CN106554955B - Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof - Google Patents

Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof Download PDF

Info

Publication number
CN106554955B
CN106554955B CN201610932549.3A CN201610932549A CN106554955B CN 106554955 B CN106554955 B CN 106554955B CN 201610932549 A CN201610932549 A CN 201610932549A CN 106554955 B CN106554955 B CN 106554955B
Authority
CN
China
Prior art keywords
pkhd1
dna
artificial sequence
primer
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610932549.3A
Other languages
Chinese (zh)
Other versions
CN106554955A (en
Inventor
刘琦
赵金银
邢晓星
杨兰
许立志
于闯
李�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Gentalker Biotechnology Co ltd
Original Assignee
Dalian Gentalker Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Gentalker Biotechnology Co ltd filed Critical Dalian Gentalker Biotechnology Co ltd
Priority to CN201610932549.3A priority Critical patent/CN106554955B/en
Publication of CN106554955A publication Critical patent/CN106554955A/en
Application granted granted Critical
Publication of CN106554955B publication Critical patent/CN106554955B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Plant Pathology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention provides a method and a kit for constructing a sequencing library of PKHD1 gene mutation by using a high-throughput sequencing technology, and application thereof. The method for constructing the sequencing library of the PKHD1 gene mutation comprises the following steps: a first round of amplification; digesting the primer; performing second round amplification; purifying and recovering all DNA bands; sequencing; and (6) analyzing.

Description

Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof
Technical Field
The invention relates to the field of biotechnology, in particular to a method and a kit for constructing a PKHD1 gene mutation sequencing library by a high-throughput sequencing technology and application thereof.
Background
Polycystic Kidney Disease (PKD) refers to a disease in which multiple cysts occur in the kidney and lead to structural and functional impairment of the kidney, such cysts affecting other organs. Depending on the genetic pattern, PKD is further classified into Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive Polycystic Kidney Disease (ARPKD). PKD patient cysts tend to show persistent and increasing formation and enlargement.
ARPKD is a recessive genetic disease with an incidence of 1/20000 in live infants. ARPKD has a major impact on fetuses, newborns and children. ARPKD can cause severe polycystic kidney phenotypes in the fetus, such as biliary defects, oligohydramnios, and the like. About half of neonates with ARPKD die after birth due to hypoplasia of the lungs caused by hypoamniotic fluid. Systemic hypertension, renal insufficiency, portal hypertension are also a major cause of high morbidity and mortality in surviving infants. Research proves that ARPKD is caused by PKHD1 gene variation, and the invention mainly aims at autosomal recessive inheritance polycystic kidney disease (PKHD1 gene variation).
PKHD1 is the only causative gene of human autosomal recessive polycystic kidney disease known at present. ARPKD is a monogenic genetic disease with polycystic kidney phenotype that is common in children. The clinical characterization of ARPKD varies greatly both within and outside the family. About 50% of patients have developed morbidity during fetal life and about 30% die at birth with respiratory and renal dysfunction. It is believed that the diversity of PKHD1 mutations may be responsible for the diversity of clinical manifestations of ARPKD. At least 300 PKHD1 mutations have been reported. These included 184 missense mutations, 37 nonsense mutations, 62 insertion or deletion (frameshift) mutations and 21 classical splice site mutations. These mutations are distributed almost throughout the PKHD1 gene, and preliminary analysis between PKHD1 mutation sites and clinical symptoms indicates that most children with missense mutations encoding truncated mutations die during perinatal and neonatal periods, while children who survive past neonatal periods carry at least one missense mutation. Since the gene of PKHD1 is a very large gene, 67 exons are contained, 66 exons are contained in the protein coding region, and 4074 amino acids are totally coded. Therefore, the detection of the PKHD1 gene is a time-consuming, labor-intensive and technically demanding task.
At present, various methods are developed for molecular diagnosis of the ARPKD diseases, but each method has certain defects.
The DNA family gene linkage analysis method comprises the following steps: is a method based on family research. It is to use genetic marker to classify in the family, and then use mathematical means to calculate whether the genetic marker is co-separated with the disease in the family. Linkage analysis is to study the relationship between pathogenic genes and reference sites (genetic markers) by using the principle of linkage. By covering a suitable density of genetic markers (markers), one can find a marker that is tightly linked to the disease-causing gene, and thus obtain the exact location of the disease-causing gene on the chromosome. The disadvantage of this approach is that a sufficient number of family members are required to participate in the identification together, and the linkage analysis approach will not be applicable when the proband is a new mutation.
The basic principle of the method is that firstly, PCR of a target region is amplified, then a PCR product is heated and denatured into a single-chain state, and then the change of a base peak value in the PCR product is detected by a high-pressure liquid chromatography technology so as to judge whether mutation occurs.
Other variant screening methods: denaturing Gradient Gel Electrophoresis (DGGE), single-strand conformation polymorphism analysis (SSCP) and high-resolution melting curve method (HRM) can be applied to the detection of PKHD1 gene, but the methods have the defects that the mutation sites cannot be directly determined, and only the mutation is screened.
Although the traditional one-generation sequencing (Sanger sequencing) is still the gold standard for diagnosing human genetic disease variation, the technology cannot meet the requirements of sequencing on huge genes and large samples due to the defects of low sequencing efficiency, high cost, small flux and the like of the technology due to the limitation of the technology, and the method is still ineffective if sequencing on all exons in the whole genome range is required to discover new variant genes or sites. In addition, sanger sequencing requires very complicated preliminary preparation work, the whole experimental process comprises multiple steps of amplification, purification, sequencing PCR, repurification and the like, time and labor are consumed, the cost is high, and cross contamination and PCR amplification failure are possible. With the development of the classified genome sequencing technology and the construction of the international human genome haplotype map (HapMap), the high-throughput sequencing technology (NGS) based on the exon sequencing technology has been unprecedentedly developed. The method not only can accurately identify common variation or rare variation with high flux, but also greatly reduces the sequencing cost. NGS has triggered a new round of exploring the hot tide of complex genetic diseases, and a large number of new genetic variations associated with human traits or complex diseases have been discovered and invented in as short as a few years, providing important basis for further understanding the molecular mechanisms of human genetic disease occurrence.
The NGS technology greatly reduces the sequencing cost, has the characteristics of high throughput, low cost, low sequencing error rate and the like, and is rapidly developed in recent years. By applying the NGS technique, it is possible to sequence a mixture of nucleic acid molecules, and simultaneously distinguish and detect each individual sequence, enabling simultaneous sequencing of large batches of target sequences.
Sequence capture is a technique for selective enrichment of specific regions of the genome by calling the target region out of the genome by a suitable method for sequencing. There are two main methods of sequence capture currently in use: PCR and hybridization. The PCR method has the advantages of high sensitivity, high specificity, good repeatability and the like, has good application prospect in a second-generation sequencing technology platform, and is suitable for capturing some smaller regions, particularly some continuous regions. The application of the NGS technology can obviously improve the detection efficiency, sensitivity and specificity of the PKHD1 gene mutation.
Disclosure of Invention
The present inventors have made extensive and intensive studies with respect to the deficiencies of the prior art, and as a result, have completed the present invention.
An object of the present invention is to provide a method for constructing a sequencing library of mutations in the PKHD1 gene.
It is another object of the present invention to provide a kit for constructing a sequencing library of mutations in the PKHD1 gene.
In order to achieve the purpose, the invention introduces one section of oligonucleotide sequence at each end of the product by utilizing PCR reaction, the two sections of oligonucleotide sequences are respectively the same as a D5adaptor primer (D5adaptor) sequence and an N7adaptor primer (N7adaptor) sequence of the company illumina, and the PCR product can be directly used as a sequencing library to be applied to sequencers of Nextseq500/550, Hiseq 2000/2500/3000, Miseq and the like of the company illumina through the oligonucleotide sequences introduced at the two ends of the PCR product.
According to the invention, oligonucleotide sequences are introduced into two ends of a product, and simultaneously, the amplification strategy of multiplex PCR is combined, so that the amplification of one or more specific exons of the PKHD1 gene of each sample can be simultaneously realized, and a sequencing library of one or more specific exons of the PKHD1 gene of the sample can be directly obtained.
The invention introduces distinguishable D5adaptor primer sequence and N7adaptor primer sequence at two ends of the PCR product of the sample respectively, wherein the label (index) information contained in the D5adaptor primer and the N7adaptor primer can be used as label sequences for subsequently distinguishing different samples.
In the present invention, the D5 linker primer sequence consists of a 5 'universal sequencing primer sequence, a tag sequence (i.e., i5, see bold below), and a 3' universal sequencing primer sequence in tandem, and the N7 linker primer sequence consists of a 5 'universal sequencing primer sequence, a tag sequence (i.e., i7, see bold below), and a 3' universal sequencing primer sequence in tandem.
In the invention, two oligonucleotide sequences are respectively introduced into two ends of a product by utilizing a PCR reaction, wherein the two oligonucleotide sequences are respectively identical to a D5adaptor primer sequence and an N7adaptor primer sequence, and the D5adaptor primer sequence is selected from:
D501
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000031
ACACTCTTTCCCTACACGACGCTCTTCCGATCT)(SEQ ID NO:1)、
D502
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000032
ACACTCTTTCCCTACACGACGCTCTTCCGATCT)(SEQ ID NO:2)、
D503
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000033
ACACTCTTTCCCTACACGACGCTCTTCCGATCT)(SEQ ID NO:3)、
D504
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000034
ACACTCTTTCCCTACACGACGCTCTTCCGATCT)(SEQ ID NO:4)、
D505
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000035
ACACTCTTTCCCTACACGACGCTCTTCCGATCT)(SEQ ID NO:5)、
D506
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000041
ACACTCTTTCCCTACACGACGCTCTTCCGATCT)(SEQ ID NO:6)、
D507
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000042
ACACTCTTTCCCTACACGACGCTCTTCCGATCT) (SEQ ID NO:7) and
D508
(AATGATACGGCGACCACCGAGATCTACAC
Figure BDA0001138315690000043
ACACTCTTTCCCTACACGACGCTCTTCCGATCT) (SEQ ID NO:8), and
the N7adaptor primer sequence is selected from:
N701
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000044
GTGACTGGAGTTCAGACGTGTGCTCTTC CGATCT)(SEQ ID NO:9)、
N702
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000045
GTGACTGGAGTTCAGACGTGTGCTCTTCC GATCT)(SEQ ID NO:10)、
N703
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000046
GTGACTGGAGTTCAGACGTGTGCTCTTC CGATCT)(SEQ ID NO:11)、
N704
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000047
GTGACTGGAGTTCAGACGTGTGCTCTTCC GATCT)(SEQ ID NO:12)、
N705
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000048
GTGACTGGAGTTCAGACGTGTGCTCTTCC GATCT)(SEQ ID NO:13)、
N706
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000049
GTGACTGGAGTTCAGACGTGTGCTCTTCC GATCT)(SEQ ID NO:14)、
N707
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA00011383156900000410
GTGACTGGAGTTCAGACGTGTGCTCTTCC GATCT)(SEQ ID NO:15)、
N708
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA00011383156900000411
GTGACTGGAGTTCAGACGTGTGCTCTTC CGATCT)(SEQ ID NO:16)、
N709
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000051
GTGACTGGAGTTCAGACGTGTGCTCTTCC GATCT)(SEQ ID NO:17)、
N710
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000052
GTGACTGGAGTTCAGACGTGTGCTCTTC CGATCT)(SEQ ID NO:18)、
N711
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000053
GTGACTGGAGTTCAGACGTGTGCTCTTC CGATCT) (SEQ ID NO:19) and
N712
(CAAGCAGAAGACGGCATACGAGAT
Figure BDA0001138315690000054
GTGACTGGAGTTCAGACGTGTGCTCTTC CGATCT) (SEQ ID NO: 20).
Accordingly, in one aspect, the present invention provides a method of constructing a sequencing library of mutations in the PKHD1 gene, comprising the steps of:
first round amplification: employing a first round of forward amplification primers consisting of a sequence identical to all or part of one of the D5 linker primer sequence and N7 linker primer sequence selected above (i.e., the entire sequence of one of ACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO:21) and GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO:22) or a sequence consisting of 13 or more consecutive deoxyribonucleotides beginning at the 3' end thereof, for example, CCTACACGACGCTCTTCCGATCT (SEQ ID NO:23)) and a sequence consisting of all or part of a forward specific amplification primer sequence of each exon of PKHD1 gene linked in series to all or part of a 3' end universal sequencing primer sequence selected from the other of D5 linker primer sequence and N7 linker primer sequence (i.e., the entire sequence of the other of ACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO:21) and GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO:22) or a sequence consisting of 13 or more consecutive deoxyribonucleotides beginning at the 3' end thereof, for example, TTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO:24)) identical sequences and the reverse specific amplification primer sequences of each exon of the PKHD1 gene are connected in series to form a first round amplification primer combination, and one or more exons of the PKHD1 gene of each sample are amplified by the combination of the first round amplification primers of the first round reverse amplification primers, wherein the specific amplification primer sequence of each exon plays a role in multiplex amplification, and the amplification result leads to the addition of part or all of the universal sequencing primer sequence at both ends of each amplification product fragment, wherein the D5 adapter primer sequence is selected from SEQ ID NO: 1-SEQ ID NO:8, and the N7 adapter primer sequence is selected from SEQ ID NO: 9-SEQ ID NO: 20;
digesting a primer: digesting the remaining primers and primer dimers in the first round amplification products with a single-stranded digestive enzyme;
and (3) second round amplification: taking the product of the first round of amplification as a template, and adopting a combination of a second round of amplification primer (namely, a combination of a D5 linker primer sequence and an N7 linker primer sequence) consisting of a second round of forward amplification primer which is the same as one selected from the D5 linker primer sequence and the N7 linker primer sequence and a second round of reverse amplification primer which is the same as the other selected from the D5 linker primer sequence and the N7 linker primer sequence, wherein the amplification plays a role in the universal sequencing primer sequence, and the final amplification product is added with a tag sequence which can distinguish the D5 linker primer sequence and the N7 linker primer sequence of each sample as a result of amplification, wherein the D5 linker primer sequence is selected from SEQ ID NO: 1-SEQ ID NO:8, and the N7 linker primer sequence is selected from SEQ ID NO: 9-SEQ ID NO: 20;
purifying and recovering all DNA bands, preferably using a purified magnetic bead screen to recover all DNA bands between the target area ranges;
sequencing: after the recycled products are quantified, mixing the products with different labels according to the requirement of sequencing data quantity, and then carrying out on-machine sequencing;
and (3) analysis: and on the basis of the label sequence of each sample, corresponding the obtained sequencing result to the sample one by one, and according to the primer sequence of each gene, corresponding the sequence to each gene of the sample.
In the present invention, preferably, the exons of the PKHD1 gene may include one or more exons selected from the group consisting of PKHD1 gene exons 1 to 67.
In the method for constructing the sequencing library of the PKHD1 gene mutation, preferably, the combination of the first round amplification primers comprises one or more pairs selected from SEQ ID NO. 25 to SEQ ID NO. 230, preferably, the combination of the first round amplification primers comprises SEQ ID NO. 25 to SEQ ID NO. 230, and more preferably, the combination of the first round amplification primers comprises SEQ ID NO. 25 to SEQ ID NO. 230.
In the present invention, preferably, the number of the sample may be 96 or less (8 kinds of D5 adapter primers and 12 kinds of N7 adapter primers in one-to-one combination).
The library can be directly applied to a sequencer such as Nextseq500/550, Hiseq 2000/2500/3000, Miseq and the like of the company illumina for machine sequencing. Meanwhile, after the second round of amplification, a D5adaptor primer sequence and an N7adaptor primer sequence which are commonly used by the company of illumina are introduced into the product, and the product can be directly used for sequencing a library to perform high-throughput sequencing.
In another aspect, the present invention provides a kit for constructing a sequencing library of mutations in PKHD1 gene, the kit comprising:
first round amplification primer combinations: designing corresponding amplification primers according to a PKHD1 gene to be detected, designing the length of a PCR product according to the size range of the product applicable to a sequencer and a sequencing method, adding a sequence which is identical to all or part of a universal sequencing primer sequence of a D5adaptor primer sequence and an N7adaptor primer sequence to the 5 ' ends of a forward amplification primer and a reverse amplification primer respectively to form a first round amplification primer combination, wherein the first round forward amplification primer consists of a sequence which is identical to all or part of a universal sequencing primer sequence of the 3' end of one selected from the D5adaptor primer sequence and the N7adaptor primer sequence (namely, a sequence which is identical to the sequence of the other one selected from ACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO:21) and GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO:22) or a sequence which is formed by more than 13 continuous deoxyribonucleotides from the 3' end of the other one selected from the D5adaptor primer sequence and the N7adaptor primer sequence, such as CCTACACGACGCTCTTCCGATCT (SEQ ID NO:23) and a forward specific amplification primer sequence of each exon of the PKHD1 gene in series connection, and the first round reverse amplification primer consists of a sequence identical to all or part of a sequencing primer sequence common to the 3 'end selected from the other of the D5 linker primer sequence and the N7 linker primer sequence (i.e., the whole sequence of the other of ACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO:21) and GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO:22) or a sequence consisting of 13 or more consecutive deoxyribonucleotides starting at the 3' end thereof, e.g., TTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO:24)) and a reverse specific amplification primer sequence for each exon of PKHD1 gene, linked in series, wherein the D5 linker primer sequence is selected from D501-D508(SEQ ID NO: 1-SEQ ID NO:8), and the N7 linker primer sequence is selected from N701-N712(SEQ ID NO: 9-SEQ ID NO: 20);
the universal sequencing primer sequence of the invention, which is a high-throughput sequencing primer sequence of the illumina company, respectively corresponds to the universal sequencing primer sequence of the 3' end on the D5 joint primer and the N7 joint primer;
second round amplification primer combinations: consisting of a second round forward amplification primer identical to one selected from the D5 and N7adaptor primer sequences and a second round reverse amplification primer identical to the other selected from the D5 and N7adaptor primer sequences (i.e., a combination of a D5 and N7adaptor primer sequences).
The combination of second-round amplification primers was a combination of tag sequences using different D5 adapter primers and N7 adapter primer sequences (tag sequences were a sequence of one of D5 adapter primer and N7 adapter primer sequences (i.e., [ i5] and [ i7]) according to the number of samples) so as to make each sample distinguishable, using a combination of second-round amplification primers consisting of the same second-round forward amplification primer as one selected from the D5 adapter primer sequence and N7 adapter primer sequence and the same second-round reverse amplification primer as the other one selected from the D5 adapter primer sequence and N7 adapter primer sequence (i.e., a combination of D5 adapter primer sequence and N7 adapter primer sequence), wherein the D5 adapter primer sequence is selected from D501-D508(SEQ ID NO: 1-SEQ ID NO:8), the N7 adapter primer sequence is selected from N701-N712(SEQ ID NO: 9-SEQ ID NO:20), wherein the combination of second round amplification primers comprises one or more pairs of tag primer sequences selected from one of D501 to D508(SEQ ID NO:1 to SEQ ID NO:8) and one of N701 to N712(SEQ ID NO:9 to SEQ ID NO:20) to make each sample distinguishable.
In the kit for constructing the sequencing library of the PKHD1 gene mutation, preferably, the combination of the first round amplification primers comprises one or more pairs selected from SEQ ID NO. 25-SEQ ID NO. 230, preferably, the combination of the first round amplification primers comprises SEQ ID NO. 25-SEQ ID NO. 230, and more preferably, the combination of the first round amplification primers comprises SEQ ID NO. 25-SEQ ID NO. 230.
In the present invention, preferably, the kit further comprises a DNA polymerase, and all the enzymes used are high-fidelity DNA polymerases, thereby reducing the DNA mutation rate caused by amplification.
In the present invention, preferably, the kit further comprises a single-stranded digestive enzyme, wherein the single-stranded digestive enzyme is exonuclease i (exouclase i), and the single-stranded specific exonuclease is 3'→ 5' exonuclease, and does not decompose double-stranded DNA and RNA.
In the present invention, it is preferable that NGS technology will significantly improve the efficiency, sensitivity and specificity of detecting mutations in PKHD1 gene.
In the present invention, more preferably, the present invention provides a kit for constructing a sequencing library comprising exon regions of the PKHD1 gene, wherein the PKHD1 exon regions may comprise one or more exon regions selected from the following 67 exon regions (preferably, may comprise the following 67 exon regions; more preferably, may consist of the following 67 exon regions), the kit comprising:
first round amplification primer combination: comprising one or more pairs of primers selected from the group consisting of the primers in the following table, preferably comprising, more preferably consisting of the primers in the following table,
Figure BDA0001138315690000081
Figure BDA0001138315690000091
Figure BDA0001138315690000101
Figure BDA0001138315690000111
Figure BDA0001138315690000121
Figure BDA0001138315690000131
Figure BDA0001138315690000141
Figure BDA0001138315690000151
Figure BDA0001138315690000161
in the present invention, the above exons are well known in the art, and the sequence information is available from, for example, GenBank, PKHD1NM 138694.
A second round amplification primer combination comprising one or more pairs of tag primer sequences selected from one of D501 to D508(SEQ ID NO:1 to SEQ ID NO:8) and one of N701 to N712(SEQ ID NO:9 to SEQ ID NO:20) to make each sample distinguishable:
Figure BDA0001138315690000171
the invention has the following beneficial effects:
according to the invention, the cycle number of the multiplex PCR reaction is optimized, so that the first round of multiplex PCR reaction only carries out linear amplification, the difference of amplification efficiency among multiplex primers is reduced to the maximum extent, and the quantity of related products of each exon of the PKHD1 gene in the multiplex amplification product is close to the maximum extent through parallel amplification of the universal primers during the second round of amplification, so that the effectiveness of sequencing data is improved.
In the present invention, the first round of amplification uses a mixture of universal sequencing primer sequences for high throughput sequencing plus specific primers for each exon of the PKHD1 gene, where multiple amplifications are performed on the specific sequences for each exon preceded by universal sequencing primer sequences. The second round of amplification primers uses a linker sequence + a tag sequence + a universal sequencing sequence, and the amplification at this time uses the universal sequencing sequence, and the final products are all preceded by distinguishable tag sequences, and can be directly used as sequencing libraries for high-throughput sequencing (Nextseq 500/550, Hiseq 2000/2500/3000, Miseq, etc.). Through the reasonable primer design and PCR strategy, the D5adaptor primer and the N7adaptor primer sequence are directly added at the 5' end of the PCR product. By introducing the distinguishable label sequences into each sample, the sequencing result of each sample can be found back through the unique label sequences when the samples are detected by the second generation high-throughput sequencing technology, and the method can be applied to simultaneously detecting a plurality of different gene sites of a large number of samples, thereby greatly reducing the sequencing cost.
Detailed Description
The present invention will now be described in further detail with reference to examples, which are given for illustration of the present invention and are not intended to limit the present invention.
The equipment and reagents used in the following examples are as follows: blood genome extraction Kit (Tiangen Biochemical technology Co., Ltd.), high speed centrifuge SIGMA 3-30K, nucleic acid amplification instrument ABI 9700, Illumina sequencer, multiple amplification reagent GeneRead DNAseq panel PCR Kit v2(181942), high fidelity amplification enzyme Kapa biosystems HiFi HS (kk2602), Exonuclease Takara (Exonase I (E. coli)), and purified magnetic bead Beckman AgencourtAmpure XP.
Example 1
67 exons of the gene PKHD1 that caused autosomal recessive polycystic kidney disease were sequenced for a total of 15, namely 15 samples of normal human genomic DNA.
1) Designing a primer:
designing corresponding amplification primers aiming at 67 exons of the PKHD1 gene, wherein the related parameters are as follows: the Tm value is 58.0-62.0 ℃, the GC value is 40.0-60.0%, and the size of the primer is 22 +/-3 bp. The forward and reverse amplification primers were each added at their 5 'ends with a sequence identical to the sequence of the universal sequencing primer for high throughput sequencing of the 3' ends of the D5 adapter primer and N7 adapter primer, as follows, with the sequence of the universal sequencing primer for high throughput sequencing introduced underlined (i.e., SEQ ID NO:23 and SEQ ID NO: 24):
Figure BDA0001138315690000181
Figure BDA0001138315690000191
Figure BDA0001138315690000201
Figure BDA0001138315690000211
Figure BDA0001138315690000221
Figure BDA0001138315690000231
Figure BDA0001138315690000241
Figure BDA0001138315690000251
Figure BDA0001138315690000261
Figure BDA0001138315690000271
in this example, for the second round of amplification primer selection, 15 pairs of tag sequence combinations are used according to 15 samples, and distinguishable tag sequences are added to each target fragment of each sample in the second round of amplification, the primers are designed as follows, wherein the underline indicates the introduced universal sequencing sequence (i.e., the universal sequence in the first round, which functions as an amplification primer in the second round):
Figure BDA0001138315690000272
Figure BDA0001138315690000281
table 1: 15 samples correspond to a list of 15 pairs of labels
D504 D505 D506 D507 D508
N703 1# 4# 7# 10# 13#
N704 2# 5# 8# 11# 14#
N705 3# 6# 9# 12# 15#
2) First round amplification:
after each pair of primers is individually qualified, 103 pairs of primers are respectively diluted to 100. mu.M and then mixed in equal amounts, wherein the PCR system comprises 4.4. mu. L5 x PCR buffer, 2. mu. L mixed primers, 1.5. mu. L taq (5U/. mu. L), 2.5. mu. L template DNA (5 ng/. mu. L), ddH2O is supplemented to 22 mu L the PCR reaction is carried out according to the following conditions that the template DNA is denatured and kept at 95 ℃ for 15min, and the PCR reaction is cycled:
the following 20 cycles were performed:
step 1: 30 seconds at 95 ℃;
step 2: at 60 ℃ for 4 minutes;
after 20 cycles, 72 ℃ was maintained for 10min and finally at 4 ℃.
3) Digestion primer
The first round of amplification products are subjected to residual primer digestion by Takara Exonuclease I, the enzyme digestion system is Exonuclease I (50U/. mu. L) 0.5 mu. L products 20 mu. L,
the enzyme digestion reaction is carried out according to the following conditions: 30min at 37 ℃;
4) and (3) purification and recovery: 0.6-0.9 Xmagnetic beads were used to screen fragments between 200 and 400bp (non-specific amplification of the second round of amplification was reduced)
5) Second round of amplification
15 pairs of distinguishable label combinations are formed by respectively pairing the upstream and downstream of the label primers, the recognizable label sequences are respectively added to 15 samples during the second round of PCR amplification, the label combinations at the two ends of the samples are shown in Table 2, the PCR system comprises HiFiHS (kk2602)2X mix 25 mu L, 0.75 mu L forward amplification primer, 0.75 mu L reverse amplification primer, PCR products screened after 5-10 mu L digestion of the primers (the addition amount of the screened PCR products after digestion is between 80 and 120 ng), ddH2O to 50. mu. L PCR was performed by denaturing the template DNA at 98 ℃ for 45s and cycling the PCR:
the following 8 cycles were performed:
step 1: at 98 ℃ for 15 s;
step 2: at 60 ℃ for 30 s;
and 3, step 3: at 72 ℃ for 30 s;
after the completion of 13 cycles, 72 ℃ was maintained for 1min and finally at 4 ℃.
TABLE 2 sample two-end tag combination table
D504 D505 D506 D507 D508
N703 1# 4# 7# 10# 13#
N704 2# 5# 8# 11# 14#
N705 3# 6# 9# 12# 15#
6) And (3) recovering: recovering all DNA bands within the range of 350bp-450 bp;
7) sequencing: after quantifying the recovered products, mixing the products with different labels according to the requirement of sequencing data amount, and then performing machine sequencing (Nextseq500, PE 150);
8) and (3) analysis: the sequencing result of the Illumina Nextseq500 product is a series of DNA sequences, the obtained sequencing result is firstly in one-to-one correspondence with the samples by searching the label sequences which can be distinguished by 15 samples in the sequencing result, and then the sequences are corresponding to each target region of the samples according to the primer sequence of each exon. Each exon in the 15 samples was able to find the corresponding data in the sequencing results, the number of reads (number of sequences) for each sample is shown in Table 3 below, and the number of sequences for each exon sequence is shown in Table 4 below (only data for sample # 1 are shown).
TABLE 3 number of sequences and GC _ Numbers for each sample
Figure BDA0001138315690000291
Figure BDA0001138315690000301
TABLE 4 number of sequences corresponding to target sequence in exon region of PKHD1 (sample No. 1 as an example)
Figure BDA0001138315690000302
Figure BDA0001138315690000311
Figure BDA0001138315690000321
Figure BDA0001138315690000331
Table 3 shows that by the method, libraries for sequencing are successfully constructed, and each library can correspondingly obtain a corresponding sequencing sequence, so that the detection of the PKHD1 gene mutation by the high-throughput sequencing technology is successful.
Table 4 illustrates the sequence numbers of 103 pairs of primers in multiplex amplification using one sample as an example, showing the effectiveness of multiplex amplification further illustrating that primers designed for 67 exons of PKHD1 gene are all useful.
<110> Dalian Tai Biotechnology Ltd
<120> method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof
<130>DI16-1142-XC37
<160>230
<170>PatentIn version 3.3
<210>1
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D501
<400>1
aatgatacgg cgaccaccga gatctacact agatcgcaca ctctttccct acacgacgct 60
cttccgatct 70
<210>2
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D502
<400>2
aatgatacgg cgaccaccga gatctacacc tctctataca ctctttccct acacgacgct 60
cttccgatct 70
<210>3
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D503
<400>3
aatgatacgg cgaccaccga gatctacact atcctctaca ctctttccct acacgacgct 60
cttccgatct 70
<210>4
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D504
<400>4
aatgatacgg cgaccaccga gatctacaca gagtagaaca ctctttccct acacgacgct 60
cttccgatct 70
<210>5
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D505
<400>5
aatgatacgg cgaccaccga gatctacacg taaggagaca ctctttccct acacgacgct 60
cttccgatct 70
<210>6
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D506
<400>6
aatgatacgg cgaccaccga gatctacaca ctgcataaca ctctttccct acacgacgct 60
cttccgatct 70
<210>7
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D507
<400>7
aatgatacgg cgaccaccga gatctacaca aggagtaaca ctctttccct acacgacgct 60
cttccgatct 70
<210>8
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223>D508
<400>8
aatgatacgg cgaccaccga gatctacacc taagcctaca ctctttccct acacgacgct 60
cttccgatct 70
<210>9
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N701
<400>9
caagcagaag acggcatacg agattaaggc gagtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>10
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N702
<400>10
caagcagaag acggcatacg agatcgtact aggtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>11
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N703
<400>11
caagcagaag acggcatacg agataggcag aagtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>12
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N704
<400>12
caagcagaag acggcatacg agattcctga gcgtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>13
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N705
<400>13
caagcagaag acggcatacg agatggactc ctgtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>14
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N706
<400>14
caagcagaag acggcatacg agattaggca tggtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>15
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N707
<400>15
caagcagaag acggcatacg agatctctct acgtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>16
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N708
<400>16
caagcagaag acggcatacg agatcagaga gggtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>17
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N709
<400>17
caagcagaag acggcatacg agatgctacg ctgtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>18
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N710
<400>18
caagcagaag acggcatacg agatcgaggc tggtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>19
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N711
<400>19
caagcagaag acggcatacg agataagagg cagtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>20
<211>66
<212>DNA
<213> Artificial sequence
<220>
<223>N712
<400>20
caagcagaag acggcatacg agatgtagag gagtgactgg agttcagacg tgtgctcttc 60
cgatct 66
<210>21
<211>33
<212>DNA
<213> Artificial sequence
<220>
<223> sequencing primer sequence common to the 3' end of the D5adaptor primer sequence
<400>21
acactctttc cctacacgac gctcttccga tct 33
<210>22
<211>34
<212>DNA
<213> Artificial sequence
<220>
<223> sequencing primer sequence common to the 3' end of N7adaptor primer sequence
<400>22
gtgactggag ttcagacgtg tgctcttccg atct 34
<210>23
<211>23
<212>DNA
<213> Artificial sequence
<220>
<223> part of sequencing primer sequence common to the 3' end of the D5adaptor primer sequence
<400>23
cctacacgac gctcttccga tct 23
<210>24
<211>24
<212>DNA
<213> Artificial sequence
<220>
<223> part of the sequencing primer sequence common to the 3' end of the N7adaptor primer sequence
<400>24
ttcagacgtg tgctcttccg atct 24
<210>25
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon1-F
<400>25
cctacacgac gctcttccga tctacctttt ttttctgttt ctgtctcc 48
<210>26
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon2_1-F
<400>26
cctacacgac gctcttccga tctttaaacc caaaagcaaa taccttaaca cc 52
<210>27
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon2_2-F
<400>27
cctacacgac gctcttccga tctacacatt ctactgacct gccaaaa 47
<210>28
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon3-F
<400>28
cctacacgac gctcttccga tctcccttca ggcccacttt taca 44
<210>29
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon4-F
<400>29
cctacacgac gctcttccga tctagataag caaaaatccc tcatcctgtc 50
<210>30
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon5-F
<400>30
cctacacgac gctcttccga tctctggctc atttacaatt tgcctttca 49
<210>31
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon6-F
<400>31
cctacacgac gctcttccga tctgaagaag ttaaattttc ccactcataa aaacca 56
<210>32
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon7_1-F
<400>32
cctacacgac gctcttccga tctccagttg caattacatt aacaaagttt gc 52
<210>33
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon7_2-F
<400>33
cctacacgac gctcttccga tctaacaaac acacacttac ctatcaatgt act 53
<210>34
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon8-F
<400>34
cctacacgac gctcttccga tcttgtgttg tatccatgtg gacgaa 46
<210>35
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon9-F
<400>35
cctacacgac gctcttccga tctttatcct catgagaacc aatcttgcaa t 51
<210>36
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon10-F
<400>36
cctacacgac gctcttccga tcttccgtca taaaaagata aagaaagtaa gcaaga 56
<210>37
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon11-F
<400>37
cctacacgac gctcttccga tctgggtgtt aatggtcatc aagaaatgg 49
<210>38
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon12-F
<400>38
cctacacgac gctcttccga tctcttcctc ctgcatccct catg 44
<210>39
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon13-F
<400>39
cctacacgac gctcttccga tctgctcact gagtaagcca gtcaaata 48
<210>40
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon14-F
<400>40
cctacacgac gctcttccga tcttccttat ctgtctccta gcctcac 47
<210>41
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon15-F
<400>41
cctacacgac gctcttccga tctacatgag agccttaact ttgattcttt ct 52
<210>42
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon16_1-F
<400>42
cctacacgac gctcttccga tcttgaatct ggacaccaat cctcatc 47
<210>43
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon16_2-F
<400>43
cctacacgac gctcttccga tctcagcaag gttataatga cccctcag 48
<210>44
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon17-F
<400>44
cctacacgac gctcttccga tctttgaaga agtctcccac cagatg 46
<210>45
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon18-F
<400>45
cctacacgac gctcttccga tcttgatgaa aaagacaatc agaatgaagc c 51
<210>46
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon19-F
<400>46
cctacacgac gctcttccga tctccagaga gcaataccaa tacctacc 48
<210>47
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon20-F
<400>47
cctacacgac gctcttccga tctactgtcc ccaaaacagt gaatcc 46
<210>48
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon21-F
<400>48
cctacacgac gctcttccga tctgcttgtg gaggagagag aatttgat 48
<210>49
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon22-F
<400>49
cctacacgac gctcttccga tctaaggcca acaagcattc ttagga 46
<210>50
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon23-F
<400>50
cctacacgac gctcttccga tctggatgtt gttcccttgg gaatgt 46
<210>51
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon24-F
<400>51
cctacacgac gctcttccga tctgcagcaa atccatgcca ctag 44
<210>52
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon25-F
<400>52
cctacacgac gctcttccga tctcacttag ggtggcccat tca 43
<210>53
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon26-F
<400>53
cctacacgac gctcttccga tctatcacca gctacatggc ctcta 45
<210>54
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon27_1-F
<400>54
cctacacgac gctcttccga tctagagggt ctcaccaaca tcaaga 46
<210>55
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon27_2-F
<400>55
cctacacgac gctcttccga tctagtaaac aaaagacagt gagtcacagt 50
<210>56
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon28-F
<400>56
cctacacgac gctcttccga tcttatatta acagtggtca ctcacccaga 50
<210>57
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon29-F
<400>57
cctacacgac gctcttccga tctttgattg ccctttttat aggaccaatg 50
<210>58
<211>54
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon30-F
<400>58
cctacacgac gctcttccga tctccatcaa acaaatccaa aattaatgca agtg 54
<210>59
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon31-F
<400>59
cctacacgac gctcttccga tcttctctga cctcactggc aaattaatc 49
<210>60
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_1-F
<400>60
cctacacgac gctcttccga tcttgtggtt accagagaca ccca 44
<210>61
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_2-F
<400>61
cctacacgac gctcttccga tctttccaga agtgaaagga gctacc 46
<210>62
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_3-F
<400>62
cctacacgac gctcttccga tctccctaat cagcacagtg gtcag 45
<210>63
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_4-F
<400>63
cctacacgac gctcttccga tctcattccc tgtgggaaca atgc 44
<210>64
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_5-F
<400>64
cctacacgac gctcttccga tctccagaac aagcataccc atttcttg 48
<210>65
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_6-F
<400>65
cctacacgac gctcttccga tctaattgct ggagcaccac aga 43
<210>66
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_7-F
<400>66
cctacacgac gctcttccga tctaggctaa cctggcagag aatg 44
<210>67
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_8-F
<400>67
cctacacgac gctcttccga tctgctcgcc tccgttaagt tca 43
<210>68
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_9-F
<400>68
cctacacgac gctcttccga tctttgtgat ttctccttgc atggc 45
<210>69
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon33_1-F
<400>69
cctacacgac gctcttccga tcttaacagg tggcctcaga ttctaacta 49
<210>70
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon33_2-F
<400>70
cctacacgac gctcttccga tcttgtagca ttagccagga ctcg 44
<210>71
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon34_1-F
<400>71
cctacacgac gctcttccga tctctgccca atgatctggc aca 43
<210>72
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon34_2-F
<400>72
cctacacgac gctcttccga tctctgccca atgatctggc aca 43
<210>73
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon35_1-F
<400>73
cctacacgac gctcttccga tctagcgttt ccgtatctca gtaatcttg 49
<210>74
<211>55
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon35_2-F
<400>74
cctacacgac gctcttccga tctaactatg aattcagata ttgtgcatta gacca 55
<210>75
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon36_1-F
<400>75
cctacacgac gctcttccga tcttgagtcc aaagaaaggc ctttca 46
<210>76
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon36_2-F
<400>76
cctacacgac gctcttccga tctatgcttg tgttagtgtc cagca 45
<210>77
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon37_1-F
<400>77
cctacacgac gctcttccga tctgatcaat tgcctcactc accgt 45
<210>78
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon37_2-F
<400>78
cctacacgac gctcttccga tctagcaaac aattgggaac ggtagt 46
<210>79
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon38_1-F
<400>79
cctacacgac gctcttccga tctttgtcaa aatgtctacc attatttaag cagaag 56
<210>80
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon38_2-F
<400>80
cctacacgac gctcttccga tctagtgaca atctcttcca tcggtttg 48
<210>81
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon39-F
<400>81
cctacacgac gctcttccga tcttgctcat tagactttcc aacaaaacac 50
<210>82
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon40-F
<400>82
cctacacgac gctcttccga tctagaaaga aacatgagaa agtcctaggt c 51
<210>83
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon41-F
<400>83
cctacacgac gctcttccga tctgtgtcct acacaagaat gcagaaattc 50
<210>84
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon42-F
<400>84
cctacacgac gctcttccga tctatgcaca ataaacttaa gagacctaac attttg 56
<210>85
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon43-F
<400>85
cctacacgac gctcttccga tctcacccct gattgagaaa gaactttatg 50
<210>86
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon44-F
<400>86
cctacacgac gctcttccga tctgcccaaa gtgctctcat tgtg 44
<210>87
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon45_1-F
<400>87
cctacacgac gctcttccga tctaaaaagc ttacctgggc acca 44
<210>88
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon45_2-F
<400>88
cctacacgac gctcttccga tctagaaaat gacctaaccc tggattagtg 50
<210>89
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon46-F
<400>89
cctacacgac gctcttccga tctgggccca gcacatgtaa ttttg 45
<210>90
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon47-F
<400>90
cctacacgac gctcttccga tctgccttat ttatcatctg ttctgtctat tcaaat 56
<210>91
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon48_1-F
<400>91
cctacacgac gctcttccga tctatgattc agcagctgtc aaaattattc c 51
<210>92
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon48_2-F
<400>92
cctacacgac gctcttccga tctacccgac caaagcttga attga 45
<210>93
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon49_1-F
<400>93
cctacacgac gctcttccga tctttgcaat gagtaggtct cttggtc 47
<210>94
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon49_2-F
<400>94
cctacacgac gctcttccga tctagcttat attcatctgg ccaaaatact attgaa 56
<210>95
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon50_1-F
<400>95
cctacacgac gctcttccga tctccataac acacagctgt ccctt 45
<210>96
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon50_2-F
<400>96
cctacacgac gctcttccga tctggttctg acctggtgat ggaag 45
<210>97
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon51-F
<400>97
cctacacgac gctcttccga tctaacagta tgacaaggtg gaatttgtag aa52
<210>98
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon52-F
<400>98
cctacacgac gctcttccga tctgggttca gcctgtctgt gatt 44
<210>99
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon53-F
<400>99
cctacacgac gctcttccga tctagcccct tctcacagaa tataattctc a 51
<210>100
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon54-F
<400>100
cctacacgac gctcttccga tctacaagca cacaatacac acacatg 47
<210>101
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon55-F
<400>101
cctacacgac gctcttccga tcttcatatt gtaacaaaat ctcaagcaga agc 53
<210>102
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon56-F
<400>102
cctacacgac gctcttccga tctaggttac caaacatggt cttcctag 48
<210>103
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon57-F
<400>103
cctacacgac gctcttccga tcttgtccca gatgaatagg ctcca 45
<210>104
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_1-F
<400>104
cctacacgac gctcttccga tctccactga tttggttctg aggtgaata 49
<210>105
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_2-F
<400>105
cctacacgac gctcttccga tctaccattg tggctatcaa tactcagc 48
<210>106
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_3-F
<400>106
cctacacgac gctcttccga tctgcagaaa atacatacac tactgccaaa ag 52
<210>107
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_4-F
<400>107
cctacacgac gctcttccga tctggcctga ccctctaaat ctatgc 46
<210>108
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_5-F
<400>108
cctacacgac gctcttccga tctacattgt cagaccaaag cagttca 47
<210>109
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon59_6-F
<400>109
cctacacgac gctcttccga tctttaatgt accttaccat tctaagattc atttct 56
<210>110
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon59_7-F
<400>110
cctacacgac gctcttccga tctttatctt ttatctttag catcctggtc ctc 53
<210>111
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon60-F
<400>111
cctacacgac gctcttccga tctacaagca cccttgcctc tac 43
<210>112
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_1-F
<400>112
cctacacgac gctcttccga tctctgttgg cgaatcacca atttcaa 47
<210>113
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_2-F
<400>113
cctacacgac gctcttccga tctaatcagc cctcatttgg atgtgaatat 50
<210>114
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_3-F
<400>114
cctacacgac gctcttccga tctaagcgca aaacttgagg agtttg 46
<210>115
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_4-F
<400>115
cctacacgac gctcttccga tcttcctctc cttgtaggac aacataca 48
<210>116
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_5-F
<400>116
cctacacgac gctcttccga tcttgtcagc aatggccttt aaggt 45
<210>117
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_6-F
<400>117
cctacacgac gctcttccga tctaactgga tataacttct gaattgccca a 51
<210>118
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_7-F
<400>118
cctacacgac gctcttccga tctgaaacag tgtcttaaca agtctttcca ttt 53
<210>119
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon62-F
<400>119
cctacacgac gctcttccga tctaaaagat aggctgaatg ctacatgct 49
<210>120
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon63-F
<400>120
cctacacgac gctcttccga tctaacattt tctgtgcaga taaagtggta ac 52
<210>121
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon64-F
<400>121
cctacacgac gctcttccga tctgaataaa agcacactgt ataaaattac ctggag 56
<210>122
<211>54
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon65_1-F
<400>122
cctacacgac gctcttccga tcttttagag aagctcacaa aaatttgtct ttgg 54
<210>123
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon65_2-F
<400>123
cctacacgac gctcttccga tctgatgatg gtcgacttct ccttcc 46
<210>124
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon66-F
<400>124
cctacacgac gctcttccga tctaggctca gaccatccac agt 43
<210>125
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon67_1-F
<400>125
cctacacgac gctcttccga tctctctctt cttagttgtc ccagcag 47
<210>126
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon67_2-F
<400>126
cctacacgac gctcttccga tctgcttact cagccgactt tgc 43
<210>127
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon67_3-F
<400>127
cctacacgac gctcttccga tcttgtgatg ccagtagtac cagga 45
<210>128
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon1-R
<400>128
ttcagacgtg tgctcttccg atcttcatta aacttaccca tggtcagg 48
<210>129
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon2_1-R
<400>129
ttcagacgtg tgctcttccg atctcctggc tgatctctct gatgagta 48
<210>130
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon2_2-R
<400>130
ttcagacgtg tgctcttccg atcttcctta atttcccagg tttcagaaca g 51
<210>131
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon3-R
<400>131
ttcagacgtg tgctcttccg atctttgctt aaaatattgc agaaggtagt ggt 53
<210>132
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon4-R
<400>132
ttcagacgtg tgctcttccg atctgtcctg tgtcaatgac aattctatgc 50
<210>133
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon5-R
<400>133
ttcagacgtg tgctcttccg atctcaagtg ggctgctagc tttg 44
<210>134
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon6-R
<400>134
ttcagacgtg tgctcttccg atctaccttc aagtaatgct gtctgagg 48
<210>135
<211>54
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon7_1-R
<400>135
ttcagacgtg tgctcttccg atctggatta tcactggaag attggaaact tttg 54
<210>136
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon7_2-R
<400>136
ttcagacgtg tgctcttccg atctagtatt aattttctgg gccatgacct g 51
<210>137
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon8-R
<400>137
ttcagacgtg tgctcttccg atctgccatg tttcctctga gttttgtg 48
<210>138
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon9-R
<400>138
ttcagacgtg tgctcttccg atcttggttt tcttttgctt tctactttcc tg 52
<210>139
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon10-R
<400>139
ttcagacgtg tgctcttccg atcttgatat tggagtcttt gggcttatga aa 52
<210>140
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon11-R
<400>140
ttcagacgtg tgctcttccg atctcaatag aggttagttc ccaatcttcc ttt 53
<210>141
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon12-R
<400>141
ttcagacgtg tgctcttccg atcttctagg tcatattctg gtctatattt ggaagc 56
<210>142
<211>57
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon13-R
<400>142
ttcagacgtg tgctcttccg atctcacaca cacacataca taaatttctt taattcg 57
<210>143
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon14-R
<400>143
ttcagacgtg tgctcttccg atctaaggtg cgccctgtaa tgt 43
<210>144
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon15-R
<400>144
ttcagacgtg tgctcttccg atctagggca gtcatttgtt ggttca 46
<210>145
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon16_1-R
<400>145
ttcagacgtg tgctcttccg atcttgtttg agaaagagat gcctggaa 48
<210>146
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon16_2-R
<400>146
ttcagacgtg tgctcttccg atctaagcag agcatcatgg gatagc 46
<210>147
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon17-R
<400>147
ttcagacgtg tgctcttccg atcttgatgc tgtgttcctc agagatttc 49
<210>148
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon18-R
<400>148
ttcagacgtg tgctcttccg atcttgtctc tagtcagcca atccct 46
<210>149
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon19-R
<400>149
ttcagacgtg tgctcttccg atctcacatg tagggaagct ctgtctttt 49
<210>150
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon20-R
<400>150
ttcagacgtg tgctcttccg atctgactcc tcactacgta ttgtttgaat ga 52
<210>151
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon21-R
<400>151
ttcagacgtg tgctcttccg atctgctcta accggagagg actg 44
<210>152
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon22-R
<400>152
ttcagacgtg tgctcttccg atctcacaca gcaagtctac catcttaagt 50
<210>153
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon23-R
<400>153
ttcagacgtg tgctcttccg atctatcctt cagacaaggt cctcct 46
<210>154
<211>55
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon24-R
<400>154
ttcagacgtg tgctcttccg atctggtgga ttaattagtg tctgtgtttt ctgta 55
<210>155
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon25-R
<400>155
ttcagacgtg tgctcttccg atcttagctg tctgattatc tgaaacacaa tgt 53
<210>156
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon26-R
<400>156
ttcagacgtg tgctcttccg atctagcttg ggagcacttc acatatac 48
<210>157
<211>55
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon27_1-R
<400>157
ttcagacgtg tgctcttccg atctagaggt ctctcaaatg aagtaatatc actga 55
<210>158
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon27_2-R
<400>158
ttcagacgtg tgctcttccg atcttgtcag acagatttgc tacctgttg 49
<210>159
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon28-R
<400>159
ttcagacgtg tgctcttccg atcttgtctg cctgtatggt tggtg 45
<210>160
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon29-R
<400>160
ttcagacgtg tgctcttccg atctagttct cttcccttaa gtcagtcct 49
<210>161
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon30-R
<400>161
ttcagacgtg tgctcttccg atctccacat gtcagaggct attggatt 48
<210>162
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon31-R
<400>162
ttcagacgtg tgctcttccg atctacagtt tgctcttctc ctcaaaatac a 51
<210>163
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_1-R
<400>163
ttcagacgtg tgctcttccg atctcctgac ggtgaacatc ggt 43
<210>164
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_2-R
<400>164
ttcagacgtg tgctcttccg atctggagct gcaaacattg acatttttat agg 53
<210>165
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_3-R
<400>165
ttcagacgtg tgctcttccg atctggtcct tttacttgtg tgattttgag ttt 53
<210>166
<211>43
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_4-R
<400>166
ttcagacgtg tgctcttccg atctccagga ccccactacc tgt 43
<210>167
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_5-R
<400>167
ttcagacgtg tgctcttccg atctcatgga tgccttgtcc acaaac 46
<210>168
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_6-R
<400>168
ttcagacgtg tgctcttccg atcttgtatg aagcggcagc aaca 44
<210>169
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_7-R
<400>169
ttcagacgtg tgctcttccg atctagtacg tcagaagcag atggga 46
<210>170
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_8-R
<400>170
ttcagacgtg tgctcttccg atcttttcac taacacatgc cctaccttc 49
<210>171
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon32_9-R
<400>171
ttcagacgtg tgctcttccg atctggtact tgtgggcaat cggt 44
<210>172
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon33_1-R
<400>172
ttcagacgtg tgctcttccg atctggaatg tctcagctgc tgtgt 45
<210>173
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon33_2-R
<400>173
ttcagacgtg tgctcttccg atctgcggat tctgaggatg tgaaaaga 48
<210>174
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon34_1-R
<400>174
ttcagacgtg tgctcttccg atctgttctc tctgtggttc tttcctaatg g 51
<210>175
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon34_2-R
<400>175
ttcagacgtg tgctcttccg atctcctcta catttgcgag gaaagttc 48
<210>176
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon35_1-R
<400>176
ttcagacgtg tgctcttccg atctaagcta atggcttgca atgattaata agagta 56
<210>177
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon35_2-R
<400>177
ttcagacgtg tgctcttccg atctgagtgt gagacgccca atca 44
<210>178
<211>46
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon36_1-R
<400>178
ttcagacgtg tgctcttccg atctgacaac gtcacagtgg agaatg 46
<210>179
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon36_2-R
<400>179
ttcagacgtg tgctcttccg atctccgccc aaaaacaatg aatgaac 47
<210>180
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon37_1-R
<400>180
ttcagacgtg tgctcttccg atctcaggga ctgacaattt tccctttg 48
<210>181
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon37_2-R
<400>181
ttcagacgtg tgctcttccg atctcctggc tgtgaggaat ggaa 44
<210>182
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon38_1-R
<400>182
ttcagacgtg tgctcttccg atctaagttg tcatcatcag tggaacagg 49
<210>183
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon38_2-R
<400>183
ttcagacgtg tgctcttccg atcttgggat tctttggcta aataacatca ca 52
<210>184
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon39-R
<400>184
ttcagacgtg tgctcttccg atctgtgatg tcctcagttc tatcatcctc t 51
<210>185
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon40-R
<400>185
ttcagacgtg tgctcttccg atctacatgc tttaggttct ctggacttta ttt 53
<210>186
<211>54
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon41-R
<400>186
ttcagacgtg tgctcttccg atctcaacag aatctcagga gccatatcta attt 54
<210>187
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon42-R
<400>187
ttcagacgtg tgctcttccg atctcacacc caaagaagta gtgttgc 47
<210>188
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon43-R
<400>188
ttcagacgtg tgctcttccg atctgaatca agggtgttga gttgagtaca 50
<210>189
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon44-R
<400>189
ttcagacgtg tgctcttccg atctaacaag agtctttctt tccagcaac 49
<210>190
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon45_1-R
<400>190
ttcagacgtg tgctcttccg atctccatct accttcattc tccctaatac attact 56
<210>191
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon45_2-R
<400>191
ttcagacgtg tgctcttccg atctctgttc cagagcttca cagtttg 47
<210>192
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon46-R
<400>192
ttcagacgtg tgctcttccg atctagctac aggaagtccg caag 44
<210>193
<211>54
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon47-R
<400>193
ttcagacgtg tgctcttccg atcttgtgtc cagttttctt attttgcttt catc 54
<210>194
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon48_1-R
<400>194
ttcagacgtg tgctcttccg atcttcttgc ttctatggaa accctttcag 50
<210>195
<211>55
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon48_2-R
<400>195
ttcagacgtg tgctcttccg atctgccatt gtgtaataat ctttctgttt tccaa 55
<210>196
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon49_1-R
<400>196
ttcagacgtg tgctcttccg atctaattga tgaaagagga atgtattgga ttcaga 56
<210>197
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon49_2-R
<400>197
ttcagacgtg tgctcttccg atctctaacc ctcgtggctg gatg 44
<210>198
<211>42
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon50_1-R
<400>198
ttcagacgtg tgctcttccg atctgggagt cgagtgggtc tg 42
<210>199
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon50_2-R
<400>199
ttcagacgtg tgctcttccg atctgttgtt ttggcagggt ggtg 44
<210>200
<211>58
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon51-R
<400>200
ttcagacgtg tgctcttccg atctctgttt tgaaaattta ggcaactaga atttagca 58
<210>201
<211>49
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon52-R
<400>201
ttcagacgtg tgctcttccg atctggaggt gaaaatacca ctagcatcc 49
<210>202
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon53-R
<400>202
ttcagacgtg tgctcttccg atctaacacg taattcttgt ttttgtgaca tatctg 56
<210>203
<211>56
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon54-R
<400>203
ttcagacgtg tgctcttccg atctgcaatt tctccctctc tttcttttaa tttcaa 56
<210>204
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon55-R
<400>204
ttcagacgtg tgctcttccg atcttggaat gacttttact tacctggctt t 51
<210>205
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon56-R
<400>205
ttcagacgtg tgctcttccg atcttagatg atttgtgctg cactgttagt 50
<210>206
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon57-R
<400>206
ttcagacgtg tgctcttccg atctccagct agtgattttt gaaacaggtt tt 52
<210>207
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_1-R
<400>207
ttcagacgtg tgctcttccg atcttggagatagagaacat tactctggta gac 53
<210>208
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_2-R
<400>208
ttcagacgtg tgctcttccg atctatccaa gaggaggtcg aattggta 48
<210>209
<211>44
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_3-R
<400>209
ttcagacgtg tgctcttccg atcttttcac atccgaggcc acaa 44
<210>210
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_4-R
<400>210
ttcagacgtg tgctcttccg atctggaaag tacctgatga catgcatttg 50
<210>211
<211>57
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon58_5-R
<400>211
ttcagacgtg tgctcttccg atctgagtac ttttaaatga caatattgtg tttggca 57
<210>212
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon59_6-R
<400>212
ttcagacgtg tgctcttccg atctagagaa cagtggaatt atgcaccc 48
<210>213
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon59_7-R
<400>213
ttcagacgtg tgctcttccg atctatcctg gatagcttta actaacttag ggt 53
<210>214
<211>54
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon60-R
<400>214
ttcagacgtg tgctcttccg atctttcttc ttgctgctta tcatgaaatg aaag 54
<210>215
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_1-R
<400>215
ttcagacgtg tgctcttccg atctaaatca ggtttattca cgagatgcct 50
<210>216
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_2-R
<400>216
ttcagacgtg tgctcttccg atctcccaat gactgtggaa actatctcaa 50
<210>217
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_3-R
<400>217
ttcagacgtg tgctcttccg atctctgacc aagtggtcct aattcttgat ag 52
<210>218
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_4-R
<400>218
ttcagacgtg tgctcttccg atctccatca ggcaaatcac caaagtc 47
<210>219
<211>53
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_5-R
<400>219
ttcagacgtg tgctcttccg atctatctat tggtgccaac tatttcaaca tca 53
<210>220
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_6-R
<400>220
ttcagacgtg tgctcttccg atctagttat agatgatggc aagagtgatg g 51
<210>221
<211>51
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon61_7-R
<400>221
ttcagacgtg tgctcttccg atctgggtat tttcatttgg atgcaatgtg g 51
<210>222
<211>52
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon62-R
<400>222
ttcagacgtg tgctcttccg atcttggaaa attgctacca tagggatatg tg 52
<210>223
<211>57
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon63-R
<400>223
ttcagacgtg tgctcttccg atcttccatc ttttctaact tcacaaaatt ctcttct 57
<210>224
<211>50
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon64-R
<400>224
ttcagacgtg tgctcttccg atctccttta ttgtccaaat gtctgccttc 50
<210>225
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon65_1-R
<400>225
ttcagacgtg tgctcttccg atctccattt gctgtcttgc ctgtg 45
<210>226
<211>57
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon65_2-R
<400>226
ttcagacgtg tgctcttccg atcttgttat tgttggaatc ttgtgattct ctagaaa 57
<210>227
<211>47
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon66-R
<400>227
ttcagacgtg tgctcttccg atctcctaaa tgctgatggt cccactt 47
<210>228
<211>48
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon67_1-R
<400>228
ttcagacgtg tgctcttccg atcttatgcc cagacttcag acaagaga 48
<210>229
<211>45
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon67_2-R
<400>229
ttcagacgtg tgctcttccg atctaggaaa gttagccgcc acatt 45
<210>230
<211>54
<212>DNA
<213> Artificial sequence
<220>
<223>PKHD1_exon67_3-R
<400>230
ttcagacgtg tgctcttccg atctttgtca gaaatgctaa gtatgcaaaa tgtg 54

Claims (6)

1. A method for constructing a sequencing library of mutations in PKHD1 gene, comprising the steps of:
first round amplification: amplifying one or more exons of the PKHD1 gene of each sample by adopting a first round amplification primer combination comprising a first round forward amplification primer and a first round reverse amplification primer, wherein the first round amplification primer combination consists of SEQ ID NO. 25-SEQ ID NO. 230,
wherein, the primers are respectively diluted to 100 mu M and then mixed in equal amount, the PCR system comprises 4.4 mu L5 XPCR buffer, 2 mu L mixed primers, 1.5 mu L of taq with the concentration of 5U/mu L, 2.5 mu L of template DNA with the concentration of 5 ng/mu L, ddH2O is added to 22 mu L, and the PCR reaction condition is that the template DNA is denatured and kept at 95 ℃ for 15 minutes;
the following 20 cycles were performed:
step 1: 30 seconds at 95 ℃;
step 2: at 60 ℃ for 4 minutes;
after 20 cycles, 72 ℃ for 10 minutes, and finally 4 ℃;
digesting a primer: digesting the remaining primers and primer dimers in the first round amplification products with a single-stranded digestive enzyme;
and (3) second round amplification: taking the first round amplification product as a template, and amplifying by adopting a second round amplification primer, wherein the second round amplification primer comprises one or more pairs consisting of a forward tag primer selected from SEQ ID NO. 1-SEQ ID NO. 8 and a reverse tag primer selected from SEQ ID NO. 9-SEQ ID NO. 20 so as to enable each sample to be distinguishable,
wherein, the second round of amplification is carried out through the tag primer sequence, and the PCR system comprises KapaHiFiHS 2X mix 25 mu L with the product number of kk2602, a forward tag primer of 0.75 mu L, a reverse tag primer of 0.75 mu L, a first round of amplification product screened after digesting the primers of 5-10 mu L, ddH2O is added to 50 mu L, and the PCR reaction condition is that the first round amplification product is denatured and kept at 98 ℃ for 45 seconds;
the following 8 cycles were performed:
step 1: 15 seconds at 98 ℃;
step 2: 30 seconds at 60 ℃;
and 3, step 3: 30 seconds at 72 ℃;
after 8 cycles, 72 ℃ for 1 minute, and finally 4 ℃;
all DNA bands were recovered by purification.
2. A kit for constructing a sequencing library of mutations in the PKHD1 gene, the kit comprising:
first round amplification primer combinations: the kit comprises a first round of forward amplification primers and a first round of reverse amplification primers to amplify PKHD1 genes of each sample, wherein the combination of the first round of amplification primers consists of SEQ ID NO. 25-SEQ ID NO. 230;
second round amplification primers: one or more pairs consisting of a forward tag primer selected from SEQ ID NO. 1 to SEQ ID NO. 8 and a reverse tag primer selected from SEQ ID NO. 9 to SEQ ID NO. 20, so that each sample can be distinguished.
3. The kit of claim 2, wherein the kit further comprises a DNA polymerase.
4. The kit of claim 3, wherein the DNA polymerase is a high fidelity DNA polymerase.
5. The kit of claim 2, wherein the kit further comprises a single-stranded digestive enzyme.
6. The kit of claim 5, wherein the single stranded digestive enzyme is exonuclease I.
CN201610932549.3A 2016-10-25 2016-10-25 Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof Active CN106554955B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610932549.3A CN106554955B (en) 2016-10-25 2016-10-25 Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610932549.3A CN106554955B (en) 2016-10-25 2016-10-25 Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof

Publications (2)

Publication Number Publication Date
CN106554955A CN106554955A (en) 2017-04-05
CN106554955B true CN106554955B (en) 2020-07-14

Family

ID=58443413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610932549.3A Active CN106554955B (en) 2016-10-25 2016-10-25 Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof

Country Status (1)

Country Link
CN (1) CN106554955B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531583B (en) * 2018-05-18 2022-05-17 中国人民解放军陆军军医大学第一附属医院 Primer combination for noninvasive detection of MITF gene mutation and detection method
CN108753934B (en) * 2018-05-18 2022-01-28 中国人民解放军陆军军医大学第一附属医院 Method and kit for detecting gene mutation and preparation method thereof
CN108949951B (en) * 2018-05-18 2022-01-28 中国人民解放军陆军军医大学第一附属医院 Method and kit for simultaneously and noninvasively detecting GJB2 and SLC26A4 gene mutations
CN108486230B (en) * 2018-05-18 2022-02-08 中国人民解放军陆军军医大学第一附属医院 Kit for noninvasive detection of MITF gene mutation and preparation method thereof
CN109022559A (en) * 2018-08-21 2018-12-18 华中农业大学 A kind of molecular mark detection method based on two generation sequencing technologies
CN109554440A (en) * 2018-12-26 2019-04-02 山东艾克韦生物技术有限公司 Multi-primers group and the method that human T cells immune group library is constructed based on high-flux sequence using the primer sets
CN111139315A (en) * 2020-04-03 2020-05-12 杭州启棣生物技术有限公司 Method for high-throughput detection of respiratory viruses by using second-generation sequencing and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060924A (en) * 2011-10-18 2013-04-24 深圳华大基因科技有限公司 Library preparation method of trace nucleic acid sample and application thereof
CN105524983A (en) * 2014-09-30 2016-04-27 大连晶泰生物技术有限公司 Marker based on high-throughput sequencing and method and kit for capturing one or multiple specific genes of multiple samples
CN105986015A (en) * 2015-02-05 2016-10-05 大连晶泰生物技术有限公司 Method and kit for detecting one or more target sequence of multiple samples based on high-throughput sequencing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060924A (en) * 2011-10-18 2013-04-24 深圳华大基因科技有限公司 Library preparation method of trace nucleic acid sample and application thereof
CN105524983A (en) * 2014-09-30 2016-04-27 大连晶泰生物技术有限公司 Marker based on high-throughput sequencing and method and kit for capturing one or multiple specific genes of multiple samples
CN105986015A (en) * 2015-02-05 2016-10-05 大连晶泰生物技术有限公司 Method and kit for detecting one or more target sequence of multiple samples based on high-throughput sequencing

Also Published As

Publication number Publication date
CN106554955A (en) 2017-04-05

Similar Documents

Publication Publication Date Title
CN106554955B (en) Method and kit for constructing sequencing library of PKHD1 gene mutation and application thereof
CN107177670B (en) Method for detecting Parkinson disease pathogenic gene mutation in high throughput manner
CN106591441B (en) Alpha and/or beta-thalassemia mutation detection probe, method and chip based on whole gene capture sequencing and application
JP6968894B2 (en) Multiple detection method for methylated DNA
CN110079592B (en) High throughput sequencing-targeted capture of target regions for detection of genetic mutations and known, unknown gene fusion types
CN110218781B (en) Composite amplification system of 21 micro haplotype sites, next generation sequencing and typing kit and typing method
CN111670254A (en) Improved detection of microsatellite instability
CN110923314A (en) Primer group for detecting SNP locus rs9263726, crRNA sequence and application thereof
CN113668068A (en) Genome methylation library and preparation method and application thereof
CN109295500B (en) Single cell methylation sequencing technology and application thereof
CN112195238B (en) Primer group and kit for amplifying PKD1 gene
CN110607363A (en) Nucleic acid group for high-throughput detection of diabetes pathogenic gene mutation, kit and application thereof
CN107083442B (en) BRCA1/2 gene variation combined detection kit and application thereof
CN111944806A (en) Molecular tag group for high-throughput sequencing pollution detection and application thereof
CN108753934B (en) Method and kit for detecting gene mutation and preparation method thereof
CN105296471B (en) DNA label, PCR primer and application thereof
CN107937493B (en) Hairpin modified primer for allele PCR
CN108977449B (en) Pathogenic mutation of primary immunodeficiency disease and application thereof
CN111500748B (en) Primer combination for detecting 617 SNPs and InDel and application thereof in forensic identification and genetic relationship identification
CN109355288B (en) Method for enriching target DNA and application
CN108642173B (en) Method and kit for non-invasive detection of SLC26A4 gene mutation
CN109750098B (en) ATP7B gene large fragment deletion detection kit and detection method
CN111378735B (en) SMA pathogenic gene capturing kit and application
CN111485024B (en) Primer combination for individual feature identification and application thereof
CN113234822A (en) Method for capturing genetic colorectal cancer genome target sequence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant