CN106573777A - 凝胶化水性聚合物组合物,由其制备的超级电容器电极用经热解碳基组合物,及其制备方法 - Google Patents

凝胶化水性聚合物组合物,由其制备的超级电容器电极用经热解碳基组合物,及其制备方法 Download PDF

Info

Publication number
CN106573777A
CN106573777A CN201580030757.8A CN201580030757A CN106573777A CN 106573777 A CN106573777 A CN 106573777A CN 201580030757 A CN201580030757 A CN 201580030757A CN 106573777 A CN106573777 A CN 106573777A
Authority
CN
China
Prior art keywords
composition
gelation
porous carbon
carbon
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580030757.8A
Other languages
English (en)
Other versions
CN106573777B (zh
Inventor
胡戈·多里
达维德·艾梅-佩罗
布律诺·迪富尔
菲利普·松塔格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchinson SA
Original Assignee
Hutchinson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchinson SA filed Critical Hutchinson SA
Publication of CN106573777A publication Critical patent/CN106573777A/zh
Application granted granted Critical
Publication of CN106573777B publication Critical patent/CN106573777B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2210/00Compositions for preparing hydrogels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及用于通过干燥然后热解形成单块多孔碳的凝胶化的水性聚合物组合物,涉及通过所述凝胶化的组合物的干燥随后热解制备的经热解的碳化组合物,涉及包含所述经热解的组合物的用于超级电容器的多孔碳电极,以及涉及用于制备所述分别凝胶化的和热解的组合物的方法。由多羟基苯和六亚甲基四胺的缩聚制备的根据本发明的凝胶化的组合物使得其中所含的六亚甲基四胺的质量分数为7%至15%(含端点)。所述凝胶化的组合物是通过a)多羟基苯和六亚甲基四胺在水性溶剂中的缩聚,随后b)通过加热所述缩聚物的凝胶化而制备。

Description

凝胶化水性聚合物组合物,由其制备的超级电容器电极用经 热解碳基组合物,及其制备方法
本发明涉及能够通过干燥然后热解形成单块多孔碳的凝胶化的水性聚合物组合物,涉及通过该凝胶化的组合物的干燥然后热解获得的经热解的基于碳的组合物,涉及包含该经热解的组合物的多孔碳电极,以及涉及制备这些分别凝胶化的和热解的组合物的方法。本发明特别应用于超级电容器电极,例如适于装备电动车辆的超级电容器电极。
超级电容器是电能存储系统,其对于需要输送大功率电能的应用特别有利。其快速充电和放电的能力以及其相对于大功率电池的提高的寿命使其成为许多应用的有力候选者。超级电容器通常由两个具有高比表面积的多孔导电电极的组合构成,所述电极浸没在离子电解质中并被能够传导离子并防止电极之间的电接触的被称为“隔板”的绝缘膜隔开。每个电极均接触金属集电体,所述金属集电体使得能够与外部系统交换电流。在施加于两个电极之间的电势差的作用下,电解质内存在的离子被呈现相反电荷的电极表面吸引,因此在每个电极的界面处形成电化学双层。电能因此通过电荷的分离而被静电储存。超级电容器的电容C的表示与常规电容器的相同,即:
C=ε.S/t,其中ε表示介质的介电常数,S表示被双层占据的表面积,而t表示双层的厚度。
超级电容器内可达到的电容远大于常规电容器达到的电容,这是由于使用具有非常高比表面积的基于碳的电极和电化学双层的极度精细(通常厚度为数nm)造成的。这些基于碳的电极必须是导电的以确保电子电荷的传输,必须是多孔的以确保离子电荷的传输和电化学双层在大的表面积上形成,且是化学惰性的以防止任何能量消耗副作用。
超级电容器内储存的能量E按照电容器的常规表达而限定,即:
E=1/2.C.V2,其中V是超级电容器的电势。
因此电容和电势是必需被优化以促进能量性能的两个基本参数。电容取决于电解质实际可进入的多孔结构。而且,对于运输中的应用特别是对于电动车辆,需要具有可获得的高的能量密度以限制超级电容器的车载重量,这要求具有高质量电容(masscapacitance)。超级电容器的电势主要取决于所用的电解质的性质,且特别取决于其电化学稳定性,应当明确的是存在两个主要种类的电解质,有机电解质和水性电解质。
已知,粉末或单块形式的基于碳的材料证明是最适于此种应用的。这是因为其表现出高比表面积(通常可为500m2/g至2000m2/g)和能够形成能量储存所需的电化学双层的孔隙度。
申请WO-A1-2014/060904的文件公开了用于超级电容器电极的主要为微孔的单块多孔碳,其由通过多羟基苯例如间苯二酚、甲醛和水溶性阳离子聚合物电解质的缩聚而获得的凝胶的热解得到。
尽管该文献中获得的多孔碳完全令人满意,但其存在由甲醛前驱体获得的缺点,所述甲醛前驱体由于被归类为对人致癌这一事实而可能存在毒性问题。
Dan Liu等的论文“Simple hydrothermal synthesis of ordered mesoporouscarbons from resorcinol and hexamine”,Carbon,49(2011),2113-2119教导了(用于能量储存)在水性介质中制备基于碳的凝胶及其热解物RF-350和RF-900,所述热解物为基本上介孔且有序的碳粉末的形式(这些热解物实际上在体积中微孔程度较小,见表1,其示出了仅对于RF-900碳的32%的微孔体积的最大含量,对于RF-900具有大于0.50cm3/g甚至接近1cm3/g的高的孔体积)。这些凝胶由间苯二酚(R)和六亚甲基四胺(HMT)前驱体制备,HMT在凝胶中的重量分数为1.74%,且存在有与疏水试剂三甲基苯(TMB)反应的两亲共聚物“Pluronic F127”(环氧乙烷/环氧丙烷/环氧乙烷)。因此获得围绕疏水剂的由两亲共聚物形成的胶束,且导致期望的介孔结构,其孔的尺寸由胶束限定。
Dan Liu等的论文“One-pot aqueous route to synthesize highly orderedcubic and hexagonal mesoporous carbons from resorcinol and hexamine”,Carbon50(2012),476-487,公开了在水性介质中用于获得凝胶及其热解物RF-1和RF-2的类似方法,所述热解物为以体积计主要为介孔的碳粉的形式,该方法通过相同的前驱体R和HMT(HMT在凝胶中的重量分数为约1.20%)以及通过相同的添加剂“Pluronic F127”和TMB在80℃的混合温度下进行。
这些论文中公开的方法特别表现出的主要缺点在于需要大量昂贵的两亲共聚物,且在于产生以体积计主要为介孔的碳,这损害基于这些多孔碳的超级电容器的电极的电容。
本发明的一个目标是提供能够通过干燥然后热解形成单块多孔碳的凝胶化的水性聚合物组合物,该组合物包含多羟基苯R和六亚甲基四胺H在水性溶剂W中的缩聚反应产物,六亚甲基四胺H按照H/(R+H+W)重量分数用于所述反应,这克服了这些缺点同时另外表现出与低的孔体积结合的非常高的微孔比表面积。
这一目标是这样实现的:本申请人公司正好出乎意料地发现这些前驱体R和H以大约7%至15%的H的重量分数在水性溶剂W中缩聚使得能够获得在凝胶化、干燥然后热解之后形成多孔碳的缩聚物,该多孔碳有利地为单块的,且非常显著地为微孔的,即比表面积的至少80%为微孔且孔体积小于0.50cm3/g且多孔碳的孔体积的多于50%为微孔。
因此,根据本发明的凝胶化的水性聚合物组合物使得所述H/(R+H+W)重量分数为7%至15%(含端点)。
术语“凝胶化的组合物”或“凝胶”意为,以已知的方式的胶体材料和液体的混合物,其通过胶体溶液的絮凝和凝结自发地或在催化剂的作用下形成。应当记得,化学凝胶和物理凝胶之间有区别,如本发明中的情况,化学凝胶由化学反应获得其结构且明确地不可逆,而对于物理凝胶,大分子链之间的聚集是可逆的。
应当指出,使用六亚甲基四胺(多亚烷基多胺类的亚甲基供体,在文献中还被称为六胺、乌洛托品或HMT)表现出如下优点:根据本发明的不可逆的凝胶的合成在没有有毒产品(例如对人致癌的甲醛)的情况下进行。
优选地,对于所述反应,所述H/(R+H+W)重量分数为10%至14%(含端点)。
根据本发明的另一特征,多羟基苯R和六亚甲基四胺H按照2至4优选2.5至3.5(含端点)的R/H摩尔比用于所述反应。
根据本发明的另一特征,多羟基苯R和所述水性溶剂W按照0.07至1并优选0.4至0.7(含端点)的R/W重量比用于所述反应。
根据本发明的另一方面,组合物可有利地没有任何两亲聚合物,没有任何聚合物电解质和/或没有任何疏水性化合物。因此,所述凝胶化的组合物可特别地不包含环氧乙烷/环氧丙烷/环氧乙烷嵌段的两亲共聚物且没有三甲基苯(TMB)类的疏水化合物,出于这种原因该组合物没有胶束。
根据本发明的另一特征,所述水性溶剂W可为水,且有利地甲醛不用于所述反应。
在可用于本发明的前驱体聚合物中,因此可提及由六亚甲基四胺和多羟基苯类中的至少一种单体的缩聚所得的那些前驱体聚合物。该聚合反应可涉及多于两种不同的单体,另外的单体为多羟基苯类或不为多羟基苯类的单体。可用的多羟基苯优选地为二羟基苯或三羟基苯且有利地为间苯二酚(1,3-二羟基苯)或间苯二酚与选自邻苯二酚、对苯二酚或间苯三酚的另一化合物的混合物。
根据本发明的经热解的基于碳的组合物通过所述凝胶化的组合物的干燥然后热解获得,且形成比表面积大于550m2/g且孔体积小于0.50cm3/g的单块多孔碳,且该经热解的组合物使得体积分数大于50%的所述孔体积为微孔(其定义的孔的直径小于2nm),表面分数等于或大于80%,优选等于或大于90%,甚至95%的所述比表面积是微孔(其定义的孔的直径也小于2nm),所述孔体积和所述比表面积通过氮吸附测压法在77K下测量。
有利地,所述比表面积可等于或大于580m2/g,所述孔体积可小于或等于0.40cm3/g。
还有利地,体积分数大于55%的所述孔体积可为微孔,优选地所述多孔碳表现出0.15cm3/g至0.25cm3/g的微孔体积。
还更有利地,体积分数等于或大于70%的所述孔体积可为微孔。
应当注意,本发明的多孔碳的该基本上微孔的结构按照定义特征在于孔的直径小于2nm,与介孔结构形成对比,介孔结构按照定义特征在于孔的直径为2nm至50nm(含端点)。
根据本发明的多孔碳电极可用于装备超级电容器电池且为使得电极包含所述经热解的组合物作为活性材料。
应当指出,微孔度对于这样的电池中电化学双层的形成发挥重要的作用,且本发明的主要为微孔的多孔碳有利地使得能够具有对于这些超级电容器电极的可获得的高比能量和高电容。
制备根据本发明的所述凝胶化的组合物的方法包括:
a)多羟基苯R和六亚甲基四胺H在水性溶剂W例如水中的缩聚反应,优选不使用甲醛,以获得水性介质中的缩聚物,然后
b)通过加热所述缩聚物的凝胶化,以获得凝胶化的组合物。
应当指出,本发明的该方法有利地不使用催化剂来进行步骤a)。
根据本发明的一个特定实施方案,步骤a)包括:
a1)多羟基苯R在所述水性溶剂W的第一部分中的溶解,以获得第一水性溶液,
a2)六亚甲基四胺H在所述水性溶剂的第二部分中通过加热的溶解,以获得第二水性溶液,以及
a3)使第一水性溶液接触第二水性溶液,直到获得包含所述缩聚物的第三均相水性溶液。
根据本发明制备所述经热解的基于碳的组合物的方法包括:
a)多羟基苯R和六亚甲基四胺H在水性溶剂W例如水中的缩聚反应,优选不使用醛类前驱体,以获得水性介质中的缩聚物,
b)通过加热所述缩聚物的凝胶化,以获得凝胶化的组合物,
c)所述凝胶化的组合物的干燥,然后
d)在c)中获得的凝胶化且干燥的组合物的热解(通常在大于600℃下),以获得所述多孔碳。
有利地,该方法在步骤d)之后可另外包括使所述多孔碳活化的步骤e),所述多孔碳的活化包括用基于硫的强酸浸渍所述多孔碳的、优选用以pH小于1的溶液形式提供且选自硫酸、发烟硫酸、氯磺酸和氟磺酸的酸,如本申请人的文献EP-B1-2 455 356中所述,例如使用硫酸(18M H2SO4)用于本发明的该方法。
本发明的其他特征、优势和细节将在阅读下列执行本发明的实施例的描述时显现,实施例以举例说明的方式给出且不旨在限制。
根据本发明制备凝胶化的和经热解的组合物的实施例,与这些组合物的“对照”例的比较:
制备根据本发明的两种凝胶化的水性聚合物组合物G1和G2,对应于下列实施例1和实施例2,二者均由间苯二酚R(来自Acros Organics,98%纯)和六亚甲基四胺H(由Sigma-Aldrich供应)的缩聚得到,以及“对照”凝胶化的水性聚合物组合物G0,其由相同的间苯二酚R但与甲醛F(来自Acros Organics,37%纯)而不是六亚甲基四胺的缩聚得到。
用于这三种组合物G1、G2和G0的配比详述于下表1中,其中:
-R/H:间苯二酚/六亚甲基四胺的摩尔比,
-R/W:间苯二酚/水的重量比,以及
-%H:六亚甲基四胺在各个凝胶化的组合物G1和G2中的重量分数。
表1:
G1 G2 G0
间苯二酚R 175.21g 175.21g 175.21g
六亚甲基四胺H 74.36g 74.36g -
甲醛F - - 258.30g
蒸馏水 350.42g 292.02g 311.20g
R/H 3 3 -
R/W 0.5 0.6 0.4
%H 12.39 13.73 -
凝胶化的组合物G1、G2和G0的制备以及由凝胶化的组合物G1、G2和G0得到的经热解的组合物C1、C2和C0的制备。
在第一步骤期间,首先用磁力搅拌将间苯二酚溶解于一半蒸馏水中。同时,使用浸没在40℃至80℃的油浴中的反应器将用于组合物G1和G2的六亚甲基四胺溶解于剩余的一半水中。在为了制备G1和G2的六亚甲基四胺完全溶解之后,添加水/间苯二酚混合物直到获得均相溶液(为了制备组合物G0,使用甲醛F替代六亚甲基四胺H)。
在第二步骤期间,将该缩聚物溶液倒入由覆盖有的钢制成的厚度为2mm的模具中,然后在90℃下进行凝胶化24小时。由此形成的有机凝胶随后在85℃和85%湿度下干燥6小时。随后通过在800℃于氮气下热解而以单块多孔碳的形式获得分别由G1、G2和G0得到的基于碳的组合物C1、C2和C0。将获得的平坦单块加工至0.7mm的设定厚度然后进行表征。
在第三任选的步骤期间,使用用硫酸(18M H2SO4)的处理将由此获得的多孔碳C1活化,如上述文献EP-B1-2 455 356中所述。
各个经热解的组合物C1、C2和C0的表征:
通过进行这些第一和第二缩聚以及凝胶化、干燥和热解步骤制备的各个组合物C1、C2和C0通过由单块的重量/体积比测量各个多孔碳C1、C2和C0的密度来表征。示于下表2中的结果是在来自Micromeritics的ASAP 2020设备上在77K下通过氮吸附测压法获得的,即,由此测量的分别为总比表面积、微孔比表面积和介孔比表面积的值以及分别为总孔体积和微孔孔体积的值。
表2:
由基于以相对高的重量分数(在这些实施例中,为10%至14%)的六亚甲基四胺的凝胶G1和G2得到的根据本发明的多孔碳C1和C2因此表现出高的比表面积(大约600m2.g-1),以及相比于由甲醛得到的“对照”碳C0表征的孔体积而言低的孔体积(小于0.40cm3.g-1)(C0的孔体积为C1和C2孔体积的超过三倍)。
此外,与碳C0的比表面积和孔体积的微孔分数(分别为小于60%和小于20%)相比,本发明的这两种碳C1和C2中的微孔对于比表面积(微孔分数大于80%,对于优选的碳C1甚至为90%)和孔体积(微孔分数大于50%,对于该碳C1甚至大于70%)二者的贡献均非常高。
应当指出,碳C0表现出比碳C1和C2的比表面积更高的比表面积,但高得多的孔体积,这意味着填充该碳C0的电解质量大于本发明的碳C1和C2。
用多孔碳C1和C2进行电化学测试:
电极E1和E2分别由多孔碳C1和C2制备。为此,根据代表本申请人公司的文献FR-A1-2 985 598的实施例1中描述的方法,将粘合剂、导电填料、多种添加剂和各个多孔碳与水混合。将所获得的制剂在金属集电体上涂覆然后交联。电极E1和E2的电容通过使用下列设备和测试电化学地测量。
被隔离件隔离的两个相同的电极被串联地安装在超级电容器测量单元中,该超级电容器测量单元包含水性电解质(第一系列测试中为1M H2SO4,第二系列测试中为5MLiNO3)且通过三电极界面由Bio-Logic VMP3恒电位仪/恒电流仪控制。第一碳电极对应于工作电极,第二构成对电极,所用的参比电极为甘汞参比电极。
电极的电容通过使系统以对于工作电极(正电极)为0.125A/g的恒定电流I进行充电/放电循环测量。由于电势随着输送的电荷线性地改变,各个超级电容器电极的电容在充电和在放电中从斜率p减小(C=I/p)。由此对各个电极E1和E2测量的平均比电容可见于:
-表3中,表3给出在基于1M H2SO4的电解质中对于超级电容器的这些电极性能,以及
-表4中,在上述第三步骤期间碳C1的活化后处理之前和之后,对于包含基于5MLiNO3的电解质的超级电容器的电极的性能。
表3
表4
这些表3和表4示出了本发明的多孔碳C1和C2赋予将其合并入具有酸性或碱性水性电解质的超级电容器的电极的提高的电化学性能,优选对这些根据本发明的多孔碳进行酸浸渍后处理,这使得能够进一步提高这些合并有所述多孔碳的电极的性能。

Claims (15)

1.一种能够通过干燥然后热解形成单块多孔碳的凝胶化的水性聚合物组合物,所述组合物包含多羟基苯R和六亚甲基四胺H在水性溶剂W中的缩聚反应的产物,所述六亚甲基四胺H按照H/(R+H+W)重量分数用于所述反应,其特征在于所述H/(R+H+W)重量分数为包括端点的7%至15%。
2.根据权利要求1所述的凝胶化的组合物,其特征在于对于所述反应,所述H/(R+H+W)重量分数为包括端点的10%至14%。
3.根据权利要求1或2所述的凝胶化的组合物,其特征在于所述多羟基苯R和所述六亚甲基四胺H按照包括端点的2至4的R/H摩尔比用于所述反应。
4.根据前述权利要求中任一项所述的凝胶化的组合物,其特征在于所述多羟基苯R和所述水性溶剂W按照包括端点的0.07至1的R/W重量比用于所述反应。
5.根据前述权利要求中任一项所述的凝胶化的组合物,其特征在于所述组合物不含任何两亲聚合物和/或不含任何疏水化合物。
6.根据前述权利要求中任一项所述的凝胶化的组合物,其特征在于所述水性溶剂W为水,以及特征在于甲醛不用于所述反应。
7.一种经热解的基于碳的组合物,所述经热解的基于碳的组合物通过使根据前述权利要求中任一项所述的凝胶化的组合物干燥然后热解获得并且形成比表面积大于550m2/g且孔体积小于0.50cm3/g的单块多孔碳,其特征在于所述孔体积的大于50%的体积分数为孔直径小于2nm的微孔,以及特征在于所述比表面积的等于或大于80%,并优选等于或大于90%,甚至95%的表面分数为孔直径也小于2nm的微孔,所述孔体积和所述比表面积通过氮吸附测压法在77K下测量。
8.根据权利要求7所述的经热解的组合物,其特征在于所述比表面积等于或大于580m2/g,以及特征在于所述孔体积小于或等于0.40cm3/g。
9.根据权利要求7或8所述的经热解的组合物,其特征在于所述孔体积的大于55%的体积分数为微孔,所述多孔碳优选地呈现0.15cm3/g至0.25cm3/g的微孔体积。
10.根据权利要求9所述的经热解的组合物,其特征在于所述孔体积的等于或大于70%的体积分数为微孔。
11.一种可用于装备超级电容器电池的多孔碳电极,其特征在于所述电极包含根据权利要求7至10中任一项所述的经热解的组合物作为活性材料。
12.一种用于制备根据权利要求1至6中任一项所述的凝胶化的组合物的方法,其特征在于所述方法包括:
a)多羟基苯R和六亚甲基四胺H在水性溶剂W例如水中的缩聚反应,优选不使用甲醛,以获得水性介质中的缩聚物,然后
b)通过加热所述缩聚物而进行凝胶化,以获得所述凝胶化的组合物。
13.根据权利要求12所述的用于制备凝胶化的组合物的方法,其特征在于步骤a)包括:
a1)所述多羟基苯R在所述水性溶剂W的第一部分中的溶解,以获得第一水性溶液,
a2)通过在所述水性溶剂的第二部分中加热所述六亚甲基四胺H而进行溶解,以获得第二水性溶液,以及
a3)使所述第一水性溶液接触所述第二水性溶液,直到获得包含所述缩聚物的第三均相水性溶液。
14.一种用于制备根据权利要求7至10中任一项所述的经热解的基于碳的组合物的方法,其特征在于所述方法包括:
a)多羟基苯R和六亚甲基四胺H在水性溶剂W例如水中的缩聚反应,优选不使用醛类前驱体,以获得水性介质中的缩聚物,
b)通过加热所述缩聚物而进行凝胶化,以获得所述凝胶化的组合物,
c)所述凝胶化的组合物的干燥,然后
d)在c)中获得的凝胶化的且干燥的组合物的热解,以获得所述多孔碳。
15.根据权利要求14所述的用于制备经热解的基于碳的组合物的方法,其特征在于所述方法在步骤d)之后还包括所述多孔碳的活化的步骤e),所述多孔碳的活化包括利用含硫强酸浸渍所述多孔碳,优选利用以pH小于1的溶液形式提供且选自硫酸、发烟硫酸、氯磺酸和氟磺酸的酸。
CN201580030757.8A 2014-06-11 2015-06-10 凝胶化水性聚合物组合物,由其制备的超级电容器电极用经热解碳基组合物,及其制备方法 Expired - Fee Related CN106573777B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1455293 2014-06-11
FR1455293A FR3022248B1 (fr) 2014-06-11 2014-06-11 Composition polymerique aqueuse gelifiee, composition carbonee pyrolysee qui en est issue pour electrode de supercondensateur et leurs procedes de preparation.
PCT/IB2015/054372 WO2015189776A1 (fr) 2014-06-11 2015-06-10 Composition polymerique aqueuse gelifiee, composition carbonee pyrolysee qui en est issue pour electrode de supercondensateur et leurs procedes de preparation

Publications (2)

Publication Number Publication Date
CN106573777A true CN106573777A (zh) 2017-04-19
CN106573777B CN106573777B (zh) 2019-10-18

Family

ID=51298845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580030757.8A Expired - Fee Related CN106573777B (zh) 2014-06-11 2015-06-10 凝胶化水性聚合物组合物,由其制备的超级电容器电极用经热解碳基组合物,及其制备方法

Country Status (9)

Country Link
US (1) US10629388B2 (zh)
EP (1) EP3154902B1 (zh)
JP (1) JP2017528531A (zh)
KR (1) KR20170035838A (zh)
CN (1) CN106573777B (zh)
CA (1) CA2951376A1 (zh)
FR (1) FR3022248B1 (zh)
PL (1) PL3154902T3 (zh)
WO (1) WO2015189776A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050208B1 (fr) 2016-04-18 2018-04-27 Hutchinson Carbone microporeux de densite elevee et son procede de preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449400A (zh) * 2013-08-02 2013-12-18 杭州师范大学 一种工业生产高堆积密度的有序介孔碳材料的方法
WO2014033124A1 (fr) * 2012-08-28 2014-03-06 Universite De Lorraine Monolithes poreux cellulaires a base de tannins condenses
WO2014060904A1 (fr) * 2012-10-17 2014-04-24 Hutchinson Composition pour gel organique et son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032267B1 (zh) * 1968-12-28 1975-10-18
JP5167644B2 (ja) * 2007-01-30 2013-03-21 住友化学株式会社 活性炭
JP2011032117A (ja) * 2009-07-31 2011-02-17 Sony Corp 多孔質炭素の製造方法及び電子デバイスの製造方法
US8999202B2 (en) * 2010-06-09 2015-04-07 Georgia-Pacific Chemicals Llc Methods for producing precursor solutions and sol-gels for nano-engineered carbon materials and nano-engineered carbon materials created therefrom
JP5952507B2 (ja) * 2012-11-29 2016-07-13 ジョージア − パシフィック ケミカルズ エルエルシー 懸濁または乳化重合を用いたゲル形態のポリマー粒子の作製方法およびエアロゲルの作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033124A1 (fr) * 2012-08-28 2014-03-06 Universite De Lorraine Monolithes poreux cellulaires a base de tannins condenses
WO2014060904A1 (fr) * 2012-10-17 2014-04-24 Hutchinson Composition pour gel organique et son pyrolysat, son procede de preparation, electrode constituee du pyrolysat et supercondensateur l'incorporant.
CN103449400A (zh) * 2013-08-02 2013-12-18 杭州师范大学 一种工业生产高堆积密度的有序介孔碳材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAN LIU ET AL.: ""One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinoland hexamine"", 《CARBON》 *
DAN LIU ET AL.: ""Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine"", 《CARBON》 *

Also Published As

Publication number Publication date
EP3154902B1 (fr) 2018-05-16
FR3022248A1 (fr) 2015-12-18
EP3154902A1 (fr) 2017-04-19
PL3154902T3 (pl) 2018-08-31
FR3022248B1 (fr) 2018-02-16
CA2951376A1 (fr) 2015-12-17
US20170197839A1 (en) 2017-07-13
CN106573777B (zh) 2019-10-18
KR20170035838A (ko) 2017-03-31
WO2015189776A1 (fr) 2015-12-17
US10629388B2 (en) 2020-04-21
JP2017528531A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
Geng et al. Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries
Miao et al. Boron “gluing” nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity
Zhang et al. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors
Yang et al. Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes
Xu et al. Porous nitrogen‐doped carbon nanotubes derived from tubular polypyrrole for energy‐storage applications
Yang et al. Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes
Lee et al. Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor
Wang et al. Preparation and performances of carbon aerogel microspheres for the application of supercapacitor
Dubal et al. Functionalization of polypyrrole nanopipes with redox‐active polyoxometalates for high energy density supercapacitors
Gao et al. Extraordinarily high-rate capability of polyaniline nanorod arrays on graphene nanomesh
Wang et al. Nanoporous carbon synthesised with coal tar pitch and its capacitive performance
Jo et al. 3 D Network‐Structured Crumpled Graphene/Carbon Nanotube/Polyaniline Composites for Supercapacitors
Zhu et al. Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor
Li et al. Mesoporous carbons templated by PEO‐PCL block copolymers as electrode materials for supercapacitors
Coromina et al. Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes
US20190382614A1 (en) Composition for an organic gel and the pyrolysate thereof, production method thereof, electrode formed by the pyrolysate and supercapacitor containing same
Balach et al. Facile preparation of hierarchical porous carbons with tailored pore size obtained using a cationic polyelectrolyte as a soft template
US20170029574A1 (en) Gelled, crosslinked and non-dried aqueous polymeric composition, aerogel and porous carbon for supercapacitor electrode and processes for preparing same
Catarineu et al. High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes
Yang et al. Design of organic supercapacitors with high performances using pore size controlled active materials
CN109071747A (zh) 高密度微孔碳及其制备方法
Ren et al. Hierarchical mesoporous carbon materials: preparation by direct tri-constituent co-assembly and the electrochemical performance
CN109643611B (zh) 用于电化学电池的电极的添加剂材料、双层电容器和这种电极的制造方法
CN106573777A (zh) 凝胶化水性聚合物组合物,由其制备的超级电容器电极用经热解碳基组合物,及其制备方法
Holla et al. Effect of different electrolytes on the supercapacitor behavior of single and multilayered electrode materials based on multiwalled carbon nanotube/polyaniline composite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191018

Termination date: 20200610