑低电平,因此,编码电路在时间点T6分别使编码结果ER由2递减为1,再于时间点T7使编码结果ER由I递减为O。 Similarly, at the time point T6, the voltage level encoding circuit for detecting the output signal OUT are represented by a logic low state to a logic high revolutions, the voltage level of the output signal OUT at the time point T7 then the logic high panning state is a logic low level, therefore, at the time point T6 encoding circuit encoding results ER decremented by the 2 to 1, respectively, and then at time T7 encoding results ER is decremented by I O.

[0075] 以下请参照图6,图6为本发明一实施例的触控装置的示意图。 [0075] Referring to the FIG. 6, FIG. 6 a schematic view of a touch device according to an embodiment of the present invention. 触控装置600包括触控面板610以及至少一电容式触控感测电路620,其中触控面板610可为自容式触控面板也可为互容式触控面板。 The touch device 600 includes a touch panel 610, and at least one capacitive touch sensing circuit 620, where the touch panel 610 may be a self-capacitance touch panel may be the mutual capacitance panel. 触控面板610包括多个电容式触控单元,其中,电容式触控单元中的受测电容式触控单元TUNT耦接至电容式触控感测电路620以执行受测电容式触控单元TUNT的电容变化的检测动作,并藉此获得受测电容式触控单元TUNT的被触碰状态。 The touch panel 610 includes a plurality of capacitive touch unit, wherein the capacitive touch sensing unit receiving TUNT capacitive touch unit is coupled to the capacitive touch sensing circuit 620 to perform the capacitive touch unit under test TUNT operation of detecting a change in capacitance of the touched state and thereby obtaining the measured capacitive touch TUNT receiving unit. 在本实施例中,触控面板610可以是嵌入式(In Cell)的触控显示面板。 In the present embodiment, the touch panel 610 may be an embedded (In Cell) of the touch display panel. 然而,在其它实施例中,也可是外挂式的触控面板,或者其它具有触控功能的面板。 However, in other embodiments, but also add-on touch panel, or other panels with touch function.

[0076] 本实施例中的电容式触控感测电路620可以应用图2〜图4中的任一电容式触控感测电路200、300、400来实施,而关于电容式触控感测电路200、300、400的实施细节在前述的多个实施例中已有详尽的说明,在此恕不赘述。 [0076] The present capacitive touch sensing circuit 620 may be applied in the embodiment of FIG. 2 ~ a capacitive touch sensing circuit 300, 400 in FIG. 4 to any one embodiment, but on the capacitive touch sensing Example embodiments have been described in detail in the foregoing detailed circuits 200, 300, a plurality of embodiments, this will not be repeated herein.

[0077] 以下请参照图7,图7为本发明实施例的电容式触控感测方法的流程图。 [0077] Referring to the FIG. 7, FIG. 7 is a flowchart of a capacitive touch sensor sensing method of the embodiment of the present invention. 在步骤S710中,由受测电容式触控单元接收输入信号,并提供切换电容式积分电路以针对输入信号进行积分以产生输出信号;并且,在步骤S730中,针对输出信号来进行编码以产生编码结果;在步骤S730中,提供电荷耗散路径至切换电容式积分电路以进行电荷耗散动作,并依据编码结果来调整电荷耗散路径所提供的电荷耗散能力;以及,在步骤S740中,针对输出信号进行解码以产生触控检测结果。 In step S710, the capacitive touch unit under test receives the input signal and provides a switched capacitor integrator circuit for integrating input signal to produce an output signal; and, in step S730, for the output signal to generate encoded encoding result; at step S730, provides a path to charge dissipation switched capacitor integrator circuit for charge dissipation operation, and based on the encoding result to adjust the charge dissipation capabilities charge dissipation path provided; and in step S740 , for decoding the output signal to generate a detection result of the touch.

[0078] 在此,关于各步骤的执行细节,在前述多个实施例中都有详尽的说明,在此恕不赘述。 [0078] Here, the details of each step is performed, in the aforementioned embodiment a plurality of embodiments are described in detail, this will not be repeated herein.

[0079] 综上所述,本发明通过编码电路来对输出信号进行编码,并将编码结果提供至反馈电路。 [0079] In summary, the present invention is encoded by an encoding circuit output signal, the encoded result to the feedback circuit. 反馈电路依据编码结果动态调整其所提供的电荷耗散路径的电荷耗散能力,如此一来,电容式触控感测电路不会因为需要高检测解析度而牺牲电容变化的可检测范围,也不会因为需要大的电容检测范围而牺牲解析度。 A feedback circuit based on the encoding result to dynamically adjust the charge dissipation capabilities of charge dissipation path they provide, thus, the capacitive touch sensing circuit is not needed because of the expense of high-resolution detection of a detectable change in the capacitance range, It will not require large capacitance detection range at the expense of resolution. 也就是说,本发明的电容式触控感测电路可在兼顾解析度以及检测范围的条件下进行运作,提升工作效能。 That is, the capacitive touch sensing circuit of the present invention can operate at both resolution and detection range and improving the work efficiency.

[0080] 最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。 [0080] Finally, it should be noted that: the above embodiments only describe the technical solutions in embodiments of the present invention, rather than limiting;. Although the embodiments of the present invention has been described in detail, those of ordinary skill in the art should appreciated: it still may be made to the technical solutions described embodiments modifications, or to some or all of the technical features equivalents; as such modifications or replacements do not cause the essence of corresponding technical solutions to depart from embodiments of the present invention range of technical solutions.

Claims (17)

1.一种电容式触控感测电路,其特征在于,包括: 切换电容式积分电路,耦接至受测电容式触控单元以由所述受测电容式触控单元接收输入信号,并针对所述输入信号进行积分以产生输出信号; 编码电路,耦接所述切换电容式积分电路以接收所述输出信号,并针对所述输出信号来进行编码以产生编码结果; 反馈电路,耦接至所述切换电容式积分电路及所述编码电路,提供所述切换电容式积分电路电荷耗散路径以进行电荷耗散动作,其中所述反馈电路接收并依据所述编码结果,调整所述电荷耗散路径所提供的电荷耗散能力;以及解码电路,耦接所述切换电容式积分电路,接收并针对所述输出信号进行解码以产生触控检测结果。 A capacitive touch sensing circuit comprising: a switched capacitor integrator circuit, coupled to the capacitive touch sensing receiving unit to receive by the capacitive touch sensing unit receiving an input signal, and for integrating the input signal to produce an output signal; an encoding circuit, coupled to the switched capacitor integrator circuit to receive said output signal and to encode for the output signal to generate the coded result; a feedback circuit, coupled to the switched capacitor integrator circuit and the encoding circuit providing the switched capacitor integrator circuit charge dissipation path for dissipating the charge operation, wherein the feedback circuit and receives according to the encoding result, to adjust the charge the ability to dissipate charge dissipation path provided; and a decoding circuit coupled to the switched capacitor integrator circuit for receiving and decoding said output signal to generate a detection result of the touch.
2.根据权利要求1所述的电容式触控感测电路,其特征在于,所述反馈电路包括: 切换式电容电路,接收所述输出信号,且所述切换式电容电路的第一端耦接至所述切换电容式积分电路接收所述输入信号的端点;以及权重电压调整器,耦接至所述编码电路以及所述切换式电容电路的第二端,并提供权重电压至所述切换式电容电路的第二端,并依据所述编码结果调整所述权重电压, 其中,所述切换式电容电路的第一端及第二端间形成所述电荷耗散路径。 The capacitive touch sensing circuit according to claim 1, wherein said feedback circuit comprising: a switched capacitor circuit receiving said output signal, and the first end is coupled switched capacitor circuit connected to the switched capacitor integrator circuit receives the signal input terminal; a voltage regulator and a weight coupled to a second terminal of said encoder circuit and the switched capacitor circuit, and to provide a switching voltage to the weights the second end of the capacitor circuit, and are adjusted according to the encoding of the inter-heavy weights voltage, wherein the first and second ends of said switched capacitor circuit forming the charge dissipative path.
3.根据权利要求2所述的电容式触控感测电路,其特征在于,所述切换式电容电路包括: 第一开关,其第一端耦接至所述切换电容式积分电路接收所述输入信号的端点,受控于所述输出信号以导通或断开; 电容,串接在所述第一开关的第二端及参考接地端间; 第二开关,其第一端耦接至所述第一开关的第二端,受控于所述输出信号以导通或断开; 第三开关,串接于所述第二开关的第二端以及所述参考接地端间,受控于控制信号以导通或断开;以及第四开关,其第一端耦接至所述第二开关的第二端,所述第四开关的第二端接收所述权重电压,所述第四开关受控于所述控制信号以导通或断开。 The capacitive touch sensing circuit according to claim 2, wherein said switched capacitor circuit comprises: a first switch having a first terminal coupled to the switched capacitor integrator circuit receives the formula the endpoint of the input signal, the output signal is controlled to turn on or off; a capacitor connected in series between the second reference terminal and a ground terminal of the first switch; a second switch having a first terminal coupled to said second end, controlled by the output signal of the first switch to turn on or off; a third switch connected in series between said second switch and a second terminal of the reference ground, controlled a control signal to turn on or off; and a fourth switch having a first terminal coupled to the second terminal of the second switch, the second voltage terminal receiving the weight of the fourth switch, the second four switches controlled by the control signal to turn on or off.
4.根据权利要求1所述的电容式触控感测电路,其特征在于,所述反馈电路包括: 切换式电容电路,接收所述输出信号,且所述切换式电容电路的第一端耦接至所述切换电容式积分电路接收所述输入信号的端点,其中所述切换式电容电路包括电容权重调整器,所述电容权重调整器提供电容值,且所述电容值依据所述编码结果来进行调整, 其中,所述切换式电容电路的第二端接收参考电压,所述切换式电容电路的第一端及第二端间形成所述电荷耗散路径。 The capacitive touch sensing circuit according to claim 1, wherein said feedback circuit comprising: a switched capacitor circuit receiving said output signal, and the first end is coupled switched capacitor circuit connected to the switched capacitor integrator circuit receives the input signal terminal, wherein the switched capacitor circuit comprises a capacitance adjuster weight, the weight adjustment of the capacitor provides a capacitance value, and the capacitance value according to the result of the coding be adjusted, wherein the switched capacitor circuit receiving a second reference voltage terminal, between the first and second ends of said switched capacitor circuit forming the charge dissipative path.
5.根据权利要求4所述的电容式触控感测电路,其特征在于,所述反馈电路还包括: 第一开关,其第一端耦接至所述切换电容式积分电路接收所述输入信号的端点,受控于所述输出信号以导通或断开; 第二开关,其第一端耦接至所述第一开关的第二端,受控于所述输出信号以导通或断开; 第三开关,串接于所述第二开关的第二端以及所述参考接地端间,受控于一控制信号以导通或断开;以及第四开关,其第一端耦接至所述第二开关的第二端,所述第四开关的第二端接收所述参考电压,所述第四开关受控于所述控制信号以导通或断开。 The capacitive touch sensing circuit as claimed in claim 4, wherein said feedback circuit further comprises: a first switch having a first terminal coupled to the switched capacitor integrator circuit receives the input endpoint signal, controlled to turn on or off the output signal; a second switch having a first terminal coupled to the second terminal of the first switch, controlled by the output signal to turn on or OFF; a third switch connected in series to a second terminal of the second switch and a reference between the ground terminal, controlled by a control signal to turn on or off; and a fourth switch having a first terminal coupled connected to the second terminal of the second switch, the second terminal receives the reference voltage of the fourth switch, the fourth switch controlled by the control signal to turn on or off.
6.根据权利要求1所述的电容式触控感测电路,其特征在于,所述反馈电路包括: 开关,其第一端耦接至所述切换电容式积分电路接收所述输入信号的端点;以及电流源,耦接至所述开关的第二端并由所述开关的第二端汲取电流至参考接地端, 其中,依据所述编码结果调整所述电流的大小或所述开关的导通时间。 The capacitive touch sensing circuit according to claim 1, wherein said feedback circuit comprises: a switch having a first terminal coupled to the switched capacitor integrator circuit receives the input signal terminal ; and a second end of the draw current to the reference ground terminal, wherein, based on the encoded result of the adjustment of the current magnitude or the switch on the current source, coupled to the second terminal of the switch by the switch on-time.
7.根据权利要求1所述的电容式触控感测电路,其特征在于,所述编码电路在多个时间周期中,依序依据所述输出信号在相邻的二时间周期中的电压变化状态来产生所述编码结果。 The capacitive touch sensing circuit according to claim 1, wherein said encoding circuit in a plurality of time periods, said sequence according to a voltage change in the output signal of the adjacent two time periods state to generate said encoded result.
8.根据权利要求7所述的电容式触控感测电路,其特征在于,所述编码电路在所述输出信号在相邻的二时间周期中的电压均维持在相同的逻辑电平时,使所述编码结果递增,所述编码电路在所述输出信号在相邻的二时间周期中的电压的逻辑电平不相同时,使所述编码结果递减。 8. The capacitive touch sensing circuit according to claim 7, wherein said encoding circuit in the output voltage signal in two adjacent time periods are maintained at the same logic level, so incrementing the encoded result, the encoding circuit of the logic level voltage signal output of the adjacent two time periods are not the same, so that the encoded result of the decrement.
9.根据权利要求1所述的电容式触控感测电路,其特征在于,所述解码电路在多个时间周期中,依序依据所述输出信号在相邻的二时间周期中的电压变化状态来产生多数个数值,并通过累加上述多个数值以获得所述触控检测结果。 9. The capacitive touch sensing circuit according to claim 1, wherein said plurality of time periods in the decoding circuit, the voltage change sequence according to the output signal of the adjacent two time periods generating a plurality of state values, and by summing up the plurality of values ​​to obtain a detection result of the touch.
10.一种触控装置,其特征在于,包括: 触控面板,包括多数个电容式触控单元;以及至少一如权利要求1所述的电容式触控感测电路,耦接至上述多个电容式触控单元的其中之一的所述受测电容式触控单元。 A touch device, characterized by comprising: a touch panel including a plurality of capacitive touch unit; and at least as capacitive touch sensing circuit according to claim 1, coupled to the plurality said one of the capacitive touch sensing unit receiving capacitive touch unit.
11.一种电容式触控感测方法,其特征在于,包括: 由受测电容式触控单元接收输入信号,并提供切换电容式积分电路以针对所述输入信号进行积分以产生输出信号; 针对所述输出信号来进行编码以产生编码结果; 提供电荷耗散路径至所述切换电容式积分电路以进行电荷耗散动作,并依据所述编码结果来调整所述电荷耗散路径所提供的电荷耗散能力;以及针对所述输出信号进行解码以产生触控检测结果。 A capacitive touch sensing method, comprising: receiving a capacitive touch sensing unit receives an input signal and provides a switched capacitor integrator circuit for integrating the input signal to generate an output signal; It is performed for said output signal to generate an encoded result; providing a charge dissipation paths to the switched capacitor integrator circuit for charge dissipation operation, and to adjust the charge dissipation path provided according to the result of coding charge dissipation capabilities; and for decoding said output signal to generate a detection result of the touch.
12.根据权利要求11所述的电容式触控感测方法,其特征在于,所述提供所述电荷耗散路径至所述切换电容式积分电路以进行电荷耗散动作,并依据所述编码结果来调整所述电荷耗散路径所提供的所述电荷耗散能力的步骤包括: 提供切换式电容电路的第一端耦接至所述切换电容式积分电路;以及提供权重电压至所述切换式电容电路的第二端,并依据所述编码结果调整所述权重电压, 其中,所述切换式电容电路的第一端及第二端间形成所述电荷耗散路径。 12. The capacitive touch sensing method according to claim 11, wherein said providing said capacitive charge dissipation path to the integration circuit to perform the switching operation of charge dissipation, and according to the coding the result of the step of adjusting the charge dissipation capabilities of the charge dissipation path provided comprising: providing a first switched capacitor circuit terminal coupled to the switched capacitor integrator circuit; and providing a switched voltage to the weights the second end of the capacitor circuit, and are adjusted according to the encoding of the inter-heavy weights voltage, wherein the first and second ends of said switched capacitor circuit forming the charge dissipative path.
13.根据权利要求11所述的电容式触控感测方法,其特征在于,所述提供所述电荷耗散路径至所述切换电容式积分电路以进行电荷耗散动作,并依据所述编码结果来调整所述电荷耗散路径所提供的所述电荷耗散能力的步骤包括: 提供切换式电容电路的第一端耦接至所述切换电容式积分电路;以及依据所述编码结果来进行调整所述切换式电容电路中的可变电容的电容值, 其中,所述切换式电容电路的第二端接收参考电压,所述切换式电容电路的第一端及第二端间形成所述电荷耗散路径。 13. The capacitive touch sensing method according to claim 11, wherein said providing said capacitive charge dissipation path to the integration circuit to perform the switching operation of charge dissipation, and according to the coding results adjusting the charge dissipation path provided by the charge dissipation capabilities step comprising: providing a first switched capacitor circuit terminal coupled to the switched capacitor integrator circuit; and according to the result of the coding is performed adjusting the variable capacitance value of the capacitance of the switched capacitor circuit, wherein a second terminal of the switched capacitor circuit receiving a reference voltage, is formed between the first and second ends of said switched capacitor circuit charge dissipation path.
14.根据权利要求11所述的电容式触控感测方法,其特征在于,所述提供所述电荷耗散路径至所述切换电容式积分电路以进行电荷耗散动作,并依据所述编码结果来调整所述电荷耗散路径所提供的所述电荷耗散能力的步骤包括: 提供开关耦接至所述切换电容式积分电路接收所述输入信号的端点以及电流源间; 使所述电流源由所述开关的第二端及取电流至参考接地端;以及依据所述编码结果来调整所述电流的大小以及所述开关的导通时间的至少其中之一。 14. The capacitive touch sensing method according to claim 11, wherein said providing said capacitive charge dissipation path to the integration circuit to perform the switching operation of charge dissipation, and according to the coding the result of the step of adjusting the charge dissipation capabilities of the charge dissipation path provided comprising: providing a switch coupled to the switched capacitor integrator circuit receives the end-point and a current source of the input signal; the current and taking a second end to a reference current source is a ground terminal of said switch; and adjusted according to the encoding result of the magnitude of the current, and the conduction time of the switch at least one of them.
15.根据权利要求11所述的电容式触控感测方法,其特征在于,所述针对所述输出信号来进行编码以产生所述编码结果的步骤包括: 在多个时间周期中,依序依据所述输出信号在相邻的二时间周期中的电压变化状态来产生所述编码结果。 Step 15. The capacitive touch sensing method as claimed in claim 11, wherein said encoding is performed for the output signal to generate the encoded result comprises: a plurality of time periods, sequentially encoding result to generate the output signal according to the voltage variation in the state of the adjacent two time periods.
16.根据权利要求15所述的电容式触控感测方法,其特征在于,所述在上述多个时间周期中,依序依据所述输出信号在相邻的二时间周期中的电压变化状态来产生所述编码结果的步骤包括: 在所述输出信号在相邻的二时间周期中的电压均维持在相同的逻辑电平时,使所述编码结果递增;以及在所述输出信号在相邻的二时间周期中的电压的逻辑电平不相同时,使所述编码结果递减。 The capacitive touch sensing method as claimed in claim 15, wherein said plurality of time periods in the above, according to the voltage change of state of said sequential output signal in two adjacent time periods the step of generating the encoded result comprises: a voltage signal in two adjacent time periods of the outputs are maintained at the same logic level, incrementing the encoding result; and adjacent said output signal logic level voltage of the two time periods are not the same, so that the encoded result of the decrement.
17.根据权利要求11所述的电容式触控感测方法,其特征在于,所述针对所述输出信号进行解码以产生所述触控检测结果的步骤包括: 在多个时间周期中,依序依据所述输出信号在相邻的二时间周期中的电压变化状态来产生多数个数值;以及累加上述多个数值以获得所述触控检测结果。 17. The capacitive touch sensing method as claimed in claim 11, wherein said decoding for said output signal to generate a detection result of the touch step comprising: a plurality of time periods, by sequence variation state according to the output voltage signal in two adjacent time periods to produce a plurality of values; and accumulating said plurality of values ​​to obtain a detection result of the touch.
CN201510767563.8A 2015-11-11 2015-11-11 Touch device and its capacitance type touch control sensing circuit and sensing method of touch control CN106681573B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510767563.8A CN106681573B (en) 2015-11-11 2015-11-11 Touch device and its capacitance type touch control sensing circuit and sensing method of touch control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510767563.8A CN106681573B (en) 2015-11-11 2015-11-11 Touch device and its capacitance type touch control sensing circuit and sensing method of touch control

Publications (2)

Publication Number Publication Date
CN106681573A true CN106681573A (en) 2017-05-17
CN106681573B CN106681573B (en) 2019-08-27

Family

ID=58865113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510767563.8A CN106681573B (en) 2015-11-11 2015-11-11 Touch device and its capacitance type touch control sensing circuit and sensing method of touch control

Country Status (1)

Country Link
CN (1) CN106681573B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130222338A1 (en) * 2012-02-29 2013-08-29 Pantech Co., Ltd. Apparatus and method for processing a plurality of types of touch inputs
CN104156096A (en) * 2013-05-14 2014-11-19 宸鸿光电科技股份有限公司 Touch screen control system and signal processing circuit and method of touch screen control system
TW201506750A (en) * 2013-08-12 2015-02-16 Novatek Microelectronics Corp Touch display device and method for sensing capacitance thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130222338A1 (en) * 2012-02-29 2013-08-29 Pantech Co., Ltd. Apparatus and method for processing a plurality of types of touch inputs
CN104156096A (en) * 2013-05-14 2014-11-19 宸鸿光电科技股份有限公司 Touch screen control system and signal processing circuit and method of touch screen control system
TW201506750A (en) * 2013-08-12 2015-02-16 Novatek Microelectronics Corp Touch display device and method for sensing capacitance thereof

Also Published As

Publication number Publication date
CN106681573B (en) 2019-08-27

Similar Documents

Publication Publication Date Title
US7750649B2 (en) Methods and systems for detecting a capacitance using switched charge transfer techniques
US7307485B1 (en) Capacitance sensor using relaxation oscillators
CN101896825B (en) Compensation circuit for a TX-RX capacitive sensor
KR101502033B1 (en) Current control circuit and method for ADC
US20120043973A1 (en) Capacitance to code converter with sigma-delta modulator
KR20100121605A (en) Multiple capacitance measuring circuits and methods
US7233275B2 (en) Analog-to-digital converter with input signal range greater than supply voltage and extended dynamic range
EP2264897A1 (en) Methods and systems for shielding a charge transfer capacitance sensor for proximity detection
US8786295B2 (en) Current sensing apparatus and method for a capacitance-sensing device
Hwang et al. A highly area-efficient controller for capacitive touch screen panel systems
US20100181180A1 (en) Capacitive touch sensing using an internal capacitor of an analog-to-digital converter (adc) and a voltage reference
US6958639B2 (en) Digital duty cycle correction circuit and method for multi-phase clock
CN1795428B (en) Monitoring and control of power consumption
JP4545439B2 (en) High-frequency power supply for digital controller
US7977954B2 (en) Methods and systems for sigma delta capacitance measuring using shared components
US8963843B2 (en) Capacitive touch sensor system
US20080116904A1 (en) Methods and systems for switched charge transfer capacitance measuring using shared components
CN101510730A (en) Power converter and system for controlling multi power converters
US7459951B2 (en) Self-calibrating digital pulse-width modulator (DPWM)
KR100705379B1 (en) Control circuit of dc-dc converter and its control method
US8493131B2 (en) Capacitive touch panel detection circuit and boost circuit thereof
US7948245B2 (en) Methods and systems for detecting a capacitance using sigma-delta measurement techniques
US10025441B2 (en) Capacitive field sensor with sigma-delta modulator
TWI381173B (en) Capacitance measurement circuit and capacitance measurement method thereof
US9400298B1 (en) Capacitive field sensor with sigma-delta modulator

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant