CN106569249A - Spaceborne Si-APD detector reverse bias voltage automatic regulation method - Google Patents

Spaceborne Si-APD detector reverse bias voltage automatic regulation method Download PDF

Info

Publication number
CN106569249A
CN106569249A CN201610899891.8A CN201610899891A CN106569249A CN 106569249 A CN106569249 A CN 106569249A CN 201610899891 A CN201610899891 A CN 201610899891A CN 106569249 A CN106569249 A CN 106569249A
Authority
CN
China
Prior art keywords
si
detector
reverse bias
apd
digital potentiometer
Prior art date
Application number
CN201610899891.8A
Other languages
Chinese (zh)
Other versions
CN106569249B (en
Inventor
倪建军
董龙
龚志鹏
王建宇
荣鹏
于双江
李强
张磊
苏浩航
程甘霖
尹帅
黄竞
闫静纯
富帅
顾晨跃
郭宇琨
王鑫
周滕
Original Assignee
北京空间机电研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京空间机电研究所 filed Critical 北京空间机电研究所
Priority to CN201610899891.8A priority Critical patent/CN106569249B/en
Priority claimed from CN201610899891.8A external-priority patent/CN106569249B/en
Publication of CN106569249A publication Critical patent/CN106569249A/en
Application granted granted Critical
Publication of CN106569249B publication Critical patent/CN106569249B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/248Silicon photomultipliers [SiPM], e.g. an avalanche photodiode [APD] array on a common Si substrate

Abstract

The invention discloses a spaceborne Si-APD detector reverse bias voltage automatic regulation device and method. The device comprises an FPGA, a temperature sensor, a digital potentiometer, a high voltage power supply module and multiple Si-APD detector modules including S1, S2......and Sn. All the Si-APD detector modules are completely identical in composition, and each Si-APD detector module is composed of a slide rheostat Radj, a resistor R1, a resistor R2, a capacitor C1 and a Si-APD (silicon avalanche diode) detector. The bias voltage range of each Si-APD detector is measured and determined in the experiment environment before normal working, and a fitting curve that the reverse bias voltage changes along with temperature is solved. The voltage sharing coefficient of the slide rheostat and the feedback value of changing along with temperature of the digital potentiometer are calculated according to the fitting curve. The problems caused by different bias voltage requirements caused by technology, manufacturing and other factors of the same type detector can be solved so that lightweighting and miniaturization of the spaceborne Si-APD detector reverse bias voltage automatic regulation device can be realized.

Description

一种星载si -APD探测器反向偏压自动调节方法 A satellite-si -APD method for adjusting a reverse bias voltage detector

技术领域 FIELD

[0001] 本发明涉及X射线脉冲星单粒子探测技术领域,特别涉及一种星载Si-APD探测器反向偏压自动调节装置及方法,应用于空间X射线脉冲星单粒子探测器反向偏压的调节。 [0001] The present invention relates to X-ray pulsar single particle detection technology field, particularly to a spaceborne Si-APD detector apparatus and method for automatically reverse bias adjustment, applied to a single X-ray pulsar space particle detectors reverse adjusting bias.

背景技术 Background technique

[0002] 在深空探测领域,中子星发出的X射线作为一个稳定的基准,可以作为导航参考。 [0002] In the field of deep space probe, X-rays neutron emitted as a stable reference, it can be used as a navigation reference. 由于到达近地轨道后的光谱能量只有单光子量级,针对X射线单粒子的捕获有多种方法,如正比计数器、电子倍增CCD (EMCCD)、半导体探测器等。 Since the spectral energy reaching the Earth orbit the order of only a single photon, a variety of methods for capturing X-ray single particle, such as proportional counters, electron multiplying CCD (EMCCD), and other semiconductor detector.

[0003] 硅雪崩二极管(Si-APD)探测器的工作电压是其能否正常工作的关键。 [0003] Silicon Avalanche Diodes (Si-APD) detector operating voltage is the key to its ability to work properly. 电压过大时,si -Aro内部热噪声引起的雪崩会致使si-Aro连续不断输出脉冲,即进入暗计数状态,光子输出淹没在这些脉冲中;电压较小时,Si-APD雪崩增益不足或无法发生雪崩效应,使得单光子输出淹没在底噪声中,无法探测。 When the voltage is too large, si -Aro avalanche noise due to internal heat will cause the si-Aro continuous output pulses, i.e. into the dark count state, a photon pulses are submerged in the output; the voltage is small, Si-APD avalanche gain insufficient or not avalanche effect occurs, so that the output single-photon submerged in the noise floor, can not be detected. Si-APD外加偏置电压工作可调范围根据Si-Aro掺杂层厚度不同而不同,通常为100V量级。 Si-APD bias voltage is applied to the working range is adjustable according to the thickness of the layer doped Si-Aro varies, typically on the order of 100V. 根据实验室真空环境测试结果反映,同批次Si-Aro临界雪崩反向偏置电压均有不同,甚至差别较大,但偏置电压随温度呈线性变化。 The vacuum test results reflect the laboratory environment, the same batch of Si-Aro critical avalanche reverse bias voltage are different, or even vary greatly, but the bias voltage changes linearly with temperature. 另外,根据si-Aro探测器探测需求,其临界雪崩反向偏置电压为一个范围值。 Further, according to the needs of si-Aro detector detects that a reverse bias voltage to the avalanche critical range of a value. 最后,si-Aro探测器在轨工作时受太阳辐射会产生温度变化,且在轨工作与地面试验时存在温度差异,这就需要对si-Aro探测器反向偏置电压进行实时调节。 Finally, si-Aro detector when in orbit by solar radiation will produce a temperature change, and there is a temperature difference with the ground when in orbit test, the reverse bias voltage which requires real-time adjustment of the si-Aro detector.

[0004] 由于Si-APD探测器由于其自身的优点,适合于X射线单光子的探测,但Si-Aro的临界雪崩电压控制,特别是采用多个Si-APD以及所选探测器偏压较高时,常规方法将会使整个电路的体积、功耗等变大。 [0004] Since the Si-APD detector due to its own advantages, adapted to detect X-rays in a single photon, but the Si-Aro avalanche threshold voltage control, especially with the selected plurality of Si-APD detector bias and more It is high, a conventional method will make the entire circuit size, power consumption becomes large.

发明内容 SUMMARY

[0005] 本发明的目的是:克服现有技术的不足,提供一种星载Si-APD探测器反向偏压自动调节装置及方法,解决同类型探测器由于工艺、制造等因素带来的不同偏压需求所带来的问题,从而实现星载Si-Aro探测器反向偏压自动调节装置的轻量化与小型化。 [0005] The object of the present invention are: to overcome the deficiencies of the prior art, there is provided a spaceborne Si-APD detector apparatus and method for automatically reverse bias adjustment, the same type of detector solution due to process, manufacturing and other factors caused by problems caused by the different bias needs to achieve spaceborne Si-Aro weight detectors automatically adjust a reverse bias voltage and the size of the apparatus.

[0006] 本发明的上述目的可通过以下方案实现:一种星载Si-Aro探测器反向偏压自动调节装置,包括:FPGA、温度传感器、数字电位计、高压电源模块以及S1、S2……、Sn等多个Si-APD 探测器模块。 [0006] The object of the present invention can be achieved by the following scheme: A satellite-Si-Aro automatically adjusting the reverse bias voltage detector means, comprising: the FPGA, a temperature sensor, a digital potentiometer, and a high voltage power supply module S1, S2 ... ..., Sn and other Si-APD detector module. 每个Si-APD 探测器模块构成均完全一样,均由滑动变阻器R响、电阻R1、电阻R2、电容Cl、Si-APD (娃雪崩二极管)探测器组成; Each Si-APD detector modules are exactly the same, by the ring sliding rheostat R, resistor R1, a resistor R2, a capacitor Cl, Si-APD (avalanche photodiode Wa) detector composition;

[0007] 所述温度传感器U2用于感知星载Si-APD探测器反向偏压自动调节装置所处环境温度,并感知结果输出至FPGA; FPGA与数字电位计U3相连,FPGA将获得的温度值换算成数字电位计U3所需配置码,通过发送所述配置码实时更改数字电位计U3输出电压的变化;高压电源模块U4与数字电位计U3相连,伴随数字电位计U3输出电压的变化,高压电源模块U4高压输出也实时发生变化;高压电源模块U4与滑动变阻器R adj的1脚相连,滑动变阻器Radj的2 脚用于手动调节且与电阻R1的一端相连,滑动变阻器R响的3脚接地,提前获得滑动变阻器Radj的分压系数,即滑动脚2所在的位置,进而实现对高压模块输出高压的分压,其中R23表示滑动变阻器Radj的脚2与脚3之间的电阻值;S1、S2……、Sn等多个Si-APD探测器模块构成一样。 [0007] The temperature sensor for sensing the spaceborne U2 Si-APD detectors reverse bias means which automatically adjust the temperature, and outputs the result to perceptual FPGA; FPGA and connected to the digital potentiometer U3, FPGA temperature obtained value into the digital potentiometer U3 desired configuration code, changes the number of changes in the potentiometer output voltage U3 in real time by transmitting the configuration code; high voltage power supply module is connected to the digital potentiometer U3 and U4, U3 digital potentiometer with a change of the output voltage, high voltage output of high voltage power supply module U4 also vary in real time; U4 is connected to the high voltage power supply module ADJ rheostat R 1 foot, 2 feet Radj rheostat for manual adjustment and is connected to one end of the resistor R1, the slide rheostat R 3 feet ring ground, obtained in advance rheostat Radj division factor, i.e., the position where the slide pin 2, thus achieving the high voltage divided output voltage module, wherein R23 represents the resistance value between 3 feet 2 Radj rheostat foot; Sl , S2 ......, Sn and other Si-APD as the detector modules. 其中探测器模块中电阻R1与电容C1构成RC无源低通滤波,滤除所供高压的噪声,电阻R1的另外一端与电阻R2的一端及用于高压电源滤波的电容C1的一端相连;电容C1的另一端接地,电阻R2的另一端与Si-AH)探测器的输出端即光电流输出端I QUt相连,Si-AH)探测器另一侧接地。 Wherein the detector modules resistor R1 and capacitor C1 form a noise of a high pressure, the passive resistance of the RC low-pass filter R1, filtered off and the other end for one end connected to one end of the resistor R2 and the capacitor C1 for filtering high voltage power supply; capacitor C1 is the other end, the output end of the other end of the resistor R2 and the Si-AH), i.e., the detector photocurrent output terminal connected to I QUt, Si-AH) the other side of the ground probe.

[0008] 所述高压电源模块U4的高压输出与低压输入即数字电位计U3的输出电压为固定比例40:1的关系,输入低压最高为+5V。 High voltage output and the low voltage input [0008] The high voltage power supply module, i.e. U4 U3 digital potentiometer output voltage is a fixed ratio 40: 1 relationship, the maximum low pressure input is + 5V.

[0009] 所述探测器模块中的电容C1、滑动变阻器R响、电阻R1、电阻R2均为耐500V高压器件。 [0009] The capacitor C1 in the detector module, the slide ring rheostat R, a resistor R1, a resistor R2 are both 500V high voltage resistant device.

[0010] 所述滑动变阻器R响的最大阻值为2M欧姆,且功率大于0.05W。 [0010] The sliding resistance rheostat R of the maximum response 2M ohms, and power is greater than 0.05W.

[0011] 所述探测器模块中的电容C1为10nF~lOOOnF;为更好的实现滤波效果,C1可用多个不同容值的高耐压值电容并联替代。 [0011] The detector modules in the capacitor C1 is 10nF ~ lOOOnF; to achieve better filtering effect, the value of the high voltage capacitor in parallel with the capacitance value of a plurality of different available alternatives C1.

[0012] 所述探测器模块中的电阻R1为1M欧姆,电阻R2为100M欧姆。 [0012] The detector module is 1M ohm resistor R1, resistor R2 of 100M ohms.

[0013] 所述数字电位计U3工作于分压模式,从而控制高压电源模块U4的低压输入的变化,且控制数字电位计U3分压滑动头的配置码与所控制的电压为线性变化关系。 [0013] The digital potentiometer U3 operates in dividing mode, thereby controlling the high voltage power supply module U4 changes the low voltage input, and controlling the partial pressure of the digital potentiometer U3 slider configuration code to the voltage controlled linearly with.

[0014] -种星载Si-Aro探测器反向偏压自动调节方法,实现方法如下: [0014] - seed borne Si-Aro method for adjusting a reverse bias voltage detectors, implemented as follows:

[0015] (1)在真空实验室环境下,选用的同一型号Si-APD探测器反向偏置电压随温度变化关系进行测量确定,求出每个Si-APD探测器在临界雪崩状态时最大反向偏置电压及最小反向偏置电压随温度变化的拟合线性表达关系式; [0015] (1) under vacuum in a laboratory environment, the choice of the same type Si-APD detector with a reverse bias voltage is measured to determine the relationship between temperature, each determined maximum Si-APD detectors in the critical avalanche the minimum reverse bias voltage and the reverse bias voltage that varies with temperature-fit linear relationship expression;

[0016] (2)利用步骤⑴中确定的拟合线性表达关系,计算每个Si-APD探测器模块中Radj 的分压系数 [0016] (2) using a step-fit ​​linear relationship between the expression determined ⑴, Si-APD is calculated for each detector module, the division factor Radj

Figure CN106569249AD00051

并将滑动变阻器的2脚调节到对应位置,其中R23表示滑动变阻器R⑷的脚2与脚3之间的电阻值; 2 and slide rheostat to a corresponding position adjusting pin, wherein R23 represents the resistance value of the rheostat R⑷ between 3 feet 2 feet;

[0017] (3)确定数字电位计U3配置码与温度的关系式并预存于FPGA中; [0017] (3) determining the positional relationship between the digital potentiometer U3 Sigma temperature and stored in the FPGA;

[0018] (4)数字电位计U3接收FPGA配置码可输出0~5V的电压,之后输出给高压电源模块U4实现40倍升压,进而实现0~200V的电压输出; [0018] (4) receiving the digital potentiometer U3 FPGA configuration code may output a voltage of 0 ~ 5V, then the output to the high voltage power supply module 40 to achieve U4 times boosting, so as to realize an output voltage of 0 ~ 200V;

[0019] (5)高压电源模块U4输出电压供给S1、S2……、Sn等多个Si-Aro探测器模块; [0019] (5) high-voltage power supply output voltage U4 module S1, S2 ......, Sn and other Si-Aro detector module;

[0020] (6)最后,FPGA通过温度传感器U2实时感知工作环境温度,利用配置码与温度的关系,实时对数字电位计U3发送相应配置码,进而控制高压电源模块U4输出电压的变化,完成每一个Si-Aro探测器模块最优临界偏压的自动控制。 [0020] (6) Finally, FPGA temperature sensor U2 real-time sensing ambient temperature, using the relationship configuration code and the temperature, transmitted in real time corresponding configuration code to the digital potentiometer U3, further change of the control high voltage power supply module U4 output voltage, complete each detector module Si-Aro most critical bias automatic control.

[0021] 所述步骤(1)中的线性表达关系式为: [0021] The linear relationship between the expression step (1) is as follows:

Figure CN106569249AD00052

[0026] 为第i个探测器在临界雪崩区的最大临界反向偏压,为第i个探测器在临界雪崩区的最小临界反向偏压,Afax、Afu11、为拟合曲线系数,T为变化温度。 [0026] The i-th detectors reverse bias avalanche critical maximum critical area, the i-th detectors reverse bias, Afax, Afu11 critical minimum critical in the avalanche area, for the curve fitting coefficients, T variations of temperature.

[0027] 所述步骤⑴中数字电位计U3配置码D随温度变化的关系 [0027] The digital potentiometer ⑴ step U3 configuration code D with the change of temperature

Figure CN106569249AD00061

[0029] 其中,D为数字电位计U3的配置码,Τ为星载Si-APD探测器所处的环境温度,khv、b hv 为系数。 [0029] where, D is a digital potentiometer U3 configuration code, Τ spaceborne Si-APD is a detector in which the ambient temperature, khv, b hv coefficients.

[0030] 本发明与现有技术相比的优点在于: [0030] The advantages of the present invention compared to the prior art in that:

[0031] (1)本发明探测器模块中的电容C1及电阻R1构成低通滤波,滤除探测器偏压噪声, 有效改善探测器信噪比; [0031] (1) The detector module of the present invention, a capacitor C1 and a resistor R1 constitute a low pass filter, to filter out noise detector bias, effectively improving the signal to noise ratio detector;

[0032] (2)本发明通过根据探测器特性及工作需求,计算出探测器模块中的电阻R2的具体值,有效完成探测器(U5)从临界雪崩状态到淬灭状态的切换; [0032] (2) According to the present invention by the detector characteristics and operational requirements, the calculated value of the probe module in the resistor R2, the effective completion detector (U5) is switched from the critical quenching the avalanche state to state;

[0033] (3)本发明通过温度传感器U2感知探测系统所处环境温度,U1根据其温度值及预定拟合曲线计算当前温度下探测器反向偏置电压,从而向数字电位计U3发送相应指令改变数字电位计U3输出电压的变化,从而改变高压电源模块U4输出高压的变化; [0033] (3) detection system of the present invention, U2 sensing by a temperature sensor in the ambient temperature, calculating the offset voltage Ul reverse current detector temperature based on the temperature value and the predetermined fitting curve, to transmit to a corresponding digital potentiometer U3 change command to change the output voltage U3 digital potentiometer, thus changing the high voltage power supply module U4 changes the high voltage output;

[0034] (4)本发明通过滑动变阻器1?_改变高压电源模块U4加在每一个探测器模块上的偏压,克服同类型探测器由于工艺、制造等因素带来的不同偏压需求所带来的问题,从而实现探测器不同偏压的最优自动控制。 Since the same type of detector technology, manufacturing and other factors caused by different bias requirements [0034] (4) according to the present invention by a slide rheostat? _ Change the high voltage power supply module U4 is applied to the bias of each detector module, to overcome the problems caused, in order to achieve optimal automatic control of different bias detectors.

附图说明 BRIEF DESCRIPTION

[0035]图1为本发明的一种星载Si-Aro探测器反向偏压自动调节方法示意图, 图2所示为固定温度下Si-Aro探测器随反向偏压变化示意图, 图3为本发明数字电位计U3在分压状态下各端电压示意图。 [0035] FIG 1. A star of the present invention is contained Si-Aro probe method for adjusting a reverse bias is a schematic diagram, shown in FIG Si-Aro fixed temperature detector with a schematic view of a reverse bias voltage variation 2, 3 each end of the voltage dividing state in a schematic view of a digital potentiometer U3 of the present invention.

具体实施方式 Detailed ways

[0036]下面结合附图和具体实施例对本发明作进一步详细的描述。 [0036] Next, the accompanying drawings and specific embodiments of the present invention will be described in further detail.

[0037] 如图1所示,本发明提供的一种星载Si-APD探测器反向偏压自动调节装置,包括FPGA U1、温度传感器U2、数字电位计U3、高压电源模块U4、滑动变阻器Radj、电阻R1、电阻R2、 电容C1、S i -ATO探测器U5、光电流输出端I out; [0037] 1 A satellite carrier of the present invention provides a reverse bias Si-APD detectors automatic adjustment means comprises a FPGA U1, a temperature sensor U2, digital potentiometer U3, U4 high voltage power supply module, the slide rheostat Radj, resistor R1, resistor R2, a capacitor C1, S i -ATO detector U5, the light current output I out;

[0038] 包括FPGA U1、温度传感器U2、数字电位计U3、高压电源模块U4、滑动变阻器Radj、电阻R1、电阻R2、电容Cl、S i -AH)探测器U5、光电流输出端I out; [0038] including FPGA U1, a temperature sensor U2, digital potentiometer U3, high voltage power supply module U4, the slide rheostat Radj, resistor R1, a resistor R2, a capacitor Cl, S i -AH) detector U5, the light current output I out;

[0039] 其中:U1与温度传感器U2相连用于环境温度感知;U1与数字电位计U3相连,U1通过发送指令信息实时更改数字电位计U3输出电压的变化;高压电源模块U4与数字电位计U3相连,伴随数字电位计U3的输出电压的变化,高压电源模块U4输出高压也发生变化;高压电源模块U4与滑动变阻器R响的1脚相连,滑动变阻器R响的2脚用于手动调节滑片的位置并且与电阻R1的一端相连,滑动变阻器R adj的3脚接地;电阻R1的另外一端与电阻R2的一端及高压电源滤波电容C1的一端相连;电容C1的另一端接地,电阻R2的另一端与探测器U5的输出端艮P,U5光电流输出端I相连,探测器U5另一侧接地。 [0039] wherein: U1 and U2 is connected to a temperature sensor for sensing ambient temperature; Ul is connected to the digital potentiometer U3, U1 U3 changes to change the output voltage of the digital potentiometer by the transmission command information in real time; high voltage power supply module and the digital potentiometer U3 U4 connected digital potentiometer changes caused by output voltage U3, U4 high voltage output of high voltage power supply module also changes; U4 is connected to the high voltage power supply module rheostat R 1 foot ring, the ring sliding rheostat R 2 feet for manually adjusting the slide position and connected to one end of the resistor R1, 3 feet grounded rheostat R adj; and the other end connected to the resistor R1 and one end of the end of the resistor R2 and the high voltage power supply filter capacitor C1; the other terminal of the capacitor C1, the resistor R2 of the other One end of the detector output of the Gen U5 P, U5 output connected to the photocurrent I, the other side of the ground detector U5.

[0040] 在上述的一种星载Si-Aro探测器反向偏压自动调节方法中,Si-APD探测器模块中的电容C1、滑动变阻器Radj、电阻R1、电阻R2均为高耐压值器件。 [0040] Si-Aro probe contained a star above method for adjusting a reverse bias, the capacitance C1 Si-APD detector module, Radj slide rheostat, a resistor R1, a resistor R2 are both high withstand voltage devices.

[0041] 在上述的一种星载Si-APD探测器反向偏压自动调节方法中,滑动变阻器R响的最大阻值为2M欧姆,且功率大于0.05W。 [0041] In the automatic adjustment of a Si-APD detector spaceborne reverse bias method, the slide rheostat R of the maximum resistance is sound 2M ohms, and power is greater than 0.05W.

[0042] 在上述的一种星载Si-Aro探测器反向偏压自动调节方法中,Si-APD探测器模块中的电阻R1与电容C1构成RC无源低通滤波,滤除所供高压的噪声。 [0042] Si-Aro carrying a probe in the above method for adjusting a reverse bias satellite, the resistor R1 and capacitor C1 Si-APD detector module constitutes a passive RC low-pass filter, for filtering out the high-pressure noise. 其中,电阻R1为1M欧姆,电容C1为10nF~1000nF,为更好的实现滤波效果,这里的C1可用多个不同容值的高耐压值电容并联替代。 Wherein R1 is 1M ohm resistor, capacitor C1 is 10nF ~ 1000nF, to achieve better filtering effect, where C1 is available a plurality of different values ​​of capacitance value of the high voltage capacitor in parallel instead.

[0043] 在上述的一种星载Si-APD探测器反向偏压自动调节方法中,电阻R2跟所用Si-AH) 探测器的特性及工作方式有很大关系,其阻值不能太大也不能太小。 [0043] The Si-APD detector contained in the above-described reverse bias a star automatic adjustment method, with the characteristics of the resistor R2 and work Si-AH) using the detector has a lot, which is not too big resistance not too small. 太大,由于热噪声及探测器暗电流噪声等影响,将会使系统的信噪比显著降低。 It is too large, due to thermal noise and dark current noise detector, the system signal to noise ratio will be significantly reduced. 太小,探测器发生雪崩击穿时,不能有效淬灭,损害系统,不利于系统探测X射线单粒子。 Is too small, the detector avalanche breakdown occurs, can not effectively quenched damage to the system, an X-ray detection system is not conducive to a single particle. 综合所选探测器及探测所需,取电阻R2为100M欧姆。 Comprehensive selected detectors and detection required, 100M ohms for the resistor R2 taken.

[0044] 如图2所示,为固定温度下Si-APD探测器随反向偏压变化示意图,其中雪崩二极管模式与盖革模式的分界为探测器的反向击穿电压(图2中所示约为160V)。 [0044] As shown in FIG. 2, a schematic diagram of Si-APD bias voltage changes at a fixed temperature increasing reverse detector, and wherein a boundary mode avalanche diode in Geiger mode breakdown voltage as in (FIG. 2 reverse detector shown is approximately 160V). 为探测X脉冲星单粒子,探测器需工作于临界雪崩区,即尽可能获得大的增益,但又不允许进入盖革模式(增益无穷大)。 X pulsars to detect a single particle detector needs to work on critical avalanche zone, namely to obtain the largest possible gain, but not allowed in the Geiger mode (gain infinite). 探测器发生淬灭时,探测器要处于图中所示光电二极管模式(此时增益趋近于0) 〇 Quenching occurs when the probe, the probe is in the mode shown in FIG photodiode (in this case the gain tends to 0) 〇

[0045] 本发明的关键在于确定每个Si-APD探测器模块中的滑动变阻器Radj的分压系数 [0045] The crux of the invention is to determine the division factor of each Si-APD rheostat detector module of Radj

Figure CN106569249AD00071

1以及数字电位计U3配置码随温度的变化关系式。 1 and the digital potentiometer U3 configuration code change with temperature relationship.

[0046] 将滑动变阻器Radj的2脚调节到1的位置,此时分压系数为1。 [0046] The rheostat was adjusted to 2 feet Radj position 1 at this time is a division factor. 之后,根据实验所测记录表,求得探测器反向偏置电压随温度变化的拟合曲线: Thereafter, the recording sheet measured in accordance with the experiment, the reverse bias voltage obtained by the detector with temperature changes fitting curve:

[0047] =krKT + brK (2-1 ) [0047] = krKT + brK (2-1)

[0048] <mn 二#+ ( 2-2 ) [0048] <mn two # + (2-2)

[0049] 如图2所示,在Si-APD探测器临界雪崩区(此时增益很大)为第i个探测器在临界雪崩区的最大临界反向偏压,为第i个探测器在临界雪崩区的最小临界反向偏压, f \ f \ 6Γ、为拟合曲线系数,τ为变化温度; [0049] As shown, (a large gain at this time) of the i-th reverse detector Detector 2 Si-APD avalanche region critical maximum critical threshold bias avalanche zone, for the i-th detectors minimum critical critical reverse bias avalanche zone, f \ f \ 6Γ, for the fitting curve coefficient, τ is the change in temperature;

[0050] 根据公式(2-1)和公式(2-2)求得第i个探测器反向偏压的均值随温度变化的关系式: [0050] (2-1) and formula (2-2) obtained by the i-th detectors mean reverse bias versus temperature relationship according to the formula:

Figure CN106569249AD00072

[0053] 在上述的一种星载Si-APD探测器反向偏压自动调节方法中,根据公式(2-3)求得高压电源模块U4输出高压随温度的变化曲线: [0053] The Si-APD detector contained in the above-described reverse bias a star automatic adjustment method, (2-3) to obtain the output high voltage power supply module U4 high pressure-temperature curves according to the formula:

[0054] Vhv = khvT+bhv (2-4) [0054] Vhv = khvT + bhv (2-4)

[0055] 其中,Vhv为高压电源输出电压。 [0055] wherein, Vhv is a high voltage power supply output voltage.

[0056] khv=(^kfd)/N (:2-5) /-I [0056] khv = (^ kfd) / N (: 2-5) / -I

[0057] 其中,N为探测器个数。 [0057] where, N is the number of detectors.

[0058] i)h¥ = round[max(b.ma) +1] +1 (. 2-6 ) [0058] i) h ¥ = round [max (b.ma) +1] +1 (. 2-6)

[0059] 其中,round(*)为取整函数,取四舍五入后最近的整数值,例如/^=143.4,则bhv =145〇 [0059] wherein, round (*) as a function of rounding, rounding after taking the nearest integer value, e.g. /^=143.4, the bhv = 145〇

[0060] 在上述的一种星载Si-APD探测器反向偏压自动调节方法中,根据公式(2-3)和公式(2-4)结合滑动变阻器R响可求得每一个探测器模块中滑动变阻器R响的分压调节系数Ci: [0060] The Si-APD detector contained in the above-described reverse bias method for adjusting a star, the binding ring sliding rheostat R of each detector can be obtained according to the equation (2-3) and Formula (2-4) loud rheostat R module dividing multiplier Ci:

[0061] 严Vhv /d- ( 2-7) [0061] Yan Vhv / d- (2-7)

[0062] 根据公式(2-7)求得每个滑动变阻器上R23的电阻值,1^ = (^ · R_,进而调节每个滑动变阻器R响上2脚所在位置; [0062] (2-7) found by the resistor values ​​of R23 each slide rheostat, 1 ^ = (^ · R_, thereby regulating rheostat each R 2 ring position of pin;

[0063] 在上述的一种星载Si-Aro探测器反向偏压自动调节方法中,由于所选数字电位计U3为8bit控制,对应配置码跟输出电压的关系式为: [0063] In the Si-Aro A satellite-detector method for adjusting a reverse bias, since U3 is selected 8bit digital potentiometer control, the configuration code corresponding to the relationship with the output voltage is:

Figure CN106569249AD00081

(2-8 ) (2-8)

[0065] 其中,D为配置码值,W为数字电位计U3在分压模式下滑动输出端电压的大小,VA为数字电位计U3在分压模式下A端所加电压,VB为数字电位计U3在分压模式下B端所加电压, 如图3所示。 [0065] where, D is the configuration code value, W is a digital potentiometer U3 sliding magnitude of the output voltage of the voltage dividing mode, VA digital potentiometer U3 in dividing mode terminal A of the applied voltage, VB for the digital potentiometer in the partial pressure meter U3 mode terminal B of the applied voltage, as shown in FIG. 这里VA=5V,VB = 0V,所以,公式⑶可表示为: Where VA = 5V, VB = 0V, therefore, can be expressed as ⑶ formula:

Figure CN106569249AD00082

(2-9) (2-9)

[0067] 在上述的一种星载Si-Aro探测器反向偏压自动调节方法中,高压电源模块U4输出高压对应输入低压的关系为: [0067] Si-Aro detector contained in the above-described reverse bias method for adjusting a star, the high voltage output of high voltage power supply module U4 correspondence relationship between the input of the low-pressure:

[0068] Vhv = 40 · Vl (2-10) [0068] Vhv = 40 · Vl (2-10)

[0069] 其中VL为高压电源模块U4的低压输入,根据数字电位计U3跟高压电源模块U4的连接关系,有Vl = Vw,结合公式(2-4)、(2-9)、(2-10)最终确定数字电位计配置码D随温度变化的关系: [0069] wherein the high voltage power supply module is a low voltage VL input U4, according to the connection relationship with a digital potentiometer U3 U4 of the high voltage power supply module, there is Vl = Vw, binding equation (2-4), (2-9), (2- 10) the final digital potentiometer arranged to determine the relationship with the temperature change code D:

Figure CN106569249AD00083

(2-11) (2-11)

[0071] 在上述的一种星载Si-Aro探测器反向偏压自动调节方法中,FPGA通过温度传感器U2感知环境温度变化,结合公式(2-11)发送相应的配置码,最终使得各个探测器能够有效的工作于临界雪崩状态。 [0071] Si-Aro detector contained in the above-described reverse bias a star automatic adjustment method, FPGA U2 sensing changes in ambient temperature by the temperature sensor, in conjunction with equation (2-11) transmits a corresponding configuration code, such that each of the final detector can effectively operate in the avalanche critical state.

[0072]以上所述,仅为本发明一个具体实施方法,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 Change [0072] The above are only a particular embodiment of the method of the present invention, but the scope of the present invention is not limited thereto, any skilled in the art in the art within the scope of the invention disclosed can be easily thought of or alternatively, shall fall within the protection scope of the present invention.

[0073] 本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。 [0073] The content of the description of the present invention is not described in detail to those skilled in the case of known techniques.

Claims (11)

1. 一种星载Si-APD探测器反向偏压自动调节装置,其特征在于包含:FPGA、温度传感器U2、数字电位计U3、高压电源模块U4以及多个Si-AH)探测器模块,每个Si-APD探测器模块构成均完全一样,均由滑动变阻器R adj、电阻R1、电阻R2、电容C1、星载Si-APD (娃雪崩二极管) 探测器; 所述温度传感器U2用于感知星载Si-APD探测器所处的环境温度,并将感知结果输出至FPGA;FPGA与数字电位计U3相连,FPGA将获得的环境温度值换算成数字电位计U3所需配置码,通过发送所述配置码实时更改数字电位计U3输出电压的变化;高压电源模块U4与数字电位计U3相连,伴随数字电位计U3输出电压的变化,高压电源模块U4高压输出也实时发生变化;高压电源模块U4与滑动变阻器的1脚相连,滑动变阻器R响的2脚用于手动调节且与电阻R1的一端相连,滑动变阻器R响的3脚接地,提前获得滑动变阻器的分压 A Si-APD detector spaceborne reverse bias automatic adjustment device, characterized by comprising: FPGA, a temperature sensor U2, digital potentiometer U3, U4, and a plurality of high voltage power supply module Si-AH) detector module, each Si-APD detector modules are exactly the same, by sliding rheostat R adj, resistor R1, a resistor R2, a capacitor C1, a spaceborne Si-APD (avalanche photodiode Wa) detector; a temperature sensor for sensing U2 spaceborne Si-APD where the ambient temperature detector, and outputs the result to the sensing FPGA; FPGA and connected to the digital potentiometer U3, FPGA ambient temperature value obtained converted into a digital potentiometer U3 desired configuration code transmitted by the said configuration code changes in real time the number of changes U3 output voltage of the potentiometer; connected to high voltage power supply module U4 and the digital potentiometer U3, with a change in digital potentiometer U3 output voltage of the high voltage power supply module U4 high voltage output is the real-time changes; high voltage power supply module U4 and a foot connected to the slide rheostat, the slide rheostat R 2 feet ring for manually adjusting resistor R1 and connected to one end of rheostat R 3 feet grounded ring, obtained in advance of the slide rheostat partial pressure 数,即滑动脚2所在的位置,进而实现对高压电源模块U4输出高压的分压,其中R 23表示滑动变阻器的脚2与脚3之间的电阻值;其中电阻R1与电容C1构成RC无源低通滤波,滤除所供高压的噪声,电阻R1的另外一端与电阻R2的一端及用于高压电源滤波的电容C1的一端相连;电容C1的另一端接地,电阻R2的另一端与S i -APD探测器的输出端即光电流输出端I _相连, Si-AH)探测器另一侧接地。 Number, i.e., the position where the slide pin 2, thus achieving a partial pressure of the high-voltage output of high voltage power supply module U4, wherein R 23 represents a resistance value between the feet 3 rheostat foot 2; wherein the resistor R1 and capacitor C1 form no RC high voltage noise, low-pass filtering the source resistor R1, the other end for the filtered connected to one ends of the resistor R2 and the capacitor C1 for filtering high voltage power supply; the other end of the other terminal of the capacitor C1, resistor R2 and the S i -APD output of the light detector i.e. the current output terminal is connected to the I _, Si-AH) the other side of the ground probe.
2. 根据权利要求1所述的一种星载Si-APD探测器反向偏压自动调节装置,其特征在于: 所述高压电源模块的高压输出与低压输入即数字电位计的输出电压为固定比例40:1的关系,输入低压最高为+5V。 2. According to a star according to claim 1 contained Si-APD detector automatically adjusts the reverse bias means, wherein: said high voltage power supply module and the low voltage output that is input the output voltage of the digital potentiometer fixed ratio of 40: 1 relationship, the maximum low pressure input is + 5V.
3. 根据权利要求1所述的一种星载Si-APD探测器反向偏压自动调节装置,其特征在于: 所述电容C1、滑动变阻器Radj、电阻R1、电阻R2均为耐500V高压器件。 3. According to a star according to claim 1 contained Si-APD detector means automatically adjusts the reverse bias voltage, wherein: the capacitor C1, Radj slide rheostat, a resistor R1, a resistor R2 are both high-voltage resistant device 500V .
4. 根据权利要求1所述的一种星载Si-APD探测器反向偏压自动调节装置,其特征在于: 所述滑动变阻器R响的最大阻值为2M欧姆,且功率大于0.05W。 4. According to a star according to claim 1 contained Si-APD detector automatically adjusts the reverse bias means, wherein: said ring slide resistor R 2M is the maximum ohmic resistance, and power is greater than 0.05W.
5. 根据权利要求1所述的一种星载Si-APD探测器反向偏压自动调节装置,其特征在于: 所述电容C1为10nF~1000nF;为更好的实现滤波效果,C1可用多个不同容值的高耐压值电容并联替代。 5. A satellite-Si-APD detector according to claim 1, the reverse bias voltage automatic adjusting device, wherein: the capacitor C1 is 10nF ~ 1000nF; to achieve better filtering effect, the available multi-C1 Alternatively the high voltage capacitor in parallel with different values ​​of capacitance values.
6. 根据权利要求1所述的一种星载Si-APD探测器反向偏压自动调节装置,其特征在于: 所述电阻R1为1M欧姆,电阻R2为100M欧姆。 6. According to a star according to claim 1 contained Si-APD detector means automatically adjusts the reverse bias voltage, wherein: the resistor R1 is a 1M ohms, 100M ohms for the resistor R2.
7. 根据权利要求1所述的一种星载Si-APD探测器反向偏压自动调节装置,其特征在于: 所述数字电位计U3工作于分压模式,从而控制高压电源模块U4的低压输入的变化,且控制数字电位计U3分压滑动头的配置码与所控制的电压为线性变化关系。 7. According to a star according to claim 1 contained Si-APD detector means automatically adjusts the reverse bias voltage, wherein: the digital potentiometer U3 operates in dividing mode, thereby controlling the high voltage power supply module U4 is a low pressure input changes, and controls the digital potentiometer slider U3 dividing the configuration code to the voltage controlled linearly with.
8. 根据权利要求1所述的一种星载Si-APD探测器反向偏压自动调节装置,其特征在于: FPGA将获得的环境温度值换算成数字电位计U3所需配置码中,配置码与温度关系式: 8. A member according to claim 1, wherein the carrier star Si-APD detectors automatic reverse bias adjustment device, characterized in that: an ambient temperature value obtained FPGA digital potentiometer U3 converted into the desired configuration code, the configuration code and temperature dependence:
Figure CN106569249AC00021
其中,D为数字电位计U3的配置码,T为星载Si-APD探测器所处的环境温度,khv、bhv为系数。 Wherein, D is the digital potentiometer U3 configuration code, T is the onboard Si-APD detector where the ambient temperature, khv, bhv coefficient.
9. 一种星载Si-AH)探测器反向偏压自动调节方法,其特征在于实现方法如下: (1)在真空实验室环境下,选用的同一型号Si-APD探测器反向偏置电压随温度变化关系进行测量确定,求出每个Si-AH)探测器在临界雪崩状态时最大反向偏置电压及最小反向偏置电压随温度变化的拟合线性表达关系式; ⑵确定经数字电位计U3分压输出的高压,即数字电位计U3的2脚对地的电压值Vhv; (3)利用步骤(1)中确定的拟合线性表达关系,计算每个星载Si-AH)探测器模块中滑动变阻器R响的分压系数G=|,i = l、2……、n,并将滑动变阻器Radj的2脚调节到对应位置,其中R23表示滑动变阻器R⑷的脚2与脚3之间的电阻值; ⑷确定数字电位计U3的配置码D与温度的关系式并预存于FPGA中; (5) 确定数字电位计U3配置码D随温度变化的关系,数字电位计U3接收FPGA配置码可输出0~5V的电压,之后经高压电 A spaceborne Si-AH) probe method for adjusting a reverse bias, characterized in that the method is as follows: (1) under vacuum in a laboratory environment, the choice of the same type Si-APD detectors reverse bias voltage changes with temperature were measured to determine the relationship, determined for each Si-AH) avalanche detectors in the critical maximum and the minimum reverse bias voltage is a reverse bias voltage that varies with temperature-fit linear relationship expression; ⑵ determining through digital potentiometer output voltage U3 at high pressure, i.e., the digital potentiometer U3 pin 2 of voltage Vhv ground; fit linear relationship between the expression (3) using the determination of step (1), is calculated for each onboard Si- AH) sliding rheostat R ring detector module division factor G = |, i = l, 2 ......, n, and slide rheostat Radj 2 feet adjusted to a corresponding position, wherein R23 represents a 2 foot rheostat R⑷ and the resistance value between 3 feet; ⑷ arranged to determine the relationship of temperature code D digital potentiometer U3 and stored in the FPGA; (5) determining the relationship between the digital potentiometer U3 D configuration code changes with temperature, a digital potentiometer U3 receives FPGA configuration code output voltage 0 ~ 5V, followed by the high voltage 模块U4实现0~200V的电压输出; (6) 最后,FPGA通过温度传感器U2实时感知工作环境温度,利用数字电位计U3的配置码D与温度关系式,实时对数字电位计U3发送相应配置码,进而控制高压电源模块U4输出电压的变化,完成每个星载Si-AH)探测器最优临界偏压的自动控制。 Module U4 of the 0 to the voltage output of 200V; (6) Finally, FPGA temperature sensor U2 real-time sensing ambient temperature, with the configuration code D vs. temperature digital potentiometer U3 real time send a corresponding configuration code to the digital potentiometer U3 , high voltage power supply module further change of the control output voltage U4 complete each spaceborne Si-AH) automatic optimal threshold detector bias.
10. 根据权利要求9所述的星载Si-APD探测器反向偏压自动调节方法,其特征在于:所述步骤⑴中的线性表达关系式为: 10. The satellite according to claim 9 contained Si-APD detector method for adjusting a reverse bias, wherein: said step ⑴ the linear relationship of the expression:
Figure CN106569249AC00031
<nax为第i个探测器在临界雪崩区的最大临界反向偏压,<_为第i个探测器在临界雪崩区的最小临界反向偏压,fx、Zfax、为拟合曲线系数,T为变化温度。 <NaX for the i-th maximum critical threshold detectors in reverse bias avalanche zone, <_ i-th detectors reverse bias, fx, Zfax critical minimum critical in the avalanche area, for the curve fitting coefficients, T is the temperature change.
11. 根据权利要求9所述的星载Si-APD探测器反向偏压自动调节方法,其特征在于:所述步骤⑴中数字电位计U3配置码D随温度变化的关系 11. The carrier of claim 9 star Si-APD detector method for adjusting a reverse bias, wherein: said step digital potentiometer U3 ⑴ configuration code D with the change of temperature
Figure CN106569249AC00032
(1-4) 其中,D为数字电位计U3的配置码,T为星载Si-APD探测器所处的环境温度,khv、bhv为系数。 (1-4) where, D is the digital potentiometer U3 configuration code, T is the onboard Si-APD detector where the ambient temperature, khv, bhv coefficient.
CN201610899891.8A 2016-10-14 A kind of spaceborne Si-APD detector reverse biased Automatic adjustment method CN106569249B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610899891.8A CN106569249B (en) 2016-10-14 A kind of spaceborne Si-APD detector reverse biased Automatic adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610899891.8A CN106569249B (en) 2016-10-14 A kind of spaceborne Si-APD detector reverse biased Automatic adjustment method

Publications (2)

Publication Number Publication Date
CN106569249A true CN106569249A (en) 2017-04-19
CN106569249B CN106569249B (en) 2019-04-30

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367222A (en) * 1993-06-01 1994-11-22 Cti Pet Systems, Inc. Remote gain control circuit for photomultiplier tubes
US20070158776A1 (en) * 2004-06-04 2007-07-12 Alexandre Julio PN-Junction Temperature Sensing Apparatus
US20090230285A1 (en) * 2008-01-18 2009-09-17 Anthony George Wright Drive and measurement circuit for a photomultiplier
US7828479B1 (en) * 2003-04-08 2010-11-09 National Semiconductor Corporation Three-terminal dual-diode system for fully differential remote temperature sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367222A (en) * 1993-06-01 1994-11-22 Cti Pet Systems, Inc. Remote gain control circuit for photomultiplier tubes
US7828479B1 (en) * 2003-04-08 2010-11-09 National Semiconductor Corporation Three-terminal dual-diode system for fully differential remote temperature sensors
US20070158776A1 (en) * 2004-06-04 2007-07-12 Alexandre Julio PN-Junction Temperature Sensing Apparatus
US20090230285A1 (en) * 2008-01-18 2009-09-17 Anthony George Wright Drive and measurement circuit for a photomultiplier
EP2081213B1 (en) * 2008-01-18 2012-11-28 ET Enterprises Limited Drive and measurement circuit for a photomultiplier

Similar Documents

Publication Publication Date Title
Rehak et al. Progress in semiconductor drift detectors
US20110180693A1 (en) Photodiode front end with improved power supply rejection ratio (psrr)
EP1170596A2 (en) Method and apparatus for measuring photoelectric conversion characteristics
US9121955B2 (en) Single photon counting detector system having improved counter architecture
CN103636006A (en) Three dimensional sensors, systems, and associated methods
US20130242283A1 (en) Personal ladar sensor
US8138463B2 (en) Photosensor and ambient light sensor with constant bias voltage
DE202004001246U1 (en) Solar radiation monitor for power installation planning and evaluation has solar cell sensor with self powered supply and radio data transmission
WO2010070487A3 (en) Temperature compensation circuit for silicon photomultipliers and other single photon counters
JP2004134748A (en) Measuring method and apparatus for photoelectric conversion device, and manufacturing method and apparatus for the photoelectric conversion device
CA2451642A1 (en) Wide dynamic range digital imaging system and method
CN103339744A (en) Full color single pixel including doublet or quadruplet si nanowires for image sensors
Ehsani et al. Design and performance analysis of an automated 10-channel solar radiometer instrument
EP0762145B1 (en) Gamma particle pulse processing system for CdTe radiation detector
CN102564598A (en) Method for calibrating and correcting temperature measurement of infrared probe as well as corresponding temperature measuring method
Arca et al. Interface trap states in organic photodiodes
Shaw et al. Deep UV photon-counting detectors and applications
WO2008141919A3 (en) Apparatus for the detection of light in a scanning microscope
Peric Active pixel sensors in high-voltage CMOS technologies for ATLAS
CN101464190A (en) Varifocal full-polarization spectrum imaging detection system
Lu et al. Flat panel imagers with pixel level amplifiers based on polycrystalline silicon thin-film transistor technology
CN101995233B (en) Angle measuring method for sun precision tracking and digital photoelectric angle sensor
Virtuani et al. Seasonal power fluctuations of amorphous silicon thin‐film solar modules: distinguishing between different contributions
US9210350B2 (en) Low power imaging system with single photon avalanche diode photon counters and ghost image reduction
Takeshita et al. High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor

Legal Events

Date Code Title Description
PB01
SE01