CN106528954A - 空间网状天线温度载荷作用下机电集成优化设计方法 - Google Patents

空间网状天线温度载荷作用下机电集成优化设计方法 Download PDF

Info

Publication number
CN106528954A
CN106528954A CN201610908553.6A CN201610908553A CN106528954A CN 106528954 A CN106528954 A CN 106528954A CN 201610908553 A CN201610908553 A CN 201610908553A CN 106528954 A CN106528954 A CN 106528954A
Authority
CN
China
Prior art keywords
antenna
unit
represent
finite element
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610908553.6A
Other languages
English (en)
Inventor
张树新
杜敬利
张岳震
张顺吉
张逸群
宋立伟
杨东武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian Univ
Original Assignee
Xidian Univ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian Univ filed Critical Xidian Univ
Priority to CN201610908553.6A priority Critical patent/CN106528954A/zh
Publication of CN106528954A publication Critical patent/CN106528954A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Abstract

本发明公开了一种空间网状天线温度载荷作用下机电集成优化设计方法,具体步骤包括:(1)输入天线几何参数、材料参数与电参数;(2)建立天线结构有限元模型;(3)建立天线热有限元模型;(4)设置边界条件;(5)选择轨道;(6)温度场计算;(7)加载温度场载荷;(8)热变形计算;(9)输出热变形位移;(10)计算理想天线远区电场;(11)近似计算天线远区电场变化量;(12)计算天线远区电场;(13)判断电性能是否满足要求;(14)输出天线结构设计方案;(15)更新天线参数。本发明采用近似计算方法分析温度载荷作用下的空间网状天线电性能,实现天线结构机电集成优化设计。

Description

空间网状天线温度载荷作用下机电集成优化设计方法
技术领域
[0001] 本发明属于雷达天线技术领域,具体涉及雷达天线领域中的一种空间网状天线温 度载荷作用下机电集成优化设计方法。
背景技术
[0002] 网状天线由于其质量轻、收拢体积小等优点被逐渐应用于空间天线设计中。网状 天线在轨运行过程中,周期性地受到太空辐射热影响,热变形引起的天线表面变形对天线 的电性能产生很大影响。热变形带来的天线表面误差将引起天线增益下降、副瓣电平上升、 波束倾斜,严重影响天线的工作性能。因此,有必要针对空间网状天线在轨运行受到的温度 载荷进行分析,提出温度载荷作用下的天线电性能近似计算方法,进而预测空间天线在轨 环境下,太阳辐射与热变形对天线电性能的影响,并进行天线结构机电集成优化设计。
[0003] 段宝岩等在中国专利"大型地基面天线的温度载荷机电耦合分析方法"中提出了 一种分析大型地基面天线的温度载荷机电耦合分析方法。该方法以地基面天线为对象,进 行温度载荷作用下的天线电性能分析;虽然可以为空间网状天线提供借鉴,但无法完全适 用于空间网状天线上。洪元、朱敏波等在中国专利"一种星载天线在轨温度的极端工况预测 方法"中,公开了一种星载天线在轨温度的极端工况预测方法。该方法以星载天线为对象, 预测星载天线处于极端工况的热变形问题;该方法没有考虑到天线热变形对电性能的影 响,难以预测天线在温度载荷作用下电性能变化情况。因此,针对空间网状天线在轨受辐射 热影响的问题,需要分析在轨温度载荷对天线电性能的影响,提出温度载荷作用下天线电 性能近似计算方法,并以此进行天线结构机电集成优化设计。
发明内容
[0004] 本发明的目的是克服上述现有技术的不足,提供一种空间网状天线温度载荷作用 下机电集成优化设计方法,该方法基于机电热集成分析的概念,采用近似计算方法分析温 度载荷作用下的空间网状天线电性能,并进行天线结构机电集成优化设计。
[0005] 本发明的技术方案是:空间网状天线温度载荷作用下机电集成优化设计方法,包 括如下步骤:
[0006] (1)输入天线几何参数、材料参数与电参数
[0007] 输入用户提供的空间网状天线的几何参数、材料参数以及电参数;其中几何参数 包括口径、焦距、偏置距离、前后网面最小距离;材料参数包括索结构、桁架结构和金属丝网 结构的材料密度、横截面积、杨氏弹性模量、泊松比以及比热容、热传导系数、热膨胀系数、 表面辐射率、吸收率;电参数包括工作波长、馈源参数、馈源初级方向图以及包括天线增益、 波瓣宽度、副瓣电平、指向精度在内的电性能要求;
[0008] (2)建立天线结构有限元模型
[0009] 根据用户提供的天线几何参数、材料参数建立天线结构有限元模型,其中索结构 采用只受拉的杆单元进行建模,桁架结构采用梁单元进行建模,金属丝网结构采用壳单元 进行建模;
[0010] (3)建立天线热有限元模型
[0011] 在天线结构有限元模型的基础上,提取天线结构有限元模型中的节点坐标和单元 连接关系,根据索结构、桁架结构和金属丝网结构的热参数,分别按照杆单元、梁单元以及 壳单元建立天线热有限元模型;
[0012] ⑷设置边界条件
[0013] 根据空间网状天线所处的太空环境,设置热传导和热辐射两种导热方式,根据天 线结构各部分之间的关系、各部件之间的辐射吸热、遮挡,添加热有限元模型的边界条件;
[0014] (5)选择轨道
[0015] 根据空间网状天线所在卫星的轨道高度,设置网状天线的轨道参数;
[0016] ⑶温度场计算
[0017] 根据空间网状天线热有限元模型、边界条件以及轨道参数,进行天线温度场计算;
[0018] (7)加载温度场载荷
[0019] 将温度场计算结果作为热载荷施加到结构有限元模型上,进行静态的热变形计 算;
[0020] ⑶热变形计算
[0021] 在结构有限元模型施加热载荷的基础上,组集有限元刚度矩阵,得到天线结构整 体热位移场计算方程,依据此方程进行天线结构热变形计算:
[0022] [K] {5} = {Fq}
[0023] 其中,[K]为整体刚度矩阵,{δ}为整体空间热位移列向量,{FQ}为整体节点热载荷 列向量;
[0024] (9)输出热变形位移
[0025] 将天线结构热变形计算得到的整体空间热位移列向量输出到指定文件,以便进行 后续电性能计算;
[0026] (10)计算理想天线远区电场
[0027] 根据天线几何参数中的口径、焦距、偏置高度,电参数中的工作波长、馈源参数、馈 源初级方向图,采用物理光学法计算理想天线远区电场;
[0028] (11)近似计算天线远区电场变化量
[0029] 11a)以建立的结构有限元模型为基础,提取有限元模型中处于电磁波照射下的反 射面部分的节点、单元和形函数信息;
[0030] 1 lb)通过下式计算单元一次系数矩阵:
Figure CN106528954AD00061
[0033] 其中,表示单元e的一次系数矩阵,上标e表示从步骤(11a)中提取的结构有限元 模型中某一单元,下标i表示位于单元e上的节点编号,表示单元e的一次系数矩阵的第i 个分量,符号e表示从属关系,NUM表示单元e上的节点总数,及表示单元e的法向矢量,/7(?) 表示反射面位置矢量?处的入射磁场,F表示反射面位置矢量,exp表示自然对数的指数运 算,j表示虚数单位,k表示自由空间波数,!表示远场观察点的单位矢量,Qi表示步骤(11a) 中提取的相对于第i个节点的形函数,95表示位置矢量?在馈源坐标系下的俯仰角,下标s表 示馈源坐标系,Θ表示远场观察点俯仰角, 〇8表示单元e在口径面内的投影面积;
[0034] 11c)通过下式计算单元二次系数矩阵:
Figure CN106528954AD00071
[0037] 其中,/<表示单元e的二次系数矩阵,上标e表示从步骤(11a)中提取的结构有限元 模型中某一单元,u和v分别表示位于单元e上的节点编号,ffuv表示由节点u和v构成的单元 e的二次系数矩阵分量,符号e表示从属关系,NUM表示单元e上的节点总数,k表示自由空间 波数,#表示单元e的法向矢量,#(?)_表示反射面位置矢量处的入射磁场,?表示反射面位 置矢量,exp表示自然对数的指数运算,j表示虚数单位,发表示远场观察点的单位矢量,Q u表 示步骤(11a)中提取的相对于第u个节点的形函数,Qv表示步骤(11a)中提取的相对于第v个 节点的形函数,9 S表示位置矢量在馈源坐标系下的俯仰角,下标s表示馈源坐标系,Θ表示 远场观察点俯仰角,〇8表示单元e在口径面内的投影面积;
[0038] lid)通过下式组集总体一次系数矩阵:
Figure CN106528954AD00072
[0040] 其中,Hi表示总体一次系数矩阵,f表示单元e的一次系数矩阵,上标e表示从步骤 (11a)中提取的结构有限元模型中某一单元,m表示单元总数,A表示有限元组集运算;
[0041] lie)通过下式组集总体二次系数矩阵:
Figure CN106528954AD00073
[0043] 其中,H2表示总体二次系数矩阵,A〗表示单元e的二次系数矩阵,上标e表示从步骤 (11a)中提取的结构有限元模型中某一单元,m表示单元总数,A表示有限元组集运算;
[0044] Ilf)结合有限元模型求解后的节点位移与总体一次、二次系数矩阵,通过下式计 算载荷作用下的远区电场变化量:
Figure CN106528954AD00074
[0046] 其中,表示载荷作用下的远区电场变化量,j表示虚数单位,k表示自由空间波 数,η表示自由空间波阻抗,exp表示自然对数的指数运算,R表示远场观察点位置矢量幅度, π表示圆周率,f表示单位并矢,如表示单位矢量左的并矢,Hl表示总体一次系数矩阵,出表 示总体二次系数矩阵,Δ ζ表示求解结构有限元模型后得到的节点轴向位移列向量,Δζ2表 示求解结构有限元模型后得到的节点轴向位移乘积列向量;
[0047] (12)计算天线远区电场
[0048] 在步骤(10)和(11)的基础上,叠加理想反射面天线的远区电场和采用近似方法计 算得到的远区电场变化量,通过下式计算远区电场:
Figure CN106528954AD00081
[0050] 其中,f表示远区电场,Μ表示采用近似方法计算得到的远区电场变化量,尾表 示步骤(10)得到的理想天线远区电场;
[0051] (13)判断电性能是否满足要求
[0052] 判断步骤(12)得到的天线远区电场是否满足天线增益、波瓣宽度、副瓣电平、指向 精度在内的电性能要求,如果满足要求则转至步骤(14),否则转至步骤(15);
[0053] (14)输出天线结构设计方案
[0054] 当天线远区电场满足天线电性能要求时,输出天线结构设计数据;
[0055] (15)更新天线参数
[0056] 当天线远区电场不满足天线电性能要求时,更新天线参数,转至步骤(1)。
[0057] 上述步骤(10)所述的物理光学法是一种基于面电流分布的高频近似方法,计算公 式如下:
Figure CN106528954AD00082
[0060] 其中,氧表示远区电场,及表示远场观察点位置矢量,j表示虚数单位,k表示自由 空间波数,η表示自由空间波阻抗,exp表示自然对数的指数运算,R表示远场观察点位置矢 量幅度, 31表示圆周率,F表示单位并矢,ϋ表示单位矢量身的并矢,Σ表示反射曲面,J(/) 表示反射面上位置矢量F处的面电流密度,F表示反射面位置矢量,i表示远场观察点的单 位矢量,σ表示投影口面,?i表示单位法向矢量,沒表示反射面位置矢量?处的入射磁场。
[0061] 本发明的有益效果:本发明首先输入天线几何参数、材料参数与电参数信息,根据 几何参数、材料参数信息建立天线结构有限元模型,与此同时,根据天线几何参数与电参 数,采用物理光学法计算理想天线远区电场;其次,在天线结构有限元模型基础上,结合天 线材料参数建立天线热有限元模型,并根据天线所处的太空环境,设置边界条件、选择轨道 参数,进行温度场计算;再次,将温度场计算结果作为外载荷施加到天线结构有限元模型 上,进行静态热变形计算,输出天线热变形位移;最终,将热变形位移引入到电性能近似计 算中,通过叠加理想天线远区电场获得热载荷作用下的天线电性能,以此进行天线结构机 电集成优化设计。
[0062] 与现有技术相比,本发明具有以下优点:
[0063] 1.本发明基于机电热集成分析的概念,从天线结构有限元模型出发,建立天线热 有限元模型,进行静态热变形分析,最终采用近似计算方法得到天线热载荷作用下的天线 电性能;
[0064] 2.本发明采用近似计算方法计算天线热载荷作用下的电性能,可以在保证计算精 度的前提下,减少计算时间,提高计算效率,可以快速获得全轨道热载荷作用下的天线电性 能。
[0065] 以下将结合附图对本发明做进一步详细说明。
附图说明
[0066]图1为本发明的流程图;
[0067]图2为网状天线结构示意图;
[0068]图3为网状天线投影示意图;
[0069] 图4为理想天线与热载荷作用下网状天线xz面远场方向图。
具体实施方式
[0070] 下面结合附图1,对本发明具体实施方式作进一步的详细描述:
[0071] 本发明提供了一种空间网状天线温度载荷作用下机电集成优化设计方法,包括如 下步骤:
[0072] 步骤1,输入用户提供的包含空间网状天线的几何参数、材料参数以及电参数在内 的各参数,其中几何参数包括口径、焦距、偏置距离、前后网面最小距离,材料参数包括索结 构、桁架结构和金属丝网结构的材料密度、横截面积、杨氏弹性模量、泊松比,以及比热容、 热传导系数、热膨胀系数、表面辐射率,吸收率,电参数包括工作波长、馈源参数、馈源初级 方向图以及包括天线增益、波瓣宽度、副瓣电平、指向精度在内的电性能要求;
[0073] 步骤2,根据用户提供的天线几何参数、材料参数建立天线结构有限元模型,其中 索结构采用只受拉的杆单元进行建模、桁架结构采用梁单元进行建模,金属丝网结构采用 壳单元进行建模;
[0074] 步骤3,在天线结构有限元模型的基础上,提取天线结构有限元模型中的节点坐标 和单元连接关系,根据索结构、桁架结构和金属丝网结构的热参数,分别按照杆单元、梁单 元与壳单元建立天线热有限元模型;
[0075] 步骤4,根据空间网状天线所处的太空环境,设置热传导和热辐射两种导热方式, 根据天线结构各部分之间的关系、各部件之间的辐射吸热、遮挡,添加热有限元模型的边界 条件;
[0076] 步骤5,根据空间网状天线所在卫星的轨道高度,设置网状天线的轨道参数;
[0077] 步骤6,根据空间网状天线热有限元模型、边界条件与轨道参数,进行天线温度场 计算;
[0078] 步骤7,将温度场计算结果作为热载荷施加到结构有限元模型上,进行静态的热变 形计算;
[0079] 步骤8,在结构有限元模型施加热载荷的基础上,组集有限元刚度矩阵,得到天线 结构整体热位移场计算方程,依据此方程进行天线结构热变形计算
[0080] [K] {5} = {Fq}
[0081] 其中,[K]为整体刚度矩阵,{δ}为整体空间热位移列向量,{Fq}为整体节点热载荷 列向量;
[0082] 步骤9,将天线结构热变形计算得到的整体空间热位移列向量输出到指定文件,以 便为后续电性能计算;
[0083] 步骤10,根据天线几何参数中的口径、焦距、偏置高度,电参数中的工作波长、馈源 参数、馈源初级方向图,采用下式物理光学法计算理想天线远区电场:
Figure CN106528954AD00101
[0086] 其中,.属5表示远区电场,身表示远场观察点位置矢量,j表示虚数单位,k表示自由 空间波数,η表示自由空间波阻抗,exp表示自然对数的指数运算,R表示远场观察点位置矢 量幅度, π表示圆周率,I表示单位并矢,ϋ表示单位矢量左的并矢,Σ表示反射曲面,<?(:?> 表示反射面上位置矢量F处的面电流密度,F表示反射面位置矢量,i表示远场观察点的单 位矢量,σ表示投影口面?表示单位法向矢量,/7(7)表示反射面位置矢量F处的入射磁场。
[0087] 步骤11,采用以下子步近似计算天线远区电场变化量
[0088] 11a)以建立的结构有限元模型为基础,提取有限元模型中处于电磁波照射下的反 射面部分的节点、单元和形函数信息;
[0089] 1 lb)通过下式计算单元一次系数矩阵:
Figure CN106528954AD00102
[0092] 其中,/<表示单元e的一次系数矩阵,上标e表示从步骤11a)中提取的结构有限元 模型中某一单元,下标i表示位于单元e上的节点编号,表示单元e的一次系数矩阵的第i 个分量,符号e表示从属关系,NUM表示单元e上的节点总数,#表示单元e的法向矢量,/7(F) 表示反射面位置矢量:F处的入射磁场,表示反射面位置矢量,exp表示自然对数的指数运 算,j表示虚数单位,k表示自由空间波数,及表示远场观察点的单位矢量,Qi表示步骤11a)中 提取的相对于第i个节点的形函数,9 5表示位置矢量?在馈源坐标系下的俯仰角,下标s表示 馈源坐标系,Θ表示远场观察点俯仰角,〇8表示单元e在口径面内的投影面积;
[0093] 11c)通过下式计算单元二次系数矩阵:
Figure CN106528954AD00103
[0096] 其中,表示单元e的二次系数矩阵,上标e表示从步骤11a)中提取的结构有限元 模型中某一单元,u和v分别表示位于单元e上的节点编号,表示由节点u和v构成的单元 e的二次系数矩阵分量,符号e表示从属关系,NUM表示单元e上的节点总数,k表示自由空间 波数,#表示单元e的法向矢量,表示反射面位置矢量?处的入射磁场,F表示反射面位 置矢量,exp表示自然对数的指数运算,j表示虚数单位,左表示远场观察点的单位矢量,Q u表 示步骤11a)中提取的相对于第u个节点的形函数,Qv表示步骤11a)中提取的相对于第v个节 点的形函数,9 5表示位置矢量?在馈源坐标系下的俯仰角,下标s表示馈源坐标系,Θ表示远 场观察点俯仰角,〇8表示单元e在口径面内的投影面积;
[0097] lid)通过下式组集总体一次系数矩阵:
Figure CN106528954AD00111
[0099] 其中,Hi表示总体一次系数矩阵,表示单元e的一次系数矩阵,上标e表示从步骤 11a)中提取的结构有限元模型中某一单元,m表示单元总数,A表示有限元组集运算;
[0100] lie)通过下式组集总体二次系数矩阵:
Figure CN106528954AD00112
[0102] 其中,H2表示总体二次系数矩阵,/?2e表示单元e的二次系数矩阵,上标e表示从步骤 11a)中提取的结构有限元模型中某一单元,m表示单元总数,A表示有限元组集运算;
[0103] Ilf)结合有限元模型求解后的节点位移与总体一次、二次系数矩阵,通过下式计 算载荷作用下的远区电场变化量:
Figure CN106528954AD00113
[0105] 其中,Αέ表示载荷作用下的远区电场变化量,j表示虚数单位,k表示自由空间波 数,η表示自由空间波阻抗,exp表示自然对数的指数运算,R表示远场观察点位置矢量幅度, π表示圆周率,I表示单位并矢,々左表示单位矢量i的并矢,Hi表示总体一次系数矩阵,H2表 示总体二次系数矩阵,Δ ζ表示求解结构有限元模型后得到的节点轴向位移列向量,Δζ2表 示求解结构有限元模型后得到的节点轴向位移乘积列向量;
[0106] 步骤12,在步骤10和11的基础上,叠加理想反射面天线的远区电场和采用近似方 法计算得到的远区电场变化量,通过下式计算远区电场:
Figure CN106528954AD00114
[0108] 其中,J表示远区电场,ΔΙ表示采用近似方法计算得到的远区电场变化量,氧表 示步骤10得到的理想天线远区电场;
[0109] 步骤13,判断步骤12得到的天线远区电场是否满足天线增益、波瓣宽度、副瓣电 平、指向精度在内的电性能要求,如果满足要求则转至步骤14,否则转至步骤15;
[0110] 步骤14,当天线远区电场满足天线电性能要求时,输出天线结构设计数据;
[0111] 步骤15,当天线远区电场不满足天线电性能要求时,更新天线参数,转至步骤。
[0112] 本发明的优点可通过以下仿真实验进一步说明:
[0113] i.仿真条件:
[0114] 网状天线最大投影口径9.23m、焦距6m,偏置高度5m,前后网面最小间距0.2m,如图 2所示。工作频率2GHz,馈源采用Cosine-Q类型馈源,极化方式为右旋圆极化,馈源参数为Q x = Qy = 8.338,馈源倾斜角41.64度。网状反射面前网面在口径面内沿半径方向等分6段,如 图3所示,其中虚线代表周边桁架,实线代表索网。索的杨氏弹性模量为E = 20GPa,索横截面 积为A = 3.14mm2,索密度为1200kg/m3,周边桁架杨氏弹性模量为4000GPa,横杆密度为 1800kg/m 3,竖杆密度为3220kg/m3,斜杆密度为1840kg/m3,横纵竖杆均为圆形横截面积,其 中横杆内径13 · 8mm,外径15mm,竖杆内径14 · 4mm,外径15 · 6mm,斜杆内径14 · 4mm,外径 15.6mm〇
[0115] 2.仿真结果:
[0116] 采用本发明的方法进行网状天线处于热载荷作用下的变形分析,并输出热变形位 移,计算天线电性能,进行机电集成优化设计。理想天线方向图与热载荷作用下的方向图如 图4所示,其中虚线表示理想天线状态,实线表示热变形状态。表1给出了理想天线与热载荷 作用下天线方向图参数。结合图4与表1可以看出,在热载荷作用下,天线方向图发生了畸 变,出现了最大方向系数下降、副瓣上升,其中方向系数由43.35dB下降到43.06dB,副瓣电 平由-28 · 97dB 上升至-28 · 78dB。
[0117] 表1理想天线与热载荷作用下天线方向图参数表
Figure CN106528954AD00121
[0119] 综上所述,本发明首先输入天线几何参数、材料参数与电参数信息,根据几何参 数、材料参数信息建立天线结构有限元模型,与此同时,根据天线几何参数与电参数,采用 物理光学法计算理想天线远区电场;其次,在天线结构有限元模型基础上,结合天线材料参 数建立天线热有限元模型,并根据天线所处的太空环境,设置边界条件、选择轨道参数,进 行温度场计算;再次,将温度场计算结果作为外载荷施加到天线结构有限元模型上,进行静 态热变形计算,输出天线热变形位移;最终,将热变形位移引入到电性能近似计算中,通过 叠加理想天线远区电场获得热载荷作用下的天线电性能,以此进行天线结构机电集成优化 设计。与现有技术相比,本发明具有以下优点:
[0120] 1.本发明基于机电热集成分析的概念,从天线结构有限元模型出发,建立天线热 有限元模型,进行静态热变形分析,最终采用近似计算方法得到天线热载荷作用下的天线 电性能;
[0121] 2.本发明采用近似计算方法计算天线热载荷作用下的电性能,可以在保证计算精 度的前提下,减少计算时间,提高计算效率,可以快速获得全轨道热载荷作用下的天线电性 能。
[0122] 本实施方式中没有详细叙述的部分属本行业的公知的常用手段,这里不一一叙 述。以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本 发明相同或相似的设计均属于本发明的保护范围之内。

Claims (2)

1.空间网状天线温度载荷作用下机电集成优化设计方法,其特征在于,包括如下步骤: (I) 输入天线几何参数、材料参数与电参数 输入用户提供的空间网状天线的几何参数、材料参数以及电参数;其中几何参数包括 口径、焦距、偏置距离、前后网面最小距离;材料参数包括索结构、桁架结构和金属丝网结构 的材料密度、横截面积、杨氏弹性模量、泊松比以及比热容、热传导系数、热膨胀系数、表面 辐射率、吸收率;电参数包括工作波长、馈源参数、馈源初级方向图以及包括天线增益、波瓣 宽度、副瓣电平、指向精度在内的电性能要求; ⑵建立天线结构有限元模型 根据用户提供的天线几何参数、材料参数建立天线结构有限元模型,其中索结构采用 只受拉的杆单元进行建模,桁架结构采用梁单元进行建模,金属丝网结构采用壳单元进行 建模; ⑶建立天线热有限元模型 在天线结构有限元模型的基础上,提取天线结构有限元模型中的节点坐标和单元连接 关系,根据索结构、桁架结构和金属丝网结构的热参数,分别按照杆单元、梁单元以及壳单 元建立天线热有限元模型; ⑷设置边界条件 根据空间网状天线所处的太空环境,设置热传导和热辐射两种导热方式,根据天线结 构各部分之间的关系、各部件之间的辐射吸热、遮挡,添加热有限元模型的边界条件; ⑶选择轨道 根据空间网状天线所在卫星的轨道高度,设置网状天线的轨道参数; (6) 温度场计算 根据空间网状天线热有限元模型、边界条件以及轨道参数,进行天线温度场计算; (7) 加载温度场载荷 将温度场计算结果作为热载荷施加到结构有限元模型上,进行静态的热变形计算; ⑶热变形计算 在结构有限元模型施加热载荷的基础上,组集有限元刚度矩阵,得到天线结构整体热 位移场计算方程,依据此方程进行天线结构热变形计算: [K] {5} = {Fq} 其中,[K]为整体刚度矩阵,岡为整体空间热位移列向量,{Fq}为整体节点热载荷列向 量; (9) 输出热变形位移 将天线结构热变形计算得到的整体空间热位移列向量输出到指定文件,以便进行后续 电性能计算; (10) 计算理想天线远区电场 根据天线几何参数中的口径、焦距、偏置高度,电参数中的工作波长、馈源参数、馈源初 级方向图,采用物理光学法计算理想天线远区电场; (II) 近似计算天线远区电场变化量 11a)以建立的结构有限元模型为基础,提取有限元模型中处于电磁波照射下的反射面 部分的节点、单元和形函数信息; 1 lb)通过下式计算单元一次系数矩阵:
Figure CN106528954AC00031
其中,表示单元e的一次系数矩阵,上标e表示从步骤(11a)中提取的结构有限元模型 中某一单元,下标i表示位于单元e上的节点编号,@表示单元e的一次系数矩阵的第i个分 量,符号e表示从属关系,NUM表示单元e上的节点总数,#表示单元e的法向矢量,/)(7) _示 反射面位置矢量?处的入射磁场,?表示反射面位置矢量,exp表示自然对数的指数运算,j 表示虚数单位,k表示自由空间波数,|表示远场观察点的单位矢量,Qi表示步骤(11a)中提 取的相对于第i个节点的形函数,9 S表示位置矢量/在馈源坐标系下的俯仰角,下标s表示馈 源坐标系,Θ表示远场观察点俯仰角,〇8表示单元e在口径面内的投影面积; 1 lc)通过下式计算单元二次系数矩阵:
Figure CN106528954AC00032
其中表示单元e的二次系数矩阵,上标e表示从步骤(11a)中提取的结构有限元模型 中某一单元,u和v分别表示位于单元e上的节点编号,表示由节点u和v构成的单元e的 二次系数矩阵分量,符号e表示从属关系,NUM表示单元e上的节点总数,k表示自由空间波 数,犮表示单元e的法向矢量,/7(7)表示反射面位置矢量:F处的入射磁场,F表示反射面位置 矢量,exp表示自然对数的指数运算,j表示虚数单位,.左表示远场观察点的单位矢量,Q u表示 步骤(11a)中提取的相对于第u个节点的形函数,Qv表示步骤(11a)中提取的相对于第v个节 点的形函数,9 S表示位置矢量F在馈源坐标系下的俯仰角,下标s表示馈源坐标系,Θ表示远 场观察点俯仰角,〇8表示单元e在口径面内的投影面积; 1 Id)通过下式组集总体一次系数矩阵: m Η, = AA," e=l 其中,Hi表示总体一次系数矩阵,表示单元e的一次系数矩阵,上标e表示从步骤 (11a)中提取的结构有限元模型中某一单元,m表示单元总数,A表示有限元组集运算; 1 le)通过下式组集总体二次系数矩阵: Μ Η, = Α/ι; ~ e=l - 其中,H2表示总体二次系数矩阵,表示单元e的二次系数矩阵,上标e表示从步骤 (11a)中提取的结构有限元模型中某一单元,m表示单元总数,A表示有限元组集运算; Ilf)结合有限元模型求解后的节点位移与总体一次、二次系数矩阵,通过下式计算载 荷作用下的远区电场变化量:
Figure CN106528954AC00041
其中,表示载荷作用下的远区电场变化量,j表示虚数单位,k表示自由空间波数,η 表示自由空间波阻抗,exp表示自然对数的指数运算,R表示远场观察点位置矢量幅度,表 示圆周率,Ϊ表示单位并矢,表示单位矢量及的并矢,Hi表示总体一次系数矩阵,H 2表示 总体二次系数矩阵,△ z表示求解结构有限元模型后得到的节点轴向位移列向量,△ z2表示 求解结构有限元模型后得到的节点轴向位移乘积列向量; (12) 计算天线远区电场 在步骤(10)和(11)的基础上,叠加理想反射面天线的远区电场和采用近似方法计算得 到的远区电场变化量,通过下式计算远区电场: E = E0 + AE 其中,f表示远区电场,表示采用近似方法计算得到的远区电场变化量,氣表示步 骤(ίο)得到的理想天线远区电场; (13) 判断电性能是否满足要求 判断步骤(12)得到的天线远区电场是否满足天线增益、波瓣宽度、副瓣电平、指向精度 在内的电性能要求,如果满足要求则转至步骤(14),否则转至步骤(15); (14) 输出天线结构设计方案 当天线远区电场满足天线电性能要求时,输出天线结构设计数据; (15) 更新天线参数 当天线远区电场不满足天线电性能要求时,更新天线参数,转至步骤(1)。
2.根据权利要求1所述的空间网状天线温度载荷作用下机电集成优化设计方法,其特 征在于:步骤(10)所述的物理光学法是一种基于面电流分布的高频近似方法,计算公式如 下:
Figure CN106528954AC00042
其中,爲表示远区电场,5表示远场观察点位置矢量,j表示虚数单位,k表示自由空间 波数,η表示自由空间波阻抗,exp表示自然对数的指数运算,R表示远场观察点位置矢量幅 度,:π表示圆周率,f表示单位并矢,龙^表示单位矢量左的并矢,Σ表示反射曲面,表示 反射面上位置矢量F处的面电流密度,F表示反射面位置矢量,j表示远场观察点的单位矢 量,σ表示投影口面,./J表示单位法向矢量,/7(7)表示反射面位置矢量F处的入射磁场。
CN201610908553.6A 2016-10-19 2016-10-19 空间网状天线温度载荷作用下机电集成优化设计方法 Pending CN106528954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610908553.6A CN106528954A (zh) 2016-10-19 2016-10-19 空间网状天线温度载荷作用下机电集成优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610908553.6A CN106528954A (zh) 2016-10-19 2016-10-19 空间网状天线温度载荷作用下机电集成优化设计方法

Publications (1)

Publication Number Publication Date
CN106528954A true CN106528954A (zh) 2017-03-22

Family

ID=58332509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610908553.6A Pending CN106528954A (zh) 2016-10-19 2016-10-19 空间网状天线温度载荷作用下机电集成优化设计方法

Country Status (1)

Country Link
CN (1) CN106528954A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590309A (zh) * 2017-08-03 2018-01-16 西安电子科技大学 基于近似计算公式的网状天线电性能时域特性分析方法
CN111274726A (zh) * 2020-01-16 2020-06-12 东南大学 一种考虑热效应的天线罩电磁性能分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243276A (zh) * 2011-03-28 2011-11-16 西安电子科技大学 大型地基面天线的温度载荷机电耦合分析方法
CN104112051A (zh) * 2014-07-25 2014-10-22 西安电子科技大学 基于单元形函数的反射面天线机电集成设计方法
CN105160115A (zh) * 2015-09-14 2015-12-16 西安电子科技大学 基于近似与灵敏度分析的反射面天线机电集成优化设计方法
CN106021766A (zh) * 2016-05-30 2016-10-12 西安电子科技大学 基于机电集成优化的圆极化网状天线高指向精度设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243276A (zh) * 2011-03-28 2011-11-16 西安电子科技大学 大型地基面天线的温度载荷机电耦合分析方法
CN104112051A (zh) * 2014-07-25 2014-10-22 西安电子科技大学 基于单元形函数的反射面天线机电集成设计方法
CN105160115A (zh) * 2015-09-14 2015-12-16 西安电子科技大学 基于近似与灵敏度分析的反射面天线机电集成优化设计方法
CN106021766A (zh) * 2016-05-30 2016-10-12 西安电子科技大学 基于机电集成优化的圆极化网状天线高指向精度设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王婧: "空间大型轻柔系统结构热分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590309A (zh) * 2017-08-03 2018-01-16 西安电子科技大学 基于近似计算公式的网状天线电性能时域特性分析方法
CN107590309B (zh) * 2017-08-03 2020-04-24 西安电子科技大学 基于近似计算公式的网状天线电性能时域特性分析方法
CN111274726A (zh) * 2020-01-16 2020-06-12 东南大学 一种考虑热效应的天线罩电磁性能分析方法
CN111274726B (zh) * 2020-01-16 2021-03-16 东南大学 一种考虑热效应的天线罩电磁性能分析方法

Similar Documents

Publication Publication Date Title
Fernández-Godino et al. Review of multi-fidelity models
Luo et al. Edge-based finite element scheme for the Euler equations
CN104112051B (zh) 基于单元形函数的反射面天线机电集成设计方法
Yeh et al. The CMC–MRB global environmental multiscale (GEM) model. Part III: Nonhydrostatic formulation
US9175669B2 (en) V-shaped arrangements of turbines
CN106446469A (zh) 基于二阶近似计算公式的空间网状天线电性能动力响应分析方法
CN103353904A (zh) 有源夹层微带天线结构与电磁综合的数据驱动设计方法及天线
CN104200074B (zh) 快速获取目标电磁散射特性的多层复波束方法
CN105302962A (zh) 基于结构-电磁混合单元的反射面天线机电集成优化设计方法
CN106528954A (zh) 空间网状天线温度载荷作用下机电集成优化设计方法
Allen et al. Reliability-based shape optimization of structures undergoing fluid–structure interaction phenomena
Zhai et al. A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation
Yagbasan et al. Characteristic basis function method for solving electromagnetic scattering problems over rough terrain profiles
CN106021764A (zh) 面向机电耦合的有源相控阵天线性能仿真置信度的计算方法
CN102930071A (zh) 基于非匹配网格的周期结构的三维电磁场仿真模拟方法
CN106021766A (zh) 基于机电集成优化的圆极化网状天线高指向精度设计方法
CN106354910A (zh) 一种面向有源相控阵天线的结构主模态确定方法
CN106650101A (zh) 基于机电耦合模型的空间网状反射面天线温度载荷分析方法
CN106021743A (zh) 基于结构-电磁集成灵敏度信息的星载网状天线波束赋形设计方法
CN107357962A (zh) 一种基于自适应代理模型的天线罩肋截面尺寸优化方法
CN105160115B (zh) 基于近似与灵敏度分析的反射面天线机电集成优化设计方法
CN106599504A (zh) 基于机电耦合模型的空间网状天线动力载荷分析方法
CN106934097A (zh) 面向电性能的空间网状天线关键动力学模态选取方法
Cheng et al. Hybrid reliability-based design optimization of complex structures with random and interval uncertainties based on ASS-HRA
Gardonio et al. Vibration energy harvesting from an array of flexible stalks exposed to airflow: A theoretical study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170322