CN106625671B - A kind of robot for space arrests the optimal trajectory planning method of Tum bling Target - Google Patents
A kind of robot for space arrests the optimal trajectory planning method of Tum bling Target Download PDFInfo
- Publication number
- CN106625671B CN106625671B CN201611229840.0A CN201611229840A CN106625671B CN 106625671 B CN106625671 B CN 106625671B CN 201611229840 A CN201611229840 A CN 201611229840A CN 106625671 B CN106625671 B CN 106625671B
- Authority
- CN
- China
- Prior art keywords
- space
- robot
- effector
- target
- arresting
- Prior art date
Links
- 239000011159 matrix materials Substances 0.000 claims description 26
- 230000001133 acceleration Effects 0.000 claims description 4
- ORFOPKXBNMVMKC-DWVKKRMSSA-N ceftazidime Chemical compound   S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 ORFOPKXBNMVMKC-DWVKKRMSSA-N 0.000 claims description 3
- 230000003247 decreasing Effects 0.000 claims description 3
- 230000001419 dependent Effects 0.000 claims description 3
- 239000000446 fuels Substances 0.000 claims description 3
- 230000002441 reversible Effects 0.000 claims description 3
- 230000001808 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reactions Methods 0.000 claims 1
- 238000009795 derivation Methods 0.000 abstract description 4
- 238000010586 diagrams Methods 0.000 description 5
- 238000005516 engineering processes Methods 0.000 description 4
- 238000000034 methods Methods 0.000 description 3
- 230000002079 cooperative Effects 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 101000226005 human ADP-ribosylation factor-like protein 2 Proteins 0.000 description 1
- 101000058004 human ADP-ribosylation factor-like protein 2-binding protein Proteins 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40511—Trajectory optimization, coarse for arm, medium for wrist, fine for finger
Abstract
The invention discloses a kind of optimal trajectory planning method that robot for space arrests Tum bling Target, the equation of motion including establishing robot for space and Tum bling Target;It proposes the derivation algorithm of robot for space working space and optimal arrest opportunity and fix really then;Obtained robot arm end effector it is optimal arrest track;Finally with the validity of case verification method proposed by the present invention.The best opportunity of arresting proposed by the present invention determines that criterion can guarantee to arrest generation in the unrelated working space in the path of robot for space, so that dynamic singularity problem will not be encountered.The optimal of the robot arm end effector obtained using the theory of optimal control arrests track, then arresting on end effector and target a little reaches same position with identical speed when can guarantee to arrest, so that the impact force generated when arresting is minimum.
Description
[technical field]
The invention belongs to robot for space and automatic control technology field, it is related to a kind of robot for space and arrests Tum bling Target
Optimal trajectory planning method.
[background technique]
Robot for space technology has been achieved for huge progress, and each spacefaring nation all successively implements in-orbit experimental verification
Robot for space technology.However, the object of robot for space service is all with attitude control energy in the in-orbit experiment completed
The cooperative target of power, and ground monitoring shows that most of inert satellite all has tumbling motion, so that robot for space is to such
Target, which carries out in-orbit service task, becomes highly difficult, the robot for space serviced for non-cooperation, particularly Tum bling Target
Technology need further to develop.
The method for planning track of existing robot for space can be roughly divided into two types: 1) completing track under joint space
Planning.Nonlinear programming problem is solved by parameterizing joint trajectories, and using intelligent optimization algorithm, to directly obtain the phase
The joint of mechanical arm motion profile of prestige.When the shortcomings that such methods, is to solve for nonlinear programming problem and may need largely to calculate
Between.Meanwhile the requirement that a relative velocity is arrested on robot arm end effector and target is difficult in the space constantly arresting
Under be indicated.2) trajectory planning is completed under task space.Such methods obtain mechanical arm using the theory of optimal control first
The optimal motion track of end effector obtains corresponding joint of mechanical arm movement rail by solving inverse kinematics equation later
Mark.However, robot for space is due to having a dynamic singularity, during solving inverse kinematics equation, end effector is very
Small speed may correspond to excessive joint angular speed.A large amount of technique study robot for space Inverse Kinematics Problem it is unusual
Robust derivation algorithm avoids generating excessive joint angular speed, but all unusual robust derivation algorithms all may cause machinery
Arm end effector deviates desired trajectory.If the moment is being arrested in deviation generation, it would be possible to cause to generate excessive impact force.
[summary of the invention]
The present invention arrests the trajectory planning problem of Tum bling Target for robot for space, provides a kind of robot for space and arrests
The optimal trajectory planning method of Tum bling Target guarantees that dynamic singularity problem will not be encountered arresting moment robot for space, and
It realizes and constantly minimizes impact force arresting.
In order to achieve the above objectives, the present invention is achieved by the following scheme:
A kind of robot for space arrests the optimal trajectory planning method of Tum bling Target, comprising the following steps:
1) equation of motion of robot for space and Tum bling Target is established;
2) it calculates robot for space working space and determination is most preferably arrested opportunity;
3) it generates the optimal of robot arm end effector and arrests track.
A further improvement of the present invention lies in that:
The specific method is as follows for step 1):
Space Robot System is made of the mechanical arm of base satellite and n freedom degree, kinematics and kinetics equation table
It is shown as:
Wherein, ve, ωeThe respectively linear velocity and angular speed of end effector,For base satellite line/
Angular speed,It is joint angular velocity vector;
To save fuel or reducing the influence moved to end effector, robot for space is in and freely floats work shape
State, i.e. fb,fe=0;At this point, the kinetic model of robot for space simplifies are as follows:
Wherein, Hθ=Hm-Hbm THb -1HbmReferred to as " the broad sense inertial tensor of free-floating space robot ",
For the nonlinear terms of free-floating space robot;Free-floating space robot system meets principle of conservation of momentum:
Assuming that the linear momentum P of initial time system, angular momentum L are zero, then formula (4) are substituted into formula (1), obtain free floating
The kinematics model that robot for space simplifies:
Wherein, JgThe referred to as broad sense Jacobian matrix of free-floating space robot;
For Tum bling Target, the equation of motion of Tum bling Target is established;Based on euler dynamical equations, it is assumed that target is in space
Not by any external force, then its attitude dynamic equations indicates are as follows:
Use the posture changing matrix of quaternion representation rigid body:
Wherein,For the unit quaternion for indicating posture, first three parameter represents Euler's shaft
Direction, the 4th parameter represent the size of Euler's corner, and the component of angular speed is full under quaternary number each element and body coordinate system
Attitude kinematics equations shown in sufficient formula (8):
It is denoted as assuming that only uniquely arresting the position vector a little arrested a little under body coordinate system on Tum bling TargetThen
Under inertial coodinate system, the position vector arrested a little can be indicated are as follows:
Wherein, inv is indicated to matrix inversion.
The specific method is as follows for step 2):
2) it calculates robot for space working space and determination is most preferably arrested opportunity;
Formula (5) gives the kinematical equation of free-floating space robot, under base satellite body coordinate system, freely
Shown in the kinematical equation of floating space robot such as formula (10):
Wherein, subscript " o " indicates the expression under base body coordinate system, meets,
Wherein, T0For base satellite attitude matrix, always meet reversal condition, then matrix JgSingularity be solely dependent upon matrixoJgIt is whether unusual;Because of matrixoJgWith joint of mechanical arm rotational angle theta, each Rigid Mass miWith inertia IiIt is related, while only joint
Rotational angle theta is variation, so its unusual arm type can be determined by way of traversing robot for space joint space;
After obtaining the unusual arm type set of robot for space, using virtual machine arm concept, space machine is calculated
The unrelated working space in the path of people and path related work space;
It is proposed that following three criterion determine robot for space most preferably arresting opportunity to noncooperative target, it is ensured that energy when arresting
Enough so that the impact force between end effector and target is minimum:
Criterion 1: it when arresting, along direction is arrested, arrests and a little should be the nearest point of metric space robot system in target;
Criterion 2: arresting to arrest constantly should a little appear in the unrelated working space in robot for space path;
Criterion 3: when the first two criterion meets, arrest occur as early as possible.
Determining the unusual arm type of robot for space, the specific method is as follows:
2-1) all joint angles are initialized to minimum value θint=θmin;
2-2) calculate Jacobian matrixoJgIf det (oJg(θ)) < ε, then θ is saved as into unusual arm type;
2-3) since k=n, θ is checked whetherk+dθk< θmax, if so, going to step 4;If not, taking k=k-1, follow
Ring step 3 terminates until k=1;Wherein, ' n ' is joint sum, and d θ is the angle step-length of very little;
2-4) take θI=k+1 ..., n=θi,max, θk=θk+ d θ, goes to step 2-2);Wherein, subscript i represents i-th of joint.
The specific method is as follows for step 3):
To reduce the impact force arrested between moment end effector and target, it is expected that arresting moment end effector and arresting
Relative velocity between point is decreased to zero;Assuming that the motion profile of end effector is by control forceIt generates, wherein reIt indicates
The position of end effector;Define end effector state beObtain following system equation:
Assuming that the optimal control input u of robot for space makes following performance index function minimum:
Wherein, c (u) generates excessive acceleration for confinement end actuator:
Meet following end conswtraint simultaneously:
Using the theory of optimal control, the optimal control input of robot arm end effector is obtained are as follows:
u*=α (t-t0)+β (14)
Correspondingly, what end effector was optimal arrests motion profile are as follows:
Wherein,
Compared with prior art, the invention has the following advantages:
The optimal trajectory planning method of robot for space of the present invention, the fortune including establishing robot for space and Tum bling Target
Dynamic equation;It proposes the derivation algorithm of robot for space working space and optimal arrest opportunity and fix really then;Machinery is obtained
Arm end effector it is optimal arrest track;Finally with the validity of case verification method proposed by the present invention.The present invention mentions
The best opportunity of arresting out determines that criterion can guarantee to arrest generation in the unrelated working space in the path of robot for space, thus not
Dynamic singularity problem can be encountered.The optimal of the robot arm end effector obtained using the theory of optimal control arrests track, then
Arresting on end effector and target a little reaches same position with identical speed when can guarantee to arrest, so that arresting
When the impact force that generates it is minimum.
[Detailed description of the invention]
Fig. 1 is Space Robot System schematic diagram of the present invention;
Fig. 2 is robot for space working space schematic diagram of the present invention;
Fig. 3 is robot arm end effector of the present invention and arrests a motion profile;
Fig. 4 is end effector of the present invention and arrests a relative position and relative speed relationship schematic diagram.
[specific embodiment]
The invention will be described in further detail with reference to the accompanying drawing:
Robot for space of the present invention arrests the optimal trajectory planning method of Tum bling Target, comprising the following steps:
Step 1: establishing the equation of motion of robot for space and Tum bling Target.
As shown in Figure 1, Space Robot System is made of the mechanical arm of base satellite and n freedom degree, kinematics and dynamic
Mechanical equation can indicate are as follows:
Wherein, ve, ωeThe respectively linear velocity and angular speed of end effector,For base satellite line/
Angular speed,It is joint angular velocity vector, the physical significance of other symbols is as shown in table 1.
1 Space Robot System physical parameter of table
To save fuel or reducing the influence moved to end effector, robot for space is often in and freely floats work
State, i.e. fb,fe=0.At this point, the kinetic model of robot for space can simplify are as follows:
Wherein, Hθ=Hm-Hbm THb -1HbmReferred to as " the broad sense inertial tensor of free-floating space robot ",
For the nonlinear terms of free-floating space robot.Free-floating space robot system meets principle of conservation of momentum,
Assuming that the linear momentum P of initial time system, angular momentum L are zero, then formula (4) are substituted into formula (1), available freedom
The kinematics model that floating space robot simplifies:
Wherein, JgThe referred to as broad sense Jacobian matrix of free-floating space robot.
For Tum bling Target, considers that target has the situation of rotation around three principal axis of inertia, establish the movement of Tum bling Target
Equation.Based on euler dynamical equations, it is assumed that target is not in space by any external force, then its attitude dynamic equations can indicate
Are as follows:
Using the posture changing matrix of quaternion representation rigid body,
Wherein,For the unit quaternion for indicating posture, first three parameter represents Euler's shaft
Direction, the 4th parameter represent the size of Euler's corner, and the component of angular speed is full under quaternary number each element and body coordinate system
Attitude kinematics equations shown in sufficient formula (8):
It is denoted as assuming that only uniquely arresting the position vector a little arrested a little under body coordinate system on Tum bling TargetThen
Under inertial coodinate system, the position vector arrested a little can be indicated are as follows:
Wherein, inv is indicated to matrix inversion.
It is most preferably arrested opportunity Step 2: calculating robot for space working space and determining.
Formula (5) gives the kinematical equation of free-floating space robot, under base satellite body coordinate system, freely
Shown in the kinematical equation of floating space robot such as formula (10):
Wherein, subscript " o " indicates the expression under base body coordinate system, meets,
Wherein, T0For base satellite attitude matrix, always meet reversal condition, then matrix JgSingularity be solely dependent upon matrixoJgIt is whether unusual.Because of matrixoJgWith joint of mechanical arm rotational angle theta, each Rigid Mass miWith inertia IiIt is related, while only joint
Rotational angle theta is variation, and the present invention proposes that algorithm 1 determines the unusual arm type of robot for space.
After obtaining the unusual arm type set of robot for space, using virtual machine arm concept, space can be calculated
The unrelated working space in the path of robot and path related work space.Because robot arm end effector is in the unrelated work in path
When spatial movement, it is ensured that robot for space will not encounter dynamic singularity problem, and the present invention proposes that following three criterion is true
Determine robot for space most preferably arresting opportunity to noncooperative target, it is ensured that enable between end effector and target when arresting
Impact force is minimum:
Criterion 1: it when arresting, along direction is arrested, arrests and a little should be the nearest point of metric space robot system in target;
Criterion 2: arresting to arrest constantly should a little appear in the unrelated working space in robot for space path;
Criterion 3: when the first two criterion meets, arrest occur as early as possible.
Step 3: generating the optimal of robot arm end effector arrests track.
In step 2, opportunity available robot arm end effector is most preferably arrested by determination and arrests an intersection
Position and moment, provide that latter end actuator is optimal to arrest track in this step.
To reduce the impact force arrested between moment end effector and target, it is expected that arresting moment end effector and arresting
Relative velocity between point is decreased to zero.Assuming that the motion profile of end effector is by control forceIt generates, wherein reIt indicates
The position of end effector.Define end effector state beAvailable following system equation:
Assuming that the optimal control input u of robot for space makes following performance index function minimum:
Wherein, c (u) generates excessive acceleration for confinement end actuator:
Meet following end conswtraint simultaneously:
Using the theory of optimal control, the optimal control input of available robot arm end effector are as follows:
u*=α (t-t0)+β (14)
Correspondingly, the optimal motion profile of end effector are as follows:
Wherein,
Terminal juncture tfIt determines in step 2 and has been obtained when most preferably arresting opportunity, thus this step gives mechanical arm end
End actuator it is optimal arrest track.
Kinematics/kinetic parameter of the table 2 with 3DOF mechanical arm robot for space
The unusual arm type of robot for space determines algorithm
Subscript i represents i-th of joint, and ' n ' is joint sum, and d θ is the angle step-length of very little, and such as 0.5 °
Step 1: all joint angles are initialized to minimum value θint=θmin;
Step 2: Jacobian matrix is calculatedoJgIf det (oJg(θ)) < ε, then θ is saved as into unusual arm type;
Step 3: since k=n, θ is checked whetherk+dθk< θmax, if so, going to step 4;If not, k=k-1 is taken,
Step 3 is recycled until k=1, terminates;
Step 4: θ is takenI=k+1 ..., n=θi,max, θk=θk+ d θ, goes to step 2.
Table 1 is the physical significance of each parameter in the Space Robot System equation of motion, and table 2 is space machine used in example
The kinematics and kinetic parameter of device people's system, Fig. 1 are Space Robot System schematic diagram, and Fig. 2 is robot for space in example
The analysis of working space is as a result, Fig. 3, Fig. 4 are respectively the mechanical arm tail end that method for planning track proposed according to the present invention obtains
Actuator and arrest motion profile a little and the relation schematic diagram of the two relative position and relative velocity.
Embodiment:
Tum bling Target is arrested as example using band three-freedom mechanical arm robot for space, illustrates robot for space in the present invention
The optimal validity for arresting method for planning track.Kinematics/kinetic parameter of robot for space is as shown in table 2, it is assumed that rolling
The rotary inertia of target are as follows:
Under body coordinate system, the position vector arrested a little isIt carves at the beginning, the rotation speed of target
Spend component respectively [- 4-2-4] deg/sec in three axial directions of body coordinate system.
Using calculating process described in step 2, the working space for obtaining robot for space is distributed as shown in Fig. 2, simultaneously
Obtaining the optimal opportunity of arresting corresponds to moment t=127s.At this point, arrest point out present position [0.3538,0.4949 ,-
0.0702] at m, speed is [0.0395, -0.0271,0.0084] m/s.
Determine that the best of robot arm end effector arrests track using the method proposed in step 3, such as Fig. 3 and Fig. 4 institute
Show, it can be seen that can guarantee robot arm end effector and arrest a little to carve when arresting using method proposed by the present invention
Present same position, and relative velocity is zero, so that impact force when guaranteeing to arrest between end effector and target is minimum.
The above content is merely illustrative of the invention's technical idea, and this does not limit the scope of protection of the present invention, all to press
According to technical idea proposed by the present invention, any changes made on the basis of the technical scheme each falls within claims of the present invention
Protection scope within.
Claims (2)
1. a kind of optimal trajectory planning method that robot for space arrests Tum bling Target, which comprises the following steps:
1) equation of motion of robot for space and Tum bling Target is established;
The specific method is as follows for step 1):
Space Robot System is made of the mechanical arm of base satellite and n freedom degree, and kinematics and kinetics equation indicate are as follows:
Wherein, ve, ωeThe respectively linear velocity and angular speed of end effector,For line/angle speed of base satellite
Degree,It is each joint angular speed, Jb, JmThe respectively Jacobian matrix of pedestal and arm, Hb, HmThe respectively inertia of pedestal and arm
Battle array, HbmFor the coupling torque matrix of pedestal and arm, cb, cmRespectively pedestal and arm nonlinear terms relevant to speed, fb, fePoint
The external force and moment of face of pedestal and end effector Wei not be acted on, τ is each joint moment;
To save fuel or reducing the influence moved to end effector, robot for space is in and freely floats working condition, i.e.,
fb,fe=0;At this point, the kinetic model of robot for space simplifies are as follows:
Wherein, Hθ=Hm-Hbm THb -1HbmReferred to as " the broad sense inertial tensor of free-floating space robot ",
For the nonlinear terms of free-floating space robot;Free-floating space robot system meets principle of conservation of momentum:
Wherein, P and L is respectively the linear momentum and angular momentum of system, r0For the relative position of pedestal mass center and System Nature in the heart to
Amount;
Assuming that the linear momentum P of initial time system, angular momentum L are zero, then formula (4) are substituted into formula (1), obtain free floating space
The kinematics model that robot simplifies:
Wherein, JgThe referred to as broad sense Jacobian matrix of free-floating space robot;
For Tum bling Target, the equation of motion of Tum bling Target is established;Based on euler dynamical equations, it is assumed that target space not by
Any external force, then its attitude dynamic equations indicates are as follows:
Wherein, Ix,Iy,IzFor pedestal rotary inertia component, ωx,ωy,ωzFor pedestal angular velocity component,For base corner
Component of acceleration;
Use the posture changing matrix of quaternion representation rigid body:
Wherein,For the unit quaternion for indicating posture, first three parameter represents the side of Euler's shaft
To the 4th parameter represents the size of Euler's corner, and the component of angular speed meets formula under quaternary number each element and body coordinate system
(8) attitude kinematics equations shown in:
It is denoted as assuming that only uniquely arresting the position vector a little arrested a little under body coordinate system on Tum bling TargetThen used
Under property coordinate system, the position vector arrested a little can be indicated are as follows:
Wherein, inv is indicated to matrix inversion;
2) it calculates robot for space working space and determination is most preferably arrested opportunity;
The specific method is as follows for step 2):
Formula (5) gives the kinematical equation of free-floating space robot, under base satellite body coordinate system, freely floats
Shown in the kinematical equation of robot for space such as formula (10):
Wherein, subscript " o " indicates the expression under base body coordinate system, meets,
Wherein, T0For base satellite attitude matrix, always meet reversal condition, then matrix JgSingularity be solely dependent upon matrixoJgIt is
It is no unusual;Because of matrixoJgWith joint of mechanical arm rotational angle theta, each Rigid Mass miWith inertia IiIt is related, while only joint rotation angle θ
It is variation, so its unusual arm type can be determined by way of traversing robot for space joint space;
Determining the unusual arm type of robot for space, the specific method is as follows:
2-1) all joint angles are initialized to minimum value θint=θmin;
2-2) calculate Jacobian matrixoJgIf det (oJg(θ)) < ε, then θ is saved as into unusual arm type;Wherein, det indicates square
The determinant of battle array, ε are the normal number of very little;
2-3) since k=n, θ is checked whetherk+dθk< θmax, if so, going to step 4;If not, take k=k-1, circulation the
3 steps terminate until k=1;Wherein, ' n ' is joint sum, and d θ is the angle step-length of very little;
2-4) take θI=k+1 ..., n=θi,max, θk=θk+ d θ, goes to step 2-2);Wherein, subscript i represents i-th of joint;
After obtaining the unusual arm type set of robot for space, using virtual machine arm concept, robot for space is calculated
The unrelated working space in path and path related work space;
It is proposed that following three criterion determine robot for space most preferably arresting opportunity to noncooperative target, it is ensured that can make when arresting
The impact force obtained between end effector and target is minimum:
Criterion 1: it when arresting, along direction is arrested, arrests and a little should be the nearest point of metric space robot system in target;
Criterion 2: arresting to arrest constantly should a little appear in the unrelated working space in robot for space path;
Criterion 3: when the first two criterion meets, arrest occur as early as possible;
3) it generates the optimal of robot arm end effector and arrests track.
2. the optimal trajectory planning method that robot for space according to claim 1 arrests Tum bling Target, which is characterized in that
The specific method is as follows for step 3):
To reduce the impact force arrested between moment end effector and target, it is expected that arresting moment end effector and arresting point
Between relative velocity be decreased to zero;Assuming that the motion profile of end effector is by control forceIt generates, wherein reIndicate end
The position of actuator;Define end effector state beObtain following system equation:
Assuming that the optimal control input u of robot for space makes following performance index function minimum:
Wherein, c (u) generates excessive acceleration for confinement end actuator:
Meet following end conswtraint simultaneously:
Using the theory of optimal control, the optimal control input of robot arm end effector is obtained are as follows:
u*=α (t-t0)+β (14)
Correspondingly, what end effector was optimal arrests motion profile are as follows:
Wherein,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611229840.0A CN106625671B (en) | 2016-12-27 | 2016-12-27 | A kind of robot for space arrests the optimal trajectory planning method of Tum bling Target |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611229840.0A CN106625671B (en) | 2016-12-27 | 2016-12-27 | A kind of robot for space arrests the optimal trajectory planning method of Tum bling Target |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106625671A CN106625671A (en) | 2017-05-10 |
CN106625671B true CN106625671B (en) | 2019-02-19 |
Family
ID=58832838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611229840.0A CN106625671B (en) | 2016-12-27 | 2016-12-27 | A kind of robot for space arrests the optimal trajectory planning method of Tum bling Target |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106625671B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107169196B (en) * | 2017-05-11 | 2020-12-18 | 西北工业大学 | Dynamics modeling method for space robot from end effector to base |
CN107263466B (en) * | 2017-05-11 | 2020-07-17 | 西北工业大学 | Base undisturbed control method of space robot based on quadratic programming problem |
CN107220601B (en) * | 2017-05-18 | 2020-06-26 | 西北工业大学 | Target capture point prediction method based on online confidence degree discrimination |
CN107529630A (en) * | 2017-06-23 | 2018-01-02 | 西北工业大学 | A kind of method that robot for space establishes kinetic model |
CN107529498B (en) * | 2017-06-23 | 2020-02-18 | 西北工业大学 | Method for capturing non-cooperative target by space robot |
CN107490965B (en) * | 2017-08-21 | 2020-02-07 | 西北工业大学 | Multi-constraint trajectory planning method for space free floating mechanical arm |
CN107520844B (en) * | 2017-09-21 | 2019-09-24 | 西北工业大学 | Space manipulator arrests the polyhedron crash dynamics analysis method of noncooperative target |
CN108445778B (en) * | 2018-02-06 | 2020-12-25 | 南京航空航天大学 | Dynamics modeling method for space non-cooperative target non-complete constraint assembly |
CN108469737A (en) * | 2018-04-28 | 2018-08-31 | 北京空间飞行器总体设计部 | A kind of dynamic control method and system of space non-cooperative target navigation capture |
CN109164816A (en) * | 2018-07-25 | 2019-01-08 | 西北工业大学 | A kind of noncooperative target Attitude tracking control method of controller failure and saturated characteristic |
CN108919649B (en) * | 2018-07-26 | 2021-01-08 | 西北工业大学 | Design method of capture optimal path aiming at capture of fault satellite outer envelope |
CN108942943B (en) * | 2018-08-16 | 2020-03-17 | 居鹤华 | Positive kinematics calculation method of multi-axis robot based on axis invariants |
CN110722557A (en) * | 2019-10-21 | 2020-01-24 | 上海航天控制技术研究所 | Platform-mechanical arm integrated control method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6305673B2 (en) * | 2011-11-07 | 2018-04-04 | セイコーエプソン株式会社 | Robot control system, robot system and robot |
CN103009389B (en) * | 2012-11-30 | 2015-07-08 | 北京控制工程研究所 | Track planning method of redundant space mechanical arm for on-track catching |
CN104842355B (en) * | 2015-01-20 | 2016-08-17 | 西北工业大学 | The MIXED INTEGER forecast Control Algorithm of the lower redundant space robot of avoidance constraint |
CN105382843B (en) * | 2015-11-30 | 2017-05-10 | 北京控制工程研究所 | Coordination control method for mechanical arm and operation platform in final stage of grabbing |
CN106064377B (en) * | 2016-06-02 | 2018-06-29 | 西北工业大学 | A kind of excitation track optimizing method of robot for space dynamic parameters identification |
CN106055901B (en) * | 2016-06-02 | 2018-08-14 | 西北工业大学 | A kind of opportunity of free-floating space robot capture Tum bling Target determines method |
-
2016
- 2016-12-27 CN CN201611229840.0A patent/CN106625671B/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN106625671A (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Namiki et al. | Development of a high-speed multifingered hand system and its application to catching | |
CN106647282B (en) | Six-degree-of-freedom robot trajectory planning method considering tail end motion error | |
CN106094855B (en) | A kind of terminal cooperative control method of quadrotor drone | |
CN105479459B (en) | Robot zero-force control method and system | |
Yang et al. | Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots | |
JP4896276B2 (en) | ROBOT, ROBOT CONTROL DEVICE, CONTROL METHOD, AND CONTROL PROGRAM | |
CN103412491B (en) | A kind of Spacecraft feature axis attitude maneuver index time-varying sliding-mode control | |
Zheng et al. | Image-based visual servoing of a quadrotor using virtual camera approach | |
EP2639020A2 (en) | Robot control method, robot control device, and robot control system | |
US8725295B2 (en) | Robot, robot control apparatus, robot control method, and robot control program | |
CN102795544B (en) | Online trajectory planning based efficient bridge crane swing elimination control method | |
JP6268819B2 (en) | Trajectory generation method for multi-axis robot | |
Sun et al. | Nonlinear tracking control of underactuated cranes with load transferring and lowering: Theory and experimentation | |
CN104339349B (en) | Robot device and robot control method | |
CN106094528B (en) | A kind of spatial flexible robot arm vibration suppression algorithm | |
CN103648733B (en) | Method and control means for controlling a robot | |
JP6167770B2 (en) | Multi-axis robot trajectory generation method and multi-axis robot controller | |
Williams Ii et al. | Translational planar cable-direct-driven robots | |
CN107139171A (en) | A kind of industrial robot collision free trajectory method based on Torque Control | |
JP5902425B2 (en) | Robot control apparatus, disturbance determination method, and actuator control method | |
Haddadin et al. | Real-time reactive motion generation based on variable attractor dynamics and shaped velocities | |
CN108241339B (en) | Motion solving and configuration control method of humanoid mechanical arm | |
Ritz et al. | Quadrocopter performance benchmarking using optimal control | |
Park et al. | Odar: Aerial manipulation platform enabling omnidirectional wrench generation | |
CN106393116B (en) | Mechanical arm fractional order iterative learning control method with Initial state learning and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |