CN106565246B - 一种制备氮化铝/氮化钇复合粉末的方法 - Google Patents

一种制备氮化铝/氮化钇复合粉末的方法 Download PDF

Info

Publication number
CN106565246B
CN106565246B CN201610919256.1A CN201610919256A CN106565246B CN 106565246 B CN106565246 B CN 106565246B CN 201610919256 A CN201610919256 A CN 201610919256A CN 106565246 B CN106565246 B CN 106565246B
Authority
CN
China
Prior art keywords
yttrium
nitride
aluminium
composite powder
aluminium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610919256.1A
Other languages
English (en)
Other versions
CN106565246A (zh
Inventor
乔梁
付丽
诸葛凯
郑精武
应耀
车声雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610919256.1A priority Critical patent/CN106565246B/zh
Publication of CN106565246A publication Critical patent/CN106565246A/zh
Application granted granted Critical
Publication of CN106565246B publication Critical patent/CN106565246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0637Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with metals not specified in groups C01B21/0607 - C01B21/0635, other than aluminium, titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种制备氮化铝/氮化钇复合粉体的方法,属于陶瓷粉末制备领域。本发明采用铝源,碳源和添加剂氧化钇为原料。铝源和碳源按摩尔比例为Al:C=1:2.6~6混合,然后加入氧化钇混合均匀,添加剂和铝源摩尔比例为Y:Al=0.028~0.055:1。再经两步保温还原反应及脱碳处理获得氮化铝和氮化钇为主相的复合粉体。用这种复合粉体做原料制备出的氮化铝陶瓷,有望进一步降低成本,提高热导率。

Description

一种制备氮化铝/氮化钇复合粉末的方法
技术领域
本发明属于陶瓷粉末制备技术领域,具体涉及一种制备氮化铝/氮化钇复合粉末的方法。
背景技术
氮化铝陶瓷因具有高热导率、低介电常数、与硅相匹配的线膨胀系数、绝缘以及机械性能良好、成本低、无毒等优点,可用作大功率半导体器件的绝缘基片,大规模和超大规模集成电路的散热基片和封装基片,受到国内外科研工作者和生产厂家越来越广泛的重视。因此,氮化铝陶瓷已成为现代新材料领域的研究热点之一。
要制备性能优异的陶瓷材料,关键技术在于如何合成颗粒粒度小且分布均匀,低成本,烧结性能好的氮化铝粉体,同时严格控制粉体中的氧含量。常用的氮化铝陶瓷粉末制备方法主要有以下五种:
(1)碳热还原法:该法是采用超细氧化铝粉和高纯度碳黑作为起始原料,经过球磨混合,最后置于石墨坩埚中,在1400~1800℃的氮气气氛下合成。该法设备简单,合成粉体纯度较高,成型和烧结性能都比较好。但是合成温度较高,反应时间长,粉末粒度较大;
(2)金属直接氮化法:金属铝在高温下与氮直接反应,生成氮化铝。该法工艺简单,能在较低的温度下进行合成,适合工业上大批量生产的要求,但是铝粉转化率低,反应过程难控制,产物易结块,产品质量差;
(3)化学气相沉积法:化学气相沉积法是基于铝的挥发性化合物与氨的化学反应从气相中沉积氮化铝的方法。该法反应简单,可生成高纯氮化铝粉末。但是产率较低,不适合大规模工业化生产;
(4)溶胶凝胶法:以铝的有机盐为原料用溶胶凝胶法合成高纯氮化铝粉体。该法可连续生产,制备的粉末高纯度,但是原料成本较贵;
(5)自蔓延高温合成法:将铝粉在高压下被外界热源点燃后,铝和氮气之间反应所产生的高化学反应使反应自身维持下去,直到铝粉完全转化成为氮化铝。该方法制备过程与设备简单,可快速大量生产,成本低廉。但是存在自发反应难以控制等缺点。
目前的传统方法难以合成出来兼具高纯度,低成本,低氧含量,低铁含量,性能稳定的氮化铝粉末,限制了氮化铝的应用。
通常烧结氮化铝陶瓷时,纯的氮化铝陶瓷难以烧结致密,需要加入一定量的烧结助剂,这主要由氧化钇,氧化钙,二氧化硅等,它们直接影响到氮化铝中晶界第二相的种类、含量、和分布,而且对氮化铝的热导性能有显著的影响,其中研究得最多的、效果最好的是氧化钇。在烧结过程中,氧化钇可以与氮化铝中含有的氧发生反应生成钇铝氧化合物,随着钇铝比的提高,钇铝氧化合物会由YAG相到YAP相到YAM相转变,当在1850度以上高温且有足够碳蒸汽还原情况下,YAM相会转变为YN。研究表明,当氮化铝中产生YAM相或YN相时,具有更好的除氧功能,有利于氮化铝陶瓷获得更高的热导率。
考虑到目前碳热还原法制备氮化铝陶瓷过程中,由于除碳在含氧气氛中进行,再加上氮化铝粉在保存和使用过程中,不可避免会含有氧,因此,如果在氮化铝粉中含有氮化钇,则更有利于减少烧结过程中的氧含量,从而有利于获得高的热导率。基于以上思路,本发明提供了一种一次性合成氮化铝/氮化钇复合粉体的方法,既能降低氮化铝粉体的成本,更能有利于后期获得高热导率的氮化铝陶瓷。
发明内容
本发明目的在于提供一种制备微细氮化铝/氮化钇复合粉体的方法。本方法在传统的碳热还原法合成氮化铝粉体技术基础上,一次性合成氮化铝/氮化钇复合粉体,来降低氮化铝粉末原料成本和提高氮化铝陶瓷的热导率。
本发明是通过以下技术方案实现的:
一种制备氮化铝/氮化钇复合粉末的方法,所述方法如下:
将含铝化合物、含钇化合物和碳源混合均匀后,于含氮气氛下进行两步保温碳热还原反应,所得反应产物由于碳组分过量,在合成后需要进行脱碳处理,经脱碳处理后得到氮化铝/氮化钇复合粉末;所述含铝化合物、含钇化合物、碳源分别以铝、钇、碳物质的量计,投料比为1:0.028~0.055:2.6~6,当碳源的摩尔比低于3时,能生成氮化钇,但仍有少量Y2O3杂相存留,当碳的摩尔比高于6时,增加了制备的成本;所述碳源为碳单质或加热后可分解产生碳的化合物;所述脱碳处理过程为将反应产物放入含氧气氛中进行热处理。
本发明所述两步保温碳热还原反应中第一步保温过程温度在1450~1500℃之间,保温时间0.5~3h;所述两步保温碳热还原反应中第二步保温过程温度在1500~1550℃之间,保温时间1~6h。当第二步保温反应温度低于1500℃时,氮化钇粉体难以生成。两步保温碳热还原反应中气氛均为流通氮气。当第二步保温反应温度高于1550℃,反应成本增加较多,对设备要求提高。
进一步,本发明所述含铝化合物、含钇化合物、碳源分别以钇、铝、碳的物质的量计投料比为1:0.028~0.042:2.6~4。
通常,本发明中将含铝化合物、含钇化合物和碳源混合均匀步骤可采用球磨机混合均匀,所用介质为无水乙醇。
一般地,本发明所述含铝化合物中位径粒度在3μm以下。
进一步,本发明所述含铝化合物中位径粒度在3μm以下。
再进一步,本发明所述含铝化合物为中位径粒度3μm以下的氢氧化铝或粒度3μm以下的氧化铝。
更进一步,本发明所述含钇化合物为中位径粒度10μm以下的氧化钇。
本发明所述碳源推荐为活性炭黑或葡萄糖。
进一步,本发明所述的脱碳处理是在空气气氛中进行;所述脱碳处理过程的热处理温度为600~700℃,保温时间2~10小时。
与现有技术相比,本发明的有益效果是:本发明制备氮化铝/氮化钇复合粉体的方法,将含铝和含钇化合物同时与碳混合进行碳热还原反应,通过优化物料配比和工艺条件,尤其是采用独特的两步保温方法,可以一次性地合成出氮化铝/氮化钇复合粉体,该粉体颗粒细小均匀,同时具备了氮化铝陶瓷的主晶相和添加剂,有利于降低后期氮化铝陶瓷的制备成本和提高热导率。
附图说明
图1(a)、(b)、(c)分别为实施例1、实施例3和实施例1对比样产物的X射线衍射(XRD)图。
图2为实施例1产物的扫描电子显微镜(SEM)图
图3为实施例1对比样的SEM图。
图4为实施例3产物的SEM图。
图5为实施例4产物的XRD图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。此外应理解,在阅读了本发明讲授的内容之后本领域技术人员可以对本发明做各种改动或修改,这些等价同样落于本申请所附权利要求书所限定的范围。
实施例1
按铝源和碳源摩尔比例为1:2.6,称取球磨过后氢氧化铝486克(中位径粒度:2.42μm),活性碳黑194克。然后按钇、铝摩尔为0.028:1称取19.4克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1450℃保温3h,再升温至1500℃,保温3小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,在空气中600℃保温10小时,得到含氮化钇的氮化铝粉体。经XRD测定,产物组分为氮化铝、氮化钇,及微量的氧化钇,如图1(a)所示。SEM图如图2所示,观察显示氮化铝颗粒粒度在1μm左右,颗粒细小均匀。同时,将上述物料中的氧化钇去除并按上述步骤重新制备一份,作为对比样,反应产物经XRD分析,为单纯的氮化铝相,如图1(c)所示。对比样SEM结果如图3所示。
实施例2
按铝源和碳源摩尔比例为1:2.6,称取球磨过后氢氧化铝486克(中位径粒度:2.42μm),活性碳黑194克,按钇、铝摩尔为0.028:1称取19.4克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1500℃保温0.5h,并在此温度上继续保温1h,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,在空气中600℃保温10小时,得到粉体中为氮化铝、氮化钇,及微量的氧化钇。粉体颗粒粒度在1μm左右,颗粒细小均匀。
实施例3
按铝源和碳源摩尔比例为1:2.6,称取球磨过后氢氧化铝486克(中位径粒度:2.42μm),活性碳黑194克。然后按钇、铝摩尔为0.028:1称取19.4克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1500℃保温0.5h,再升温至1550℃,保温6小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,在空气中600℃保温10小时,得到含氮化钇的氮化铝粉体。经XRD分析测定,产物为氮化铝、氮化钇,氧化钇几乎不见,如图1(b)所示。SEM图如图4所示,观察显示氮化铝颗粒粒度在1μm左右,颗粒细小均匀。
实施例4
按铝源和碳源摩尔比例为1:2.6,称取球磨过后氢氧化铝486克(中位径粒度:2.42μm),活性碳黑194克。然后按钇、铝摩尔为0.028:1称取19.4克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1500℃保温3h,再升温至1550℃,保温3小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,在空气中600℃保温10小时,得到含氮化钇的氮化铝粉体,XRD分析结果如图5所示。产物粒度在1μm左右,颗粒细小均匀。
实施例5
按铝源和碳源摩尔比例为1:2.6,称取球磨过后氢氧化铝473克(中位径粒度:2.42μm),活性碳黑189克。然后按钇、铝摩尔为0.055:1称取37.8克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1500℃保温2h,再升温至1550℃,保温3小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,700℃保温2小时,得到含氮化钇的氮化铝粉体。产物粒度在1μm以下,颗粒细小均匀。
实施例6
按铝源和碳源摩尔比例为1:4,称取球磨过后氢氧化铝418克(中位径粒度:2.42μm),活性碳黑257克。然后按钇、铝摩尔比例为0.042:1,称取25.1克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1450℃保温2h,再升温至1550℃,保温3小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,700℃保温5小时,得到含氮化钇的氮化铝粉末。产物颗粒细小均匀。
实施例7
按铝源和碳源摩尔比例为1:5,称取球磨过后氢氧化铝383克(中位径粒度:2.42μm),活性碳黑294克。然后按钇、铝摩尔比例为0.042:1,称取23克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1450℃保温0.5h,再升温至1550℃,保温3小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,650℃保温5小时,得到含氮化钇和微量氧化钇的氮化铝粉末。产物颗粒细小均匀。
实施例8
按铝源和碳源摩尔比例为1:6,称取球磨过后氢氧化铝357克(中位径粒度:2.42μm),活性碳黑329克。然后按钇、铝摩尔比例为0.028:1,称取14.3克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1450℃保温2h,再升温至1550℃,保温1小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,700℃保温2小时,得到含氮化钇和微量氧化钇的氮化铝粉末。产物颗粒细小均匀。
实施例9
按铝源和碳源摩尔比例为1:6,称取氧化铝153克(中位径粒度:1.78μm),葡萄糖538克。然后按钇、铝摩尔比例为0.028:1,称取9.4克的氧化钇(中位径粒度:8.2μm)。将称取的原料放入球磨机中混合均匀,所用介质为无水乙醇。再装入石墨高温反应炉中,升温至1450℃保温2h,再升温至1550℃,保温3小时,气氛均为流通的氮气。将反应过后的产物放入箱式炉中,700℃保温2小时,得到含氮化钇及微量氧化钇的氮化铝粉末。产物颗粒细小均匀。

Claims (9)

1.一种制备氮化铝/氮化钇复合粉末的方法,其特征在于所述制备方法为:
将含铝化合物、含钇化合物和碳源混合均匀后,于含氮气氛下进行两步保温碳热还原反应,所得反应产物经脱碳处理后得到氮化铝/氮化钇复合粉末;所述含铝化合物、含钇化合物、碳源分别以铝、钇、碳物质的量计,投料比为1:0.028~0.055:2.6~6;所述碳源为碳单质或加热后可分解产生碳的化合物;所述脱碳处理过程为将反应产物放入含氧气氛中进行热处理,所述两步保温碳热还原反应中第一步保温过程温度在1450~1500℃之间,保温时间0.5~3h;所述两步保温碳热还原反应中第二步保温过程温度在1500~1550℃之间,保温时间1~6h。
2.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述含铝化合物、含钇化合物、碳源分别以钇、铝、碳的物质的量计投料比为1:0.028~0.042:2.6~4。
3.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述含铝化合物中位径粒度在3μm以下。
4.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述含钇化合物中位径粒度在3μm以下。
5.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述含铝化合物为中位径粒度3μm以下的氢氧化铝或中位径粒度3μm以下的氧化铝。
6.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述含钇化合物为中位径粒度10μm以下的氧化钇。
7.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述碳源为活性炭黑或葡萄糖。
8.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述的脱碳处理是在空气气氛中进行。
9.如权利要求1所述的一种制备氮化铝/氮化钇复合粉末的方法,其特征在于:所述脱碳处理过程的热处理温度为600~700℃,保温时间2~10小时。
CN201610919256.1A 2016-10-21 2016-10-21 一种制备氮化铝/氮化钇复合粉末的方法 Active CN106565246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610919256.1A CN106565246B (zh) 2016-10-21 2016-10-21 一种制备氮化铝/氮化钇复合粉末的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610919256.1A CN106565246B (zh) 2016-10-21 2016-10-21 一种制备氮化铝/氮化钇复合粉末的方法

Publications (2)

Publication Number Publication Date
CN106565246A CN106565246A (zh) 2017-04-19
CN106565246B true CN106565246B (zh) 2019-10-29

Family

ID=58534048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610919256.1A Active CN106565246B (zh) 2016-10-21 2016-10-21 一种制备氮化铝/氮化钇复合粉末的方法

Country Status (1)

Country Link
CN (1) CN106565246B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369191B (zh) * 2019-01-02 2021-08-03 山东博奥新材料技术有限公司 含钇的氮化硼-氮化铝复合粉体的制备方法
CN114455854B (zh) * 2022-03-01 2023-02-28 连云港晶大石英有限公司 一种表面具有耐腐蚀膜的石英玻璃管
CN114656804B (zh) * 2022-03-03 2022-12-09 江苏圣天新材料有限公司 一种覆铜板用软性复合硅微粉的制备方法
CN115403043B (zh) * 2022-08-19 2023-07-11 四川大学 一种稀土元素碳化物、氮化物或碳氮化物粉末的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435371A (zh) * 2003-03-12 2003-08-13 北京科技大学 一种制备氮化铝粉末的方法
CN102502539A (zh) * 2011-11-08 2012-06-20 中国计量学院 一种钇掺杂纳米氮化铝粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435371A (zh) * 2003-03-12 2003-08-13 北京科技大学 一种制备氮化铝粉末的方法
CN102502539A (zh) * 2011-11-08 2012-06-20 中国计量学院 一种钇掺杂纳米氮化铝粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carbothermal synthesis of spherical AlN granules: Effects of synthesis parameters and Y2O3 additive;Qi Wang et al.;《Ceramics International》;20150129;第41卷;第6716页左栏第5段,右栏第1段 *
烧结气氛对氮化铝陶瓷结构与性能的影响;孙悦等;《天津理工大学学报》;20101231;第26卷(第6期);摘要,第16页右栏第3段 *

Also Published As

Publication number Publication date
CN106565246A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106565246B (zh) 一种制备氮化铝/氮化钇复合粉末的方法
Lu et al. Growth of SiC nanorods at low temperature
Weimer et al. Rapid carbothermal reduction of boron oxide in a graphite transport reactor
CN102674357A (zh) 用于碳化硅单晶生长的高纯碳化硅原料的合成方法
CN103601498B (zh) 一种Ti3AlC2陶瓷粉料的制备方法
CN110156468A (zh) 一种ZrC-ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN109437203A (zh) 一种高纯一维SiC纳米材料的制备方法
CN101445223A (zh) 自蔓燃制备低氧含量高α-相氮化硅粉体的方法
CN104671245A (zh) 一种碳化铪纳米粉体的制备方法
CN101863663B (zh) 燃烧法制备亚微米级碳化钛多晶粉末
CN101428771A (zh) 一种微波碳热还原降温催化煅烧制备AlN粉末的方法
CN103387214A (zh) 一种高质量氮化铝粉末的微波制备方法
CN108529576A (zh) 氮化硅及其制备方法
CN102143912A (zh) 提纯单质硼的方法
US4346068A (en) Process for preparing high-purity α-type silicon nitride
CN107285288A (zh) 纳米氮化硅粉的制备方法
CN110240132A (zh) 一种基于熔盐法的氮化硅镁粉体及其制备方法
Liu et al. Fabrication of β-sialon powder from kaolin
CN105645422A (zh) 一种液相法制备球形超细硼化锆粉体的工艺
CN107698264A (zh) 一种改性高α相氮化硅粉体的制备方法
CN103359695A (zh) 一种高质量氮化铝粉末的微波快速合成方法
CN106187203B (zh) 一种基于碳化铝制备氮化铝粉体的方法及其产品
CN105314609A (zh) 一种ain纳米粉体材料的制备方法
CN102060544B (zh) 一种以硅粉作添加剂实现非晶氮化硅粉末的快速晶化方法
JPS6291409A (ja) 易焼結性窒化硼素粉末の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231123

Address after: No.2, Lingshi Road, Jinjiang Economic Development Zone (wuliyuan), Quanzhou City, Fujian Province, 362200

Patentee after: FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY Co.,Ltd.

Address before: 310014 No. 18 Chao Wang Road, Xiacheng District, Zhejiang, Hangzhou

Patentee before: JIANG University OF TECHNOLOGY