CN106673569B - 一种高有机质含量疏浚淤泥复合固化材料 - Google Patents

一种高有机质含量疏浚淤泥复合固化材料 Download PDF

Info

Publication number
CN106673569B
CN106673569B CN201611164172.8A CN201611164172A CN106673569B CN 106673569 B CN106673569 B CN 106673569B CN 201611164172 A CN201611164172 A CN 201611164172A CN 106673569 B CN106673569 B CN 106673569B
Authority
CN
China
Prior art keywords
curing
dredging silt
organic content
component
composite curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611164172.8A
Other languages
English (en)
Other versions
CN106673569A (zh
Inventor
华苏东
谷重
姚晓
刘娟
赵卫星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Qiangeng New Material Science And Technology Co Ltd
Yanghe River Jiangsu Xincheng New Material Co Ltd
Nanjing University of Science and Technology
Original Assignee
Nanjing Qiangeng New Material Science And Technology Co Ltd
Yanghe River Jiangsu Xincheng New Material Co Ltd
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Qiangeng New Material Science And Technology Co Ltd, Yanghe River Jiangsu Xincheng New Material Co Ltd, Nanjing University of Science and Technology filed Critical Nanjing Qiangeng New Material Science And Technology Co Ltd
Priority to CN201611164172.8A priority Critical patent/CN106673569B/zh
Publication of CN106673569A publication Critical patent/CN106673569A/zh
Application granted granted Critical
Publication of CN106673569B publication Critical patent/CN106673569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • C04B22/144Phosphogypsum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

本发明公开了一种高有机质含量疏浚淤泥复合固化材料,该固化材料价格低廉、性能优越、利用工业废料,且能实现对高含有机质淤泥的有效固化,实现淤泥和固体废弃物的综合利用。本发明的高有机质含量疏浚淤泥复合固化材料,其是由以下质量百分比的各组份组成:水泥6%‑9%、粉煤灰5%‑7.5%、矿渣4%‑6%、石灰4%‑6%、磷石膏3%‑5%、激发剂2%‑4%、强氧化剂0.6%‑1.8%或1.2%‑5%,各组份用量均为各组份质量与疏浚淤泥质量的百分比;其中所述的强氧化剂为过硫酸钾或高锰酸钾或H氧化剂,所述的强氧化剂为过硫酸钾或高锰酸钾时用量为0.6%‑1.8%,所述的强氧化剂为H氧化剂时用量为1.2%‑5%。

Description

一种高有机质含量疏浚淤泥复合固化材料
技术领域
本发明具体涉及一种固化材料,更具体地说涉及一种高有机质含量疏浚淤泥复合固化材料。
背景技术
为了改善江河湖泊水质,保障河道正常的泄洪能力和航道、港口的畅通,我国进行了大规模的疏浚清淤工作,随之产生的数量巨大的淤泥已经成为难以回避的现实问题。淤泥性质特殊,与一般土差别较大。其颜色一般呈深灰色或暗绿色,有臭味;天然含水率高于液限,压缩性特别高、强度极低、透水性差、抗剪强度低。高含水率和富含有机质是淤泥最显著的特征,影响着其它性能。
化学固化是处理疏浚淤泥的一种有效方法,通过向淤泥中添加固化材料以及化学药剂,改变淤泥的物理化学性质,达到改善工程特性、保护环境等目的,固化效果好且处理量大。我国淤泥固化剂的研究和应用较少且技术水平较低,大多沿用石灰、水泥等传统固化材料,新型高效的固化剂开发应用较少,特别针对有机质含量较髙软土或淤泥的固化研究还很少。在对富含有机质淤泥固化处理时,由于有机质的主要成分腐殖酸会阻碍水泥水化,固化效果往往不理想,即使增加水泥用量也不能有效地增加固化淤泥的强度,需要开发针对富含有机质淤泥的新型固化剂。
随着工业发展,工业废料日益增加,我国每年产生大的工业废料比如粉煤灰、矿渣、磷石膏数量庞大,种类繁多,成分复杂,处理相当困难。工业废物消极堆存不仅占用大量土地,造成人力物力的浪费,且容易污染周围环境。有的废物甚至淤塞河道,污染水系,影响生物生长,危害人体健康。如果通过研制组合物将工业废料作为固化材料,不仅可以增加工业废料的处理途径,也可以改良固化剂的性能,实现对淤泥的有效固化,具有重要的现实意义。
发明内容
本发明的目的是提供一种高有机质含量疏浚淤泥复合固化材料,该固化材料价格低廉、性能优越、利用工业废料,且能实现对高含有机质淤泥的有效固化,实现淤泥和固体废弃物的综合利用。
本发明是通过以下技术方案实现的:
本发明的高有机质含量疏浚淤泥复合固化材料,其是由以下质量百分比的各组份组成:
各组份用量均为各组份质量与疏浚淤泥质量的百分比;
其中所述的强氧化剂为过硫酸钾或高锰酸钾或H氧化剂,所述的强氧化剂为过硫酸钾或高锰酸钾时用量为0.6%-1.8%,所述的强氧化剂为H氧化剂时用量为1.2%-5%;所述的H氧化剂的具体化学成分如下:
本发明的高有机质含量疏浚淤泥复合固化材料,其进一步的技术方案是所述的激发剂由以下各质量百分比的各组份组成为氢氧化钠占10%-30%、水玻璃占50%-80%、活化剂占10%-20%。
本发明的高有机质含量疏浚淤泥复合固化材料,其进一步的技术方案还可以是所述的活化剂具体成分如下:
本发明提供的高有机质含量疏浚淤泥复合固化材料,各种组分的配比经过严格设计,各自发挥着重要作用,具有以下优点和效果:
水泥与淤泥中的各个成分发生水化反应,产生水化硅酸钙,起胶结作用,提供早期强度,将淤泥中自由态的水变为水化产物中的矿物水或表面结合水。
粉煤灰作为骨架,起填充作用;石灰固化产生碳酸钙,同时有一定的脱水作用。
矿渣掺加到固化剂中,既可以充当填料,在水化过程中矿渣又可以参与固结土体的强度构建,可以替代部分水泥,降低成本。
磷石膏中的CaSO4·2H2O可与CaO、Al2O3反应,生成AFt,增加固化土的强度,且磷石膏颗粒细小,能起到微集料作用,增加固化土的致密性。
加入氢氧化钠、水玻璃、活化剂A配成的激发剂,和水泥、矿渣等胶凝材料发生作用,使胶凝材料的水化反应和火山灰反应充分进行,形成胶结强度。
加入强氧化剂过硫酸钾和高锰酸钾,经脱烷烃、侧链氧化、醇化等作用后,有机物以简单的羧酸、醇、酯、醚、烷烃、酞、胺类等有机物为主,大分子有机物被氧化成为小分子有机物,有机物的结构发生变化,从而降低有机质对固化的不利影响,提高固化土的强度。
在水化过程中产生体积膨胀补偿水泥基材料收缩是防止其收缩开裂的有效措施,自制H氧化剂水化反应后,可以降低淤泥的含水率,并生成具有膨胀作用的针状结晶和无色六方柱晶体,可降低固化土的孔隙率和减少其体积收缩。其中,自制H氧化剂水化生成的无色六方柱晶体存在位置和晶体的尺寸都会影响膨胀效果,细小的聚集在H氧化剂颗粒表面附近的无色六方柱晶体能产生较大的膨胀,细小的分散在H氧化剂颗粒周围较大区域内的无色六方柱晶体引起的膨胀较小。此外,自制H氧化剂带有的强氧化性可分解於泥中的有机质。一系列反应过程中涉及到的主要化学反应如下:
2(3CaO·SiO2)+6H2O→3CaO·2SiO2·3H2O+3Ca(OH)2
2(2CaO·SiO2)+4H2O→3CaO·2SiO2·3H2O+Ca(OH)2
3CaO·Al2O3+6H2O→4CaO·Al2O3·6H2O
4CaO·Al2O3·Fe2O3+10H2O+2Ca(OH)2→6CaO·Al2O3·Fe2O3·12H2O
3CaO·Al2O3+10H2O+CaSO4·2H2O→3CaO·Al2O3·CaSO4·12H2O
Ca(OH)2+Na2O·nSiO2+mH2O→CaO·SiO2·mH2O+NaOH
本发明提供的高有机质含量疏浚淤泥复合固化材料强度和稳定性高,能满足道路路基和切块砖对材料强度和稳定性的要求,同时浸出污染物含量低,符合国家有关污染物排放标准。并且无害化利用粉煤灰、矿渣、石膏等废弃物资源,绿色环保、成本低廉,有利于经济的可持续发展。
附图说明
图1为固化处理前的疏浚淤泥硬化体SEM图像;
图2为经过固化成型的疏浚淤泥固化土的SEM图像。
具体实施方式
下面结合具体实施方式对本发明进行详细说明,实施例中:
活化剂A的主要化学成分如下:
自制H氧化剂的具体化学成分如下:
所用的疏浚淤泥含水率为70.8%,有机质含量为15.6%。
实施例1
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥6%,粉煤灰5%,矿渣4%,石灰4%,磷石膏3%,激发剂2%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。图1为固化处理前的疏浚淤泥硬化体SEM图像,可以看出,疏浚淤泥硬化体结构疏松;图2为本实施例经过固化成型的疏浚淤泥固化土的SEM图像,可以看出,经过固化处理,固化土具有较为密实的结构。
实施例2
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥9%,粉煤灰7.5%,矿渣6%,石灰6%,磷石膏5%,激发剂4%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
实施例3
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥6%,粉煤灰5%,矿渣4%,石灰4%,磷石膏3%,激发剂2%,过硫酸钾0.8%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
实施例4
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥6%,粉煤灰5%,矿渣4%,石灰4%,磷石膏3%,激发剂2%,高锰酸钾1.2%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
实施例5
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥6%,粉煤灰5%,矿渣4%,石灰4%,磷石膏3%,激发剂2%,自制H氧化剂1.8%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
实施例6
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥9%,粉煤灰7.5%,矿渣6%,石灰6%,磷石膏5%,激发剂4%,过硫酸钾1.8%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
实施例7
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥9%,粉煤灰7.5%,矿渣6%,石灰6%,磷石膏5%,激发剂4%,高锰酸钾1.8%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
实施例8
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥9%,粉煤灰7.5%,矿渣6%,石灰6%,磷石膏5%,激发剂4%,自制H氧化剂3%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
实施例9
本实施例中高有机质含量疏浚淤泥复合固化材料的配合比为:水泥9%,粉煤灰7.5%,矿渣6%,石灰6%,磷石膏5%,激发剂4%,自制H氧化剂5%,将淤泥、固化剂置于搅拌锅中混和均匀,搅拌5分钟。出料,将混合好的固化材料采用试验机压制成型,制备Φ50*50mm尺寸的圆柱形试样,标准养护,性能测试结果见表1。
表1:实施例中固化材料试样的性能测试结果

Claims (3)

1.一种高有机质含量疏浚淤泥复合固化材料,其特征在于由以下质量百分比的各组份组成:
各组份用量均为各组份质量与疏浚淤泥质量的百分比;
所述的强氧化剂为H氧化剂,H氧化剂的具体化学成分如下:
2.根据权利要求1所述的高有机质含量疏浚淤泥复合固化材料,其特征在于所述的激发剂由以下各质量百分比的各组份组成为氢氧化钠占10%-30%、水玻璃占50%-80%、活化剂占10%-20%。
3.根据权利要求2所述的高有机质含量疏浚淤泥复合固化材料,其特征在于所述的活化剂具体成分如下:
CN201611164172.8A 2016-12-16 2016-12-16 一种高有机质含量疏浚淤泥复合固化材料 Active CN106673569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611164172.8A CN106673569B (zh) 2016-12-16 2016-12-16 一种高有机质含量疏浚淤泥复合固化材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611164172.8A CN106673569B (zh) 2016-12-16 2016-12-16 一种高有机质含量疏浚淤泥复合固化材料

Publications (2)

Publication Number Publication Date
CN106673569A CN106673569A (zh) 2017-05-17
CN106673569B true CN106673569B (zh) 2019-03-08

Family

ID=58868260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611164172.8A Active CN106673569B (zh) 2016-12-16 2016-12-16 一种高有机质含量疏浚淤泥复合固化材料

Country Status (1)

Country Link
CN (1) CN106673569B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108048059A (zh) * 2018-01-09 2018-05-18 成都川锋栲胶有限公司 油井水泥用防气窜剂制备方法
CN109399981A (zh) * 2018-10-15 2019-03-01 南京工业大学 一种具有固化和改良盐渍淤泥土双重功效的复合胶凝材料
CN109592776B (zh) * 2019-02-02 2021-04-27 常熟理工学院 一种基于焚烧飞灰的废水修复剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428956A (zh) * 2008-12-09 2009-05-13 武汉科技学院 一种淤泥固化剂
CN103086666A (zh) * 2013-01-18 2013-05-08 河海大学 一种高有机质河道淤泥复合固化材料及其应用
CN103539423A (zh) * 2013-11-04 2014-01-29 江苏坤泽科技股份有限公司 一种综合利用磷石膏的淤泥固化材料
CN104108905A (zh) * 2014-07-09 2014-10-22 浙江建设职业技术学院 一种高有机质滩涂淤泥的早强型复合固化剂及其应用
CN105776780A (zh) * 2016-03-07 2016-07-20 南京乾庚新材料科技有限公司 一种页岩气井钻井废油基泥浆固化材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428956A (zh) * 2008-12-09 2009-05-13 武汉科技学院 一种淤泥固化剂
CN103086666A (zh) * 2013-01-18 2013-05-08 河海大学 一种高有机质河道淤泥复合固化材料及其应用
CN103539423A (zh) * 2013-11-04 2014-01-29 江苏坤泽科技股份有限公司 一种综合利用磷石膏的淤泥固化材料
CN104108905A (zh) * 2014-07-09 2014-10-22 浙江建设职业技术学院 一种高有机质滩涂淤泥的早强型复合固化剂及其应用
CN105776780A (zh) * 2016-03-07 2016-07-20 南京乾庚新材料科技有限公司 一种页岩气井钻井废油基泥浆固化材料

Also Published As

Publication number Publication date
CN106673569A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
Phetchuay et al. Calcium carbide residue: Alkaline activator for clay–fly ash geopolymer
Mo et al. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates
Wang et al. The soundness of steel slag with different free CaO and MgO contents
Oti et al. Engineering properties of unfired clay masonry bricks
Malviya et al. Factors affecting hazardous waste solidification/stabilization: A review
Nuaklong et al. Influence of recycled aggregate on fly ash geopolymer concrete properties
Yi et al. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC
Kesimal et al. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill
Achtemichuk et al. The utilization of recycled concrete aggregate to produce controlled low-strength materials without using Portland cement
Siddique et al. Supplementary cementing materials
Sukmak et al. Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer
Tangchirapat et al. Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete
Al-Amoudi Attack on plain and blended cements exposed to aggressive sulfate environments
Calvo et al. Development of low-pH cementitious materials for HLRW repositories: Resistance against ground waters aggression
Lang et al. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2
Kanellopoulos et al. Durability performance of self-compacting concrete
Chen et al. Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study
Liu et al. Experimental research on magnesium phosphate cements modified by red mud
Wang et al. Study of the material properties of fly ash added to oyster cement mortar
CN104386966B (zh) 一种高性能耐腐蚀干混防水砂浆
CN105272027A (zh) 一种抗压强度300MPa以上超高性能混凝土及其制备方法
CN100441537C (zh) 一种抗氯盐侵蚀的硅酸盐水泥
Amnadnua et al. Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash
CN103102125B (zh) 一种机制砂水下抗分散混凝土及其制备方法
Binici et al. Effect of corncob, wheat straw, and plane leaf ashes as mineral admixtures on concrete durability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant