CN106546572A - 一种短波长激光手性拉曼光谱仪 - Google Patents

一种短波长激光手性拉曼光谱仪 Download PDF

Info

Publication number
CN106546572A
CN106546572A CN201510925965.6A CN201510925965A CN106546572A CN 106546572 A CN106546572 A CN 106546572A CN 201510925965 A CN201510925965 A CN 201510925965A CN 106546572 A CN106546572 A CN 106546572A
Authority
CN
China
Prior art keywords
raman
laser
signal
circular polarization
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510925965.6A
Other languages
English (en)
Other versions
CN106546572B (zh
Inventor
李�灿
冯兆池
王鹏
张莹
唐宇轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510925965.6A priority Critical patent/CN106546572B/zh
Priority to EP16874726.9A priority patent/EP3388821B1/en
Priority to PCT/CN2016/107611 priority patent/WO2017101669A1/zh
Publication of CN106546572A publication Critical patent/CN106546572A/zh
Application granted granted Critical
Publication of CN106546572B publication Critical patent/CN106546572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/104Monochromatic plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N2021/216Polarisation-affecting properties using circular polarised light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种短波长激光手性拉曼光谱仪,由波长位于325nm到532nm之间的激光激发光源、线偏振光均匀系统、圆偏振光转换器、样品池、圆偏振光分离器、双光束分叉光纤、瑞利线滤波器、成像光谱仪、电荷耦合器件短波长宽范围灵敏的CCD、计算机组成。短波长手性拉曼光谱仪用于手性分子、生物分子的手性绝对构型确定,是化学、生物、医药领域手性分子绝对构型、构象方面分析的有力工具。

Description

一种短波长激光手性拉曼光谱仪
技术领域
一种短波长激光手性拉曼光谱仪(短波长激光拉曼光学活性光谱仪),由波长位于325nm到532nm之间的激光激发光源、线偏振光均匀系统、圆偏振光转换器、样品池、圆偏振光分离器、双光束分叉光纤、瑞利线滤波器、成像光谱仪、电荷耦合器件短波长宽范围灵敏的CCD、计算机组成。短波长手性拉曼光谱仪,可用于气体、液体和固体样品的手性拉曼光谱即拉曼光学活性光谱研究,获得它们的绝对构型、构象方面的信息。
背景技术
手性拉曼光谱仪即拉曼光学活性光谱仪通过手性样品对右、左旋圆偏振光入射光的拉曼散射信号强度差确定手性拉曼信号即拉曼光学活性信号,或等效地通过手性样品的拉曼散射光信号中的右、左旋圆偏振光的差值确定手性拉曼信号即拉曼光学活性信号。手性拉曼光谱的圆偏振光强度差即CID(右、左旋圆偏振光入射光的拉曼信号强度差与总拉曼强度之比)一般低于10-3量级,目前商品化的手性拉曼光谱仪均采用532nm激光作为激发光源。手性拉曼光谱易受荧光干扰,同时手性拉曼光谱信号的灵敏度很低,难以进行低浓度的手性样品拉曼光学活性研究。本申请将采用波长更低的激发光作为手性拉曼光谱的激发光源。利用拉曼光谱信号与入射光波长倒数的四次方成正比,手性拉曼光谱信号与入射光波长倒数的五次方成正比,以及圆强度差CID与入射光波长的倒数成正比的特点,提高拉曼光谱的探测灵敏度和手性拉曼信号的探测灵敏度。由于短波长手性拉曼光谱仪CID灵敏度及拉曼信号灵敏度均实现了提高,同时又一定程度上避开了荧光的干扰,短波长手性拉曼光谱仪的推广将促进手性拉曼光谱的研究和发展。
发明内容
一种短波长激光手性拉曼光谱仪即短波长激光拉曼光学活性光谱仪,包括波长位于325nm到532nm之间的激光激发光源、线偏振光均匀系统、圆偏振光转换器、样品池、圆偏振光分离器、双光束分叉光纤、瑞利线滤波器、成像光谱仪、电荷耦合器件短波长宽范围灵敏的CCD、计算机,其特征在于:激光激发光源发出的激光经线偏振均匀化系统照射到手性样品池、或激光激发光源发出的激光经线偏振均匀化系统后再经圆偏振光转换器照射到手性样品池,样品池中样品产生的右、左旋圆偏振拉曼信号通过瑞利线滤波器,再经圆偏振光分离器分为两束偏振光分别入射到Y型双光束光纤入射端A、B上,在光纤另一端成线性排列,入射到成像光谱仪入射狭缝,拉曼信号再经成像光谱仪分光后分别入射到光谱仪出口狭缝处的短波长宽范围灵敏的CCD上,并分别位于CCD的上半部和下半部,CCD采集系统采集上半部和下半部的光信号作为右、左旋圆偏振拉曼光谱信号转换成电信号传输至计算机中,经计算机数据处理后将右、左旋圆偏振拉曼光谱信号的和作为总拉曼信号,将右、左旋圆偏振拉曼信号的差作为圆偏振拉曼差信号(拉曼光学活性信号);圆偏振拉曼差信号/总拉曼信号作为归一化的圆偏振拉曼强度差分,完成一次采集。通过多次累加圆偏振拉曼差分谱,完成圆偏振拉曼光谱(拉曼光学活性光谱)的采集。
技术方案
将波长位于325-532nm的激光激发光源发出的激光经线偏振均匀化系统后直接照射到手性样品池,入射光为线偏振光,检测散射光中圆偏振成分,从而实现散射圆偏振(SCP)采集;或者激光激发光源发出的激光经线偏振均匀化系统后再经圆偏振光转换器照射到手性样品池,于圆偏振光转换器后设置有一可进出光路的1/2波片,通过改变1/2波片存在于光路中或远离光路的二种状态,可将右、左旋圆偏振光的拉曼信号变为左、右圆偏振光的拉曼信号,分别检测每次的散射光,入射光为圆偏振光,从而实现入射圆偏振(ICP)采集。即可在同一仪器上实现两种采集方式,激光激发光源发出的激光是否通过圆偏振光转换器来实现ICP和SCP的转换,样品产生的右、左旋圆偏振拉曼信号通过圆偏振拉曼分离器分为两束光分别入射到Y型双光束光纤入射端A、B上,信号从双光束光纤的另一端经瑞利线滤波器线性输入到光谱仪中,通过成像光谱仪分光后分别入射到出口狭缝处的短波长宽范围灵敏的CCD上,并且分别位于CCD的上半部和下半部,CCD采集系统采集上半部和下半部的光信号作为右、左圆偏振拉曼光谱信号,数据处理系统将右、左圆偏振拉曼光谱信号的和作为总拉曼信号,将右、左圆偏振拉曼信号的差作为圆偏振拉曼差信号(拉曼光学活性信号)。圆偏振拉曼差信号/总拉曼信号作为归一化的圆偏振拉曼强度差分,完成一次圆偏振激光拉曼光谱(拉曼光学活性光谱)采集。同时通过改变圆偏振光分离器的工作方式,实现右、左圆偏振激光拉曼信号交替入射到双光束分叉光纤的,进而CCD的下半部和上半部,进而完成圆偏振拉曼差分的检测的光路补偿,通过多次累加圆偏振拉曼差分谱,完成圆偏振拉曼光谱的采集。
有益效果:
短波长手性拉曼光谱的优势:本发明用于325-532nm区域的手性拉曼光谱即拉曼光学活性光谱研究,获取手性物质的手型结构,鉴定其手性中心,测定分子绝对构型,在手性催化、药物检测以及生物科学领域将发挥重要的作用。
附图说明
图1为短波长手性拉曼光谱仪系统配置图。
图2为R/S-α-pinene(neat)拉曼和手性拉曼谱(457nm,50mW,10min)。
图3为L-Alanine(1M)拉曼和手性拉曼谱(532nm,1000mW,489min;457nm,200mW,63min)。
图4为L-Proline(1M)拉曼和手性拉曼谱(532nm,800mW,426min;457nm,200mW,206min)。
图5为L-glucose(3.7M)拉曼和手性拉曼谱(532nm,800mW,472min;457nm,200mW,276min)。
图6为Lysozyme(75mg/mL)拉曼和手性拉曼谱(532nm,900mW,360min;457nm,250mW,172min)。
图7为TG4T-K+(~mM)拉曼和手性拉曼谱(532nm,1200mW,1000min;457nm,200mW,125min)。
具体实施方式
实施例1
如附图1所示,一种短波长激光手性拉曼光谱仪(短波长激光拉曼光学活性光谱仪),由波长位于325nm到532nm之间的激光激发光源、线偏振光均匀系统、圆偏振光转换器、样品池、圆偏振光分离器、双光束分叉光纤、瑞利线滤波器、成像光谱仪、电荷耦合器件短波长宽范围灵敏的CCD、计算机组成。
激发光源主要由不同波长的DPSS激光器构成。457nm激光输出功率大于300mW,532nm激光输出功率大于1000mW,输出功率与模式稳定,满足手性拉曼光谱的需要。
短波长激光器发出的激光通过线偏振光均匀系统,经过准直聚焦后由高精度的偏振器件校准成为高度偏振的线偏振光;该线偏振光通过圆偏振光转换器进行转换,根据需求选择相应的器件(如各种类型的波片、液晶延迟器、KD*P等),可将系统在入射圆偏振系统(ICP)、散射圆偏振系统(SCP)、双向圆偏振系统I(DCP I)和双向圆偏振系统II(DCP II)之间转换。经样品池后收集的散射光进入到圆偏振分离器内,滤掉瑞利线后,根据之前选择的系统进行手性光束分离,分离后的光束进入分叉光纤导入成像光谱仪。光谱仪根据要求可以有反射式、透射式及凹面式光栅三种选择。信号从双光束光纤的另一端输入到光谱仪中,通过成像光谱仪分光后分别入射到出口狭缝处的短波长宽范围灵敏的CCD上,并且分别位于CCD的上半部和下半部,CCD采集系统采集上半部和下半部的光信号作为右、左旋圆偏振拉曼光谱信号转换成电信号传输至计算机中,经计算机数据处理后将右、左旋圆偏振拉曼光谱信号的和作为总拉曼信号,将右、左旋圆偏振拉曼信号的差作为圆偏振拉曼差信号(拉曼光学活性信号);圆偏振拉曼差信号/总拉曼信号作为归一化的圆偏振拉曼强度差分,完成一次采集。通过改变圆偏振光分离器的工作方式进行右、左旋互换,进而完成圆偏振拉曼差分检测的光路补偿,完成一个循环的圆偏振拉曼差分采集。通过累加均匀后,降低噪声。整个系统的光学器件皆为宽波带器件,可采集200nm-600nm波段的手性拉曼光谱。
整个系统中的机械控制,数据采集,电子信息反馈皆通过电脑控制,见图1中虚线。
附图2-7分别为R/S-α-pinene、L-Alanine、L-Proline、L-glucose、Lysozyme和TG4T-K+的拉曼谱图和手性拉曼光谱图,这些谱图均有很好的信噪比,从457nm谱图与532nm谱图的比较上可以看出,短波长手性拉曼光谱采集下,拉曼光谱与手性拉曼光谱的强度具有很大增强,且信噪比和圆偏振拉曼强度差分(CID)均有提升。从这些结果可以看出,短波长手性拉曼光谱在研究手性体系上具有巨大的潜力和优势,可以预期手性拉曼光谱将在手性催化、药物检测以及生物科学领域发挥重要的作用。

Claims (8)

1.一种短波长激光手性拉曼光谱仪,是短波长激光拉曼光学活性光谱仪,包括波长位于325nm到532nm之间的激光激发光源(此处短波长泛指激发光源波长短于常规拉曼光谱仪采用的可见光区域的532nm)、线偏振光均匀系统、圆偏振光转换器、样品池、圆偏振光分离器、双光束分叉光纤、瑞利线滤波器、成像光谱仪、电荷耦合器件短波长宽范围灵敏的CCD、计算机,其特征在于:激光激发光源发出的激光经线偏振均匀化系统照射到手性样品池、或激光激发光源发出的激光经线偏振均匀化系统后再经圆偏振光转换器照射到手性样品池,样品池中样品产生的右、左旋圆偏振拉曼信号通过瑞利线滤波器,再经圆偏振光分离器分为两束偏振光分别入射到Y型双光束光纤入射端A、B上,在光纤另一端成线性排列,入射到成像光谱仪入射狭缝,拉曼信号再经成像光谱仪分光后分别入射到光谱仪出口狭缝处的短波长宽范围灵敏的CCD上,并分别位于CCD的上半部和下半部,CCD采集系统采集上半部和下半部的光信号即右、左旋圆偏振拉曼光谱信号转换成电信号传输至计算机中,经计算机数据处理后将右、左旋圆偏振拉曼光谱信号的和作为总拉曼信号,将右、左旋圆偏振拉曼信号的差作为圆偏振拉曼差信号即拉曼光学活性信号;圆偏振拉曼差信号/总拉曼信号作为归一化的圆偏振拉曼强度差分,完成一次采集。
2.按照权利要求1所述短波长激光手性拉曼光谱仪,其特征在于:
圆偏振光分离器由沿光路传输方向顺序排列的1/4波片(由液晶延迟器实现)和线偏振光分离器beam spliter构成;通过改变圆偏振光分离器中1/4波片上施加的电压进而使1/4波片的主轴方向转变90度,实现右、左旋圆偏振激光拉曼信号交替入射到双光束分叉光纤的A、B端,进入CCD的下半部和上半部,用于圆偏振拉曼差分检测的光路补偿。
3.按照权利要求1所述短波长激光手性拉曼光谱仪,其特征在于:
线偏振光均匀系统为一沿几何中心匀速旋转的1/2波片,1/2波片的几何中心处于光路上,1/2波片与光路垂直。
4.按照权利要求1所述短波长激光手性拉曼光谱仪,其特征在于:
激光激发光源发出的激光经线偏振均匀化系统后直接照射到手性样品池,入射光为线偏振光,通过检测散射光中圆偏振成分,实现散射圆偏振(SCP)采集;或者激光激发光源发出的激光经线偏振均匀化系统后再经圆偏振光转换器转换成圆偏振光照射到手性样品池,于圆偏振光转换器后设置有一可进出光路的1/2波片,通过改变1/2波片存在于光路中或远离光路的二种状态,可将右、左旋圆偏振光变为左、右圆偏振光,分别检测每次的散射光,入射光为圆偏振光,从而实现入射圆偏振(ICP)采集;即可在同一仪器上实现两种采集方式,激光激发光源发出的激光是否通过圆偏振光转换器来实现ICP和SCP的转换。
5.按照权利要求1所述短波长激光手性拉曼光谱仪,其特征在于:
激光激发光源包括一个波长在325-532nm连续可调的激光激发光源或并联设置的二个以上波长处于325-532nm的激光激发光源,并联设置的激光激发光源是指二个以上激光激发光源出光光路相平行,它们发出的激光经反射镜反射后进入光谱仪的入射光路;光路中的光学元件除瑞利线滤波器外,均在325-532nm之间具有宽范围响应,减少由于改变波长和更换光学元件带来的误差,从而实现不同激发光波长下对同一样品在相同光路条件下的采集。
6.按照权利要求1所述短波长激光手性拉曼光谱仪,其特征在于:
实现拉曼信号分光的成像光谱仪可以采用透射式光栅成像光谱仪、反射式光栅成像光谱仪或凹面光栅成像光谱仪。
7.按照权利要求1所述短波长激光手性拉曼光谱仪,其特征在于:
数据处理系统将右、左旋圆偏振拉曼光谱信号的和作为总拉曼信号,将右、左旋圆偏振拉曼信号的差作为圆偏振拉曼差信号即拉曼光学活性信号;圆偏振拉曼差信号/总拉曼信号作为归一化的圆偏振拉曼强度差分完成一次圆偏振拉曼光谱(拉曼光学活性光谱)采集;同时通过改变圆偏振光分离器的工作方式,实现右、左旋圆偏振激光拉曼信号交替入射到双光束分叉光纤的B、A端,成像于CCD的下半部和上半部,进而完成圆偏振拉曼差分检测的光路补偿,完成一个循环的圆偏振拉曼差信号采集;通过多次累加圆偏振拉曼差谱,完成圆偏振拉曼光谱(拉曼光学活性光谱)的采集。
8.按照权利要求1所述短波长激光手性拉曼光谱仪,其特征在于:
激光光源采用波长在325-532nm连续可调的激光激发光源,当采用波长短于532nm激光做激发光源时,可以部分避开手性分子荧光信号对拉曼采集、手性拉曼信号采集的干扰;同时,由于拉曼信号与激发波长倒数的四次方成正比,手性拉曼信号(拉曼光学活性信号)与激发波长倒数的五次方成正比,归一化的圆偏振拉曼强度差分与激发波长的倒数成正比;短波长手性拉曼光谱仪可以提高手性拉曼信号(拉曼光学活性信号)的探测灵敏度。
CN201510925965.6A 2015-12-13 2015-12-13 一种短波长激光手性拉曼光谱仪 Active CN106546572B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510925965.6A CN106546572B (zh) 2015-12-13 2015-12-13 一种短波长激光手性拉曼光谱仪
EP16874726.9A EP3388821B1 (en) 2015-12-13 2016-11-29 Short-wavelength laser-excitation chiral raman spectrometer
PCT/CN2016/107611 WO2017101669A1 (zh) 2015-12-13 2016-11-29 一种短波长激光手性拉曼光谱仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510925965.6A CN106546572B (zh) 2015-12-13 2015-12-13 一种短波长激光手性拉曼光谱仪

Publications (2)

Publication Number Publication Date
CN106546572A true CN106546572A (zh) 2017-03-29
CN106546572B CN106546572B (zh) 2018-06-19

Family

ID=58365764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510925965.6A Active CN106546572B (zh) 2015-12-13 2015-12-13 一种短波长激光手性拉曼光谱仪

Country Status (3)

Country Link
EP (1) EP3388821B1 (zh)
CN (1) CN106546572B (zh)
WO (1) WO2017101669A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548791A (zh) * 2018-02-05 2018-09-18 广东研捷医药科技有限公司 一种叶菌唑非对映异构体的绝对构型鉴定方法
CN109724962A (zh) * 2017-10-27 2019-05-07 中国科学院大连化学物理研究所 一种用于手性拉曼光谱仪的多采集装置及其采集方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507627B (zh) * 2018-06-27 2023-09-26 吉林大学 一种高温高压下气态物种浓度和温度的光谱检测系统
CN112513620A (zh) * 2018-07-13 2021-03-16 丹麦技术大学 用于执行偏振分辨拉曼光谱分析的设备
CN108956578B (zh) * 2018-08-13 2023-09-12 吉林大学 一种拉曼光谱实时原位标定荧光光谱的测量系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405049B1 (en) * 2001-07-03 2011-12-28 President and Fellows of Harvard College System and method for polarization coherent anti-stokes raman scattering microscopy
CN103618205A (zh) * 2013-11-28 2014-03-05 清华大学 一种全固态单纵模黄光激光器
US20140240702A1 (en) * 2011-09-30 2014-08-28 Cornell University Laser based apparatus, methods and applications
CN104953463A (zh) * 2014-03-27 2015-09-30 中国科学院大连化学物理研究所 一种低脉冲功率激光泵浦的气体介质拉曼激光器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806740B (zh) * 2010-04-19 2011-12-21 福建师范大学 一种人体血浆表面增强拉曼光谱结合主成分分析检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405049B1 (en) * 2001-07-03 2011-12-28 President and Fellows of Harvard College System and method for polarization coherent anti-stokes raman scattering microscopy
US20140240702A1 (en) * 2011-09-30 2014-08-28 Cornell University Laser based apparatus, methods and applications
CN103618205A (zh) * 2013-11-28 2014-03-05 清华大学 一种全固态单纵模黄光激光器
CN104953463A (zh) * 2014-03-27 2015-09-30 中国科学院大连化学物理研究所 一种低脉冲功率激光泵浦的气体介质拉曼激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGGANG LI ET AL.: "Simultaneous acquisition of all four forms of circular polarization Raman optical activity:results for a-pinene and lysozyme", 《J. RAMAN SPECTROSC.》 *
邱石: "手性分子的手性拉曼光谱研究", 《中国科学院研究生院博士学位2011年度学位论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724962A (zh) * 2017-10-27 2019-05-07 中国科学院大连化学物理研究所 一种用于手性拉曼光谱仪的多采集装置及其采集方法
CN108548791A (zh) * 2018-02-05 2018-09-18 广东研捷医药科技有限公司 一种叶菌唑非对映异构体的绝对构型鉴定方法

Also Published As

Publication number Publication date
EP3388821B1 (en) 2023-03-29
WO2017101669A1 (zh) 2017-06-22
EP3388821A4 (en) 2019-07-24
CN106546572B (zh) 2018-06-19
EP3388821A1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
US7084972B2 (en) Method and apparatus for compact dispersive imaging spectrometer
CN106546572A (zh) 一种短波长激光手性拉曼光谱仪
US8269174B2 (en) Method and apparatus for compact spectrometer for multipoint sampling of an object
US7440096B2 (en) Method and apparatus for compact spectrometer for fiber array spectral translator
US7548310B2 (en) Method and apparatus for compact spectrometer for multipoint sampling of an object
US20060203238A1 (en) Method and apparatus for compact spectrometer for detecting hazardous agents
WO2007044593A2 (en) System and method for a chemical imaging threat assessor with a probe
CN1729388A (zh) 光学分析系统
CN107290056A (zh) 拉曼光谱测试系统
US20220236109A1 (en) System and method for hyperspectral imaging in highly scattering media by the spectral phasor approach using two filters
CN108020516A (zh) 光谱仪或成像光谱仪
CN207007336U (zh) 拉曼光谱测试系统
CN103063307A (zh) 像面干涉高光谱显微成像装置和方法
JP2012127855A (ja) 分光装置
CN205317346U (zh) 光谱仪
CN109724962A (zh) 一种用于手性拉曼光谱仪的多采集装置及其采集方法
CN107153053A (zh) 一种多通道圆偏振荧光光谱仪
CN207894818U (zh) 一种水质检测装置
CN115753732A (zh) 一种双波长高精度拉曼光谱仪
CN111307284A (zh) 一种基于双探测器的微型近红外光纤光谱仪
KR20210070514A (ko) 멀티형 형광측정기

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant