CN106441306A - Intelligent life detecting robot with capabilities of independent positioning and map building - Google Patents

Intelligent life detecting robot with capabilities of independent positioning and map building Download PDF

Info

Publication number
CN106441306A
CN106441306A CN201610905625.1A CN201610905625A CN106441306A CN 106441306 A CN106441306 A CN 106441306A CN 201610905625 A CN201610905625 A CN 201610905625A CN 106441306 A CN106441306 A CN 106441306A
Authority
CN
China
Prior art keywords
module
system
positioning
life
laser scanning
Prior art date
Application number
CN201610905625.1A
Other languages
Chinese (zh)
Inventor
楼明明
张雷
董大南
Original Assignee
华东师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东师范大学 filed Critical 华东师范大学
Priority to CN201610905625.1A priority Critical patent/CN106441306A/en
Publication of CN106441306A publication Critical patent/CN106441306A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Abstract

The invention discloses an intelligent life detecting robot with capabilities of independent positioning and map building. A life detecting module is used for detecting life features in an environment, and feeding back an electrical signal to a micro-processing unit when a life is detected, and the micro-processing unit is used for controlling a remote alarm module to alarm; a positioning base station is used for providing real-time coordinate information of the robot in the located environment for a master controller and recording a historical movement track of the robot. The intelligent life detecting robot has the advantages that through application of a laser scanning module, on one hand, the robot can independently carry out life detection in a severe environment without remote control of people; on the other hand, a built environmental map can show indoor environmental information under the condition that no person enters the environment, and the rescue difficulty is reduced; through application of a positioning system, detected coordinate information of a to-be-rescued person in the environment is provided, and a historical detecting track of the robot is recorded, accordingly, the search and rescue efficiency of wounded personnel is improved and injuries and deaths of rescue workers in a high-risk environment are reduced.

Description

自主定位与地图构建的智能生命探测机器人 The autonomous positioning detection robot intelligent life and Mapping of

技术领域 FIELD

[0001] 本发明属于智能机器人技术领域,涉及一种在恶劣室内环境下能够智能避障、自主探测生命体的机器人,在探测生命体的同时能够返回周围环境地图并在地图中实时显示机器人自身的坐标位置和历史轨迹记录。 [0001] The present invention belongs to the technical field of intelligent robots, relates to an intelligent obstacle avoidance in harsh indoor environments, autonomous robot to detect life forms, while detecting the living body to return surroundings map and show the robot itself on the map in real time coordinate position and historical track record.

背景技术 Background technique

[0002] 无论在生产还是在生活中,当发生严重的地质或人为灾害时,如:火灾、高危化学品泄漏、建筑物塌陷等,恶劣的环境和二次灾害的不可控性都给救援人员的工作开展带来了极大的困难,浪费了宝贵的救援时间,甚至还将危及救援人员的生命安全。 [0002] both in production and in life, when serious geological or man-made disasters, such as: fire, high-risk chemical spills, building collapses and other harsh environments and secondary disasters uncontrollable gave rescue workers the work carried out has brought great difficulties, wasting precious rescue time, it would even endanger the lives of aid workers. 因此,人们希望能够在救援人员进入事发建筑内前使用带有生命探测功能的机器人来帮助救援人员来寻找搜救目标。 Therefore, it is desirable to be able to enter the robot before the incident in the building with the use of life-detection function of the rescue workers to help rescue workers search and rescue to find the target.

[0003] 而在现阶段的救援领域中,很少使用这样的探测机器人,而且需要更多的人为远程操控,无法进一步减轻救援人员的工作负担和缩减人为操控带来的时间消耗。 [0003] In the field of relief at this stage, there is little use of such exploration robots, and requires more man-made remote control, can not further reduce the burden of rescue workers and reduce the time manipulated to bring consumption. 传统的生命探测机器人往往只具备单纯的待救人员检测的功能,救援人员还是无法获得救灾建筑内环境概况和待救人员在该环境中的准确位置信息。 Traditional life detection robot often only have a simple function to be detected rescue personnel, rescue workers still can not get relief within the built environment overview and accurate position information staff in the environment to be saved.

发明内容 SUMMARY

[0004] 本发明的目的是提供一种自主定位与地图构建的智能生命探测机器人,解决了现有技术中存在的只是从单一方面探测生命体的问题。 [0004] The present invention is to provide a self-locating intelligent life detection robot and Mapping to solve the problem only to detect life forms from single aspects of art in existence. 智能避障、自主检测生命体的实现,减轻了远程操控带来的工作负担,也缩短了生命体的检测时间。 Intelligent obstacle avoidance, to achieve independent detection of life and alleviate the burden caused by remote control, but also shorten the detection time living body. 激光扫描系统的现场点云数据采集,实现了室内环境的地图构建,帮助救援人员掌握更多环境信息。 Scene point cloud data collection laser scanning system to achieve the indoor environment map building to help rescue workers have more environmental information. 同时,定位系统将检测到的待救人员的坐标位置信息显示在室内环境地图上,并记录机器人的历史探测轨迹,以供救援人员制定有效的救援方案。 Coordinate location information at the same time, the system will detect the positioning of rescue personnel to be displayed on the indoor environment map, track and record the history of the detection robot, for rescue workers to develop effective rescue plan.

[0005] 实现本发明目的的具体技术方案是: [0005] The purpose of the present invention, specific technical solutions are:

[0006] -种自主定位与地图构建的智能生命探测机器人,它包括:移动系统、终端系统及定位系统,移动系统通过无线连接实现与终端系统、定位系统的双向信息交互,定位系统通过无线连接向终端系统单向传输数据;其中,所述的移动系统包括行走模块、微处理单元、 生命探测模块、远程报警模块、激光扫描模块、无线模块和定位标签模块;所述的终端系统包括主控单元和无线通信模块;所述的定位系统包括定位基站模块和无线数据传输模块; 其中: [0006] - the kind of self-locating intelligent life detection robot and Mapping, which includes: a mobile system, terminal systems and positioning systems, mobile systems connected interactive two-way information to achieve the end system, positioning system via a wireless positioning system via a wireless connection one-way data transfer to the terminal system; wherein said system comprises a traveling mobile module, a micro processing unit, a life detection module, a remote alarm modules, laser scanning module, a radio module and a location tag module; said terminal system comprises a main control unit and a wireless communication module; positioning said positioning system comprises a base station module and a wireless data transmission module; wherein:

[0007] 所述移动系统的行走模块由小车、驱动小车的直流电机以及电机驱动模块组成, 电机驱动模块和直流电机通过有线连接,并安装在小车上; [0007] The walking mobile system modules by car, the car driven DC motor and a motor drive module, and the DC motor driving module via a wired connection, and mounted on the trolley;

[0008] 所述移动系统的定位标签模块由启动休眠模块、调制模块、UWB发射模块组成,启动休眠模块、调制模块、UWB发射模块通过有线电路集成;启动休眠模块与调制模块连接,调制模块与UWB发射模块连接; [0008] The mobile positioning system tags by a module start the hibernation module, the modulation module, UWB transmitting module, start the hibernation module, the modulation module, UWB transmitting module through a wired integrated circuit; start hibernation module is connected with the modulation module, the modulation module UWB transmitter module is connected;

[0009] 所述移动系统的激光扫描模块包括激光扫描电机模块和激光扫描逻辑模块;激光扫描电机模块和激光扫描逻辑模块通过有线连接; [0009] The movement of the laser scanning system includes a laser module and the laser scanning module scanning motor logic module; laser scanning motor and the laser scanning module logic module through a wired connection;

[0010] 所述定位系统的定位基站模块包括UWB接收模块和解调模块,UWB接收模块与解调模块通过有线电路集成,定位基站模块与无线数据传输模块有线连接; [0010] The positioning system comprises a positioning base station module and a demodulation module UWB receiver module, a UWB receiver module through a wired and demodulation integrated circuit module, and the wireless base station module positioning data transmission module wired connection;

[0011] 所述终端系统的主控单元与无线通信模块有线连接; [0011] The main control unit of the terminal system and a wireless communication module wired connection;

[0012] 所述的行走模块、生命探测模块、远程报警模块、无线模块、定位标签模块、激光扫描模块与微处理单元通过有线连接,实现信息交互;所述的移动系统的定位标签模块通过内置的UWB发射模块向定位系统的定位基站模块发送UWB信号,定位基站模块再通过无线数据传输模块实现与主控单元的信息交互;终端系统的主控单元通过无线通信模块将处理完的信息发送给移动系统的微处理单元,实现对移动系统的控制;其中: [0012] The walk module, life detection module, remote alarm module, a wireless module, a tag module is positioned, with the laser scanning module micro processing unit through a wired connection, implement information exchange; mobile positioning system of the built-in tag module the UWB transmitter module to locate a base station positioning system module transmitted UWB signals, and then to realize the positioning station module exchanging information with the master unit via a wireless data transmission module; information terminal system transmits the master unit through the wireless communication module to be processed microprocessing unit moving system to achieve control of the mobile system; wherein:

[0013] 激光扫描模块通过激光扫描来产生所在空间的平面点云地图信息并判断与周围障碍物的距离和位置;微处理单元利用激光扫描模块采集的距离和位置信息来控制行走模块实现自主行走;终端系统利用激光扫描模块采集的环境平面点云信息来构建周围环境地图;生命探测模块检测环境中的生命特征,当检测到生命时,将电信号反馈给微处理单元, 微处理单元控制远程报警模块进行报警;定位系统向终端系统提供行走模块在所处环境中的实时坐标信息并记录历史运动轨迹。 [0013] Laser scanning module to generate a point cloud map information plane located by the laser scanning and the spatial distance and determining the position of the surrounding obstacles; microprocessing unit using the distance and the position information acquired by the laser scanning module implemented automatically traveling walking control module ; plane terminal system using point cloud environment information collected by laser scanning module to construct a map surroundings; detection module detects the vital life environment, upon detection of the life, the electrical signal back to the micro processing unit, micro processing unit remote control alarm module alarm; walk module provides real-time positioning system coordinate information of the environment of the system to the terminal and recorded history trajectory.

[0014] 所述的无线模块的最大通讯距离为150米,支持UART协议数据传输模式,高达1M缓存空间,最高支持波特率460800bps。 [0014] The maximum distance of the wireless communication module 150 m, UART protocol to support data transmission mode, up to 1M buffer space up to the baud rate 460800bps.

[0015] 所述的生命探测模块的红外辐射范围为3~50μπι。 The life of the [0015] infrared radiation detector module in the range of 3 ~ 50μπι.

[0016] 所述激光扫描模块具有360度的扫描区域,有效测距为5~8米,距离和角度分辨率分别为10~15毫米和0.5~1度。 [0016] The laser scanning module having a 360-degree scan region, the effective distance of 5-8 meters, the distance and angular resolution of 10 to 15 mm, respectively, and 0.5 to 1 degree.

[0017] 所述定位基站模块定位精度达10~15厘米,射频带宽为2~3GHz。 The [0017] base station module positioning accuracy of the positioning 10 to 15 cm, RF bandwidth of 2 ~ 3GHz.

[0018] 所述定位标签模块标签的更新速率为1~10Hz,标签中心频率为6~7GHz。 [0018] The update rate label positioning tag module is 1 ~ 10Hz, the center frequency of the tag 6 ~ 7GHz.

[0019] 所述无线模块、无线数据传输模块及无线通信模块结构相同。 [0019] The wireless module, wireless data transmission module and the same wireless communication module structure.

[0020] 在本发明中,激光扫描模块的运用一方面使机器人在恶劣环境中能够自主进行生命检测,而不需要人的远程操控;另一方面构建的环境地图能够在没有人员进入的情况下展现室内环境信息,有利于救援策略的制定,降低了救援的难度。 On the other hand built environment map can not have the personnel to enter; [0020] In the present invention, the use of laser scanning module on the one hand the autonomous robot can detect life in harsh environments, without the need for human remote control show indoor environmental information, facilitate the development aid strategy, reducing the difficulty of the rescue.

[0021] 定位系统的运用不仅提供了检测到的待救人员在环境中的坐标信息,还记录了机器人的历史探测轨迹,提高了伤员搜救工作效率的同时减少了高危环境下救援人员的伤亡。 The use of [0021] positioning system not only provides detected until rescue personnel coordinate information in the environment, but also records the history probing robot trajectory, improved to reduce the casualties at high risk environment rescuers of wounded rescue work efficiency at the same time.

附图说明 BRIEF DESCRIPTION

[0022]图1为本发明结构框图; [0022] FIG. 1 a block diagram of the present invention;

[0023] 图2为本发明移动系统结构框图; [0023] FIG. 2 is a schematic structural diagram of a mobile system of the invention;

[0024] 图3为本发明终端系统结构框图; [0024] FIG 3 a block diagram of a terminal system of the present invention;

[0025]图4为本发明定位系统结构框图; [0025] Figure 4 a block diagram of a positioning system of the present invention;

[0026]图5为本发明激光扫描模块与微处理单元通讯图; [0026] FIG. 5 with a laser scanning module micro processing unit of the present invention FIG communication;

[0027]图6为本发明UWB信号定位流程图; [0027] The flowchart of FIG. 6 UWB signal localization present invention;

[0028] 图7为本发明自主定位测距原理图; [0028] FIG. 7 to FIG autonomous positioning location principle of the present invention;

[0029]图8为本发明激光扫描模块的地图构建流程图。 [0029] Figure 8 is the map for a laser scanning module Construction flowchart.

具体实施方式 Detailed ways

[0030] 为了便于理解,下面结合附图对本发明涉及的一种自主定位与地图构建的智能生命探测机器人的实施方式作进一步阐明。 [0030] For ease of understanding, the accompanying drawings of the present invention relates to an autonomous positioning intelligent manner life detection robot map constructed embodiment will be further elucidated binding.

[0031] 下面结合附图对本发明的结构、工作原理及工作过程进行详细说明: [0031] DRAWINGS The structure, operating principle and operation of the present invention will be described in detail:

[0032] 图1为本发明结构框图。 [0032] FIG. 1 a block diagram of the present invention.

[0033] 参阅图1,本发明包括移动系统1、终端系统2、定位系统3三大系统,移动系统1通过无线连接实现与终端系统2、定位系统3的双向信息交互,定位系统3通过无线连接向终端系统2单向传输数据。 [0033] Referring to Figure 1, the present invention comprises a mobile system 1, bidirectional information exchange terminal system 2, the positioning system 3 of the three systems, the mobile radio system is achieved by a system connected to the terminal 2, the positioning system 3, 3 through the wireless positioning system connected to a one-way data transmission terminal system 2.

[0034]图2为本发明移动系统结构框图。 [0034] FIG. 2 is a schematic structural diagram of a mobile system of the invention.

[0035] 参阅图2,移动系统1由生命探测模块11、远程报警模块12、激光扫描模块13、行走模块14、微处理单元15、定位标签模块16、无线模块17组成。 [0035] Referring to Figure 2, a mobile system 1 life detection module 11, remote alarm module 12, the laser scanning module 13, traveling block 14, a micro processing unit 15, the positioning tag module 16, a wireless module 17 components. 其中,所述激光扫描模块13包括激光扫描电机模块131和激光扫描逻辑模块132;所述的行走模块由小车141、驱动小车的直流电机142以及电机驱动模块143组成,电机驱动模块143和直流电机142通过有线连接,并安装在小车141上;所述的定位标签模块16由启动休眠模块161、调制模块162、UWB发射模块163组成。 Wherein the laser scanning module 13 includes a laser scanning motor and the laser scan logic module 131, module 132; the traveling trolley by the module 141, the drive carriage DC motor 142 and a motor driving module composed of 143, 143 and the motor driving module DC via a wired connection 142, and 141 mounted on a carriage; the positioning module 16 by a start tag hibernation module 161, a modulation module 162, UWB transmitting module 163 components.

[0036] 微处理单元15通过控制行走模块14中的电机驱动模块143来控制直流电机142的转速,从而实现智能小车的运动转向,在行进的过程中激光扫描模块13实时对前方障碍物进行数据采集并返回微处理单元15,微处理单元15通过返回信号判断前方障碍物的位置, 并驱动直流电机142进行避障动作,实现机器人的自主生命探测。 [0036] The microprocessor speed DC motor controlled by a control module running motor drive module 143 14 15 142 means to effect movement of the steering smart car, the laser scanning module 13 to the front obstacle data in real time in the course of traveling collection and returns a micro processing unit 15, a micro processing unit 15 detected by the front obstacle determination return position signal and drives the DC motor 142 performs avoidance operation, to achieve self-life of the robot. 由于激光扫描模块13所采集的数据是点集,通过无线模块17传送给终端系统2后,再经过滤波除去杂点后进行特征提取,用来构建智能小车周围的环境地图。 Since the laser scanning data acquisition module 13 is a point set, transmitting by the wireless module 17 to the terminal system 2, the feature extraction is then filtered to remove the heteroaryl point for building an environment map around smart car. 与此同时,定位系统3对正在监控的定位标签模块16进行确定,并将获取到的定位标签模块16的方位信息发送到终端系统2,从而在终端系统2的环境地图坐标系统中能够实时显示定位标签模块16的位置信息。 At the same time, three pairs of the positioning system are monitoring module 16 determines the positioning tab and the acquired location position information transmitting tag module 16 to the terminal system 2, the terminal can be displayed in real time system environment map coordinate system 2 location tag module 16 of the position information. 当生命探测模块11探测到生命体时,微处理单元15将控制远程报警模块12发出警报,并通过无线模块17将警报发送给终端系统2。 When the life detection module 11 detects the living body, the microprocessing unit 15 controls the alarm module 12 remote alarm and send an alert via the wireless module 17 to the terminal system 2. 终端系统2的环境地图上将显示探测到的生命体的位置坐标以及智能小车的历史运动轨迹记录。 Environmental map on the terminal system 2 display position coordinates and historical trajectory of the smart car is detected life on record.

[0037] 移动系统1在电路设计上主要采用集成电路来完成,特别是微处理单元15的主控芯片是采用基于Arduino平台的Atmel Atmega328单片机。 [0037] The mobile system 1 on the circuit design of integrated circuits is accomplished mainly, in particular micro processing unit 15 is the main chip microcontroller using Atmel Atmega328 Arduino platform. 主控芯片的稳定性好,反应速度快,以数字方式处理信号,从而解决了现有技术中存在的波形输出失真,测量误差多,程控反应慢。 Master chip stability, fast response, digitally processed signal, thereby solving the prior art that the output waveform distortion, the measurement error more programmable slow response. 由于主控芯片采用具有大规模集成电路设计的Arduino开放平台,从而解决了系统硬件设计复杂,体积笨重,难以达到较高控制精度等问题。 Since the master chip with LSI design Arduino open platform, thereby solving the system hardware design complexity, bulky, difficult to achieve high accuracy control problems. 电机驱动模块143的主芯片为L298N,可以直接驱动两路直流电机,使整个移动系统1保持在较低的功耗下工作。 Motor drive module 143 is the main chip L298N, two direct drive DC motor, holding the entire mobile system operated at a lower power. 无线模块17采用是Nordic公司的nRF24L01芯片,具有130ys的快速切换和唤醒时间,工作于2.4GHz~ 2.5GHz ISM频段,数据传输率为2Mb/s,最大SPI速率为lOMb/s,由于融合了增强型ShockBurst技术,因而其通信频道可通过程序进行配置,不仅可用来实现微处理单元15与终端系统2的数据通信,还可用来实现移动系统1与定位系统2之间的数据传输。 The wireless module 17 uses a Nordic's nRF24L01 chip, and having a fast switching 130ys wakeup time work in the 2.4GHz ~ 2.5GHz ISM band, the data transfer rate of 2Mb / s, the maximum rate of SPI lOMb / s, due to the enhanced fusion ShockBurst type technology, so the communication channel can be configured by a program not only can be used to enable data communication with the micro processing unit 15 of the terminal system 2, it can also be used for data transfer between the system 1 and the mobile positioning system.

[0038]图3为本发明终端系统结构框图。 [0038] FIG 3 a block diagram of a terminal system of the present invention.

[0039] 参阅图3,终端系统2包括无线通信模块21和主控单元22。 [0039] Referring to Figure 3, the terminal system 2 includes a wireless communication module 21 and the main control unit 22. 主控单元22进行总体数据分析,处理由无线通信模块21接收的包括移动系统1和定位系统3的数据。 The main control unit 22 performs the overall data analysis, data processing system comprising a mobile positioning system 3 and received by the wireless communication module 21. 主控单元22在接收移动系统1的数据后,进行滤波除去杂点以及特征提取,用来构建移动系统1周围的环境地图。 The main control unit 22 after receiving the data of the mobile system 1, and filtered to remove heteroaryl feature extraction point for building the environment map around the mobile system. 主控单元又通过接收定位系统3的数据,在构建的环境地图上实时显示移动系统1 的位置。 And data received via the main control unit 3, a positioning system, real-time display of the position of the mobile system 1 constructed in the environment map.

[0040] 图4为本发明定位系统结构框图。 [0040] Figure 4 a block diagram of a positioning system of the present invention.

[0041] 参阅图4,定位系统3由定位基站模块31和无线数据传输模块32组成。 [0041] Referring to Figure 4, the base station positioning system 3 by the positioning module 31 and the module 32 is composed of wireless data transmission. 其中,定位基站模块31包括UWB接收模块311和解调模块312。 Wherein the positioning station 31 includes a UWB module 311 and demodulation module receiving module 312. 定位系统3通过UWB接收模块311来接收移动系统1发射的UWB信号,并根据多次的UWB信号确定移动系统1的位置,再将移动系统1的位置信息通过无线数据传输模块32发送给终端系统2。 3 by the positioning system receives UWB module 311 receives the UWB signals transmitted mobile system 1, and determine the position of the mobile system according to UWB signals a plurality of times, then the location information of the mobile system 1 to the terminal system 32 via a wireless data transmission module 2.

[0042] 本发明的设计核心是实现智能探测、自主定位及环境地图构建,具体实施过程如下: [0042] The core design of the present invention is to achieve a smart probe, the autonomous positioning and the environment map building, specific implementation process is as follows:

[0043] (1)智能探测 [0043] (1) smart probe

[0044]图5为激光扫描模块与微处理单元通讯图。 [0044] FIG. 5 is a laser scanning unit module and the communication microprocessor of FIG. 如图5所示,微处理单元15通过TTL电平的UART串口信号与激光扫描模块13的测距核心进行通讯。 5, the micro processing unit 15 performs communication through the ranging core UART serial TTL level signal and the laser scanning module 13. 激光扫描模块13采用的是RoboPeak团队开发的低成本二维激光雷达解决方案RPLIDAR。 Laser scanning module 13 uses RoboPeak team developed a low-cost two-dimensional laser radar solutions RPLIDAR. 微处理单元15向RPLIDAR发送请求报文,RPLIDAR执行完对应的处理后向微处理单元15发送应答报文。 Micro processing unit 15 sends a request message to RPLIDAR, sends a response packet after RPLIDAR been performed corresponding to the micro-processing unit 15 process. 只有在微处理单元15发送了开始扫描测距的请求后,RPLIDAR才会开始扫描工作。 Only after the micro-processing unit 15 transmits the scanning start request ranging, RPLIDAR scan job will begin. RPLIDAR采用了激光三角测距技术,能够发射经过调制的红外激光信号,该信号在照射到目标物体后产生的反光将被RPLIDAR的视觉采集模块接收,经过嵌入在RPLIDAR内部的DSP处理器实时解算,被照射到的目标物体与RPLIDAR的距离值以及当前的夹角信号将通过通讯接口输出给微处理单元15, 微处理单元15根据返回的数据值判断障碍物的具体位置,然后控制电机的转向,从而实现智能避障功能。 RPLIDAR using laser triangulation technology, infrared laser light can be emitted through the modulation signal, reflecting the signal generated after the irradiation target object to be visually RPLIDAR acquisition module receives, via embedded inside RPLIDAR DSP processor real time solver , it was irradiated to a target object and the distance value and the current RPLIDAR angle signal to the micro processing unit 15, the microprocessing unit 15 through the communication interface depending on the position of the obstacle determines the data value returned, and then control the steering motor in order to achieve intelligent obstacle avoidance function.

[0045] 生命探测模块11可以集中探测红外辐射为3~50μπι的红外线,而人体皮肤的红外辐射范围也为3~50μπι,其中8~14μπι占全部人体辐射能量的46%,因此当生命探测模块11 在检测到的红外辐射中,8~14μπι波长的红外辐射占所有红外辐射能量的40 %~50 %时,微处理单元15将控制远程报警模块12发出警报。 [0045] The life detection module 11 may focus detecting infrared radiation infrared 3 ~ 50μπι, and the infrared radiation range of human skin is also 3 ~ 50μπι, wherein 8 ~ 14μπι accounted for 46% of the total body radiation energy, so when the life detection module 11 when the detected infrared radiation, the infrared radiation of a wavelength of 8 ~ 14μπι 40% to 50% of all the energy of the infrared radiation, the microprocessing unit 15 controls the alarm module 12 to alert the remote.

[0046] (2)自主定位 [0046] (2) autonomous positioning

[0047]图6是UWB信号定位流程图。 [0047] FIG. 6 is a flowchart UWB signal location. 如图6所示,本发明涉及的UWB信号定位,包括以下步骤:①启动:微处理器15通过控制启动休眠模块161将定位标签模块16从休眠状态调至工作状态;调制模块162对标签的标识等基带信息进行处理,然后通过UWB发射模块163发射给UWB接收模块311; As shown in FIG 6, UWB positioning signal according to the present invention, comprises: ① From Start: start microprocessor 15 by the control module 161 will be positioned Hibernation tag module 16 is adjusted to the working state from a sleep state; modulation module 162 of the label other identification information baseband processing, and then transmitted to the UWB module 163 receives the UWB transmitter module 311;

[0048] ②解调:解调模块312对UWB接收模块311接收到的UWB信号进行解调,对正在监控的定位标签模块16进行确定,并获取标签的方位信息; [0048] ② demodulation: demodulating UWB module 312 of the location information received UWB signal receiving module 311 demodulates the positioning of the label are monitoring module 16 determines and acquires the label;

[0049] ③定位:定位系统3的无线数据传输模块32把定位基站模块31测得定位标签模块16的精确的定位信息发送到终端系统2,由终端系统2进行进一步的处理; [0049] ③ Targeting: wireless data transmission system 32 of module 3 module 31 to position the base station measured by accurate positioning information for positioning tag module 16 to the terminal system 2, for further processing by the terminal system 2;

[0050] ④实时监控:终端系统2的无线通信模块21接收无线数据传输模块32发送的定位标签模块16方位信息,实时对获取的方位信息进行交叉定位处理,获得精确地位置信息并在二维坐标系中呈现出来,实现定位标签模块16的实时监控。 [0050] ④ real-time monitoring: a terminal system 21 of wireless communication module 2 receives the wireless data transmission module 32 sends a positioning location information tag module 16, real-time location information acquired cross positioning processing to obtain accurate position information in two dimensions and It coordinates presented, positioning real-time monitoring tag module 16.

[0051] 为了避免由于定位基站模块31和定位标签模块16的时钟钟差带来的测量误差,本发明采用双向测距发来测量单个定位基站模块31与定位标签模块16间的实际距离。 [0051] In order to avoid difference in the positioning station clock clock module 31 and the positioning module 16 labels measurement error caused, the present invention uses two-way ranging sent to measure the actual distance between the single positioning station 16 module 31 module and the positioning tab.

[0052]图7为自主定位测距原理图。 [0052] FIG. 7 is a schematic diagram of the autonomous positioning distance. 如图7所示,设节点A的计时时间(从节点A发送测距数据到B接收数据,并返回确认帧给节点A的总时间)为Τα,节点B的计时时间(接受到A发送的测距数据并返回确认帧的时间)为T replyB,设测距信号的传播延时为TR,根据TWR测距模型, 我们可以得出下面的计算公式: 7, node A set timer time (ranging data sent from node A to B receives the data, and returns a confirmation to the total time frame of the node A) is Τα, the Node B timer time (A receives transmission ranging data and returns acknowledgment frame time) is T replyB, propagation delay is provided TR ranging signal, the ranging model according to TWR, we can conclude the following formula:

[0053] TA=2TR+TreplyB (1) [0053] TA = 2TR + TreplyB (1)

[0054] 由公式⑴可以推出: [0054] ⑴ can be launched by the formula:

Figure CN106441306AD00071

[0056] 根据公式⑵就可以得到未知节点到基站的距离: [0056] The formula can be obtained ⑵ unknown distance to the base station node:

Figure CN106441306AD00072

[0058] 本发明中,将定位标签模块16是属于移动系统1的一部分,因此在二维坐标系中实时显示的坐标信息便是移动系统1在整个环境中的位置。 [0058] In the present invention, the positioning tab 16 is part of a module belonging to a mobile system, position coordinate information is displayed in real-time moving the two-dimensional coordinate system 1 in the whole environment. 当生命探测模块11检测到生命体时,微处理单元15将激光扫描模块13测量到的智能小车与生命体之间的距离与角度信息通过无线模块17传输给终端系统2,终端系统2的人机交互界面上便可以显示生命体在环境中的坐标信息。 When the person 2, the angle and distance information terminal system between life detection module 11 detects the living body, the microprocessing unit 15 to the laser scanning module 13 measures the smart carriage is transmitted to the terminal system of a living body via the wireless module 172 of You will be able to display coordinate information of living organisms in the environment on a computer interface.

[0059] (3)环境地图构建 [0059] (3) Environmental Mapping

[0060]图8为激光扫描模块的地图构建流程图。 [0060] FIG. 8 is a map of the laser scanning module Construction flowchart. 如图8所示,激光扫描模块13将采集到的激光原始数据通过无线模块17传输给终端系统2。 As shown, the laser scanning module 13 to collect the raw laser module 17 via a wireless data transmission system to the terminal 28. 由于RPLIDAR所采集的数据是点集,终端系统2在接收到原始数据后进行滤波和特征提取,再对特征提取处理后的数据进行线段拟合,即可输出地图,通过对不同角度扫描的地图进行匹配得到最终的智能小车环境地图。 Because the data is collected RPLIDAR point set, the terminal system 2 upon receiving the original data filtering and feature extraction, and then the process of extracting characteristic data of the fitting line segment, to output the map, at different angles by scanning the map get the final match of the intelligent car environment map. 由于在室内结构环境下,本发明选择直线作为特征来构建环境地图。 Since the structure of the indoor environment, the present invention is selected to build the environment map as a linear characteristic. 首先将室内环境下的扫描模型用若干段近似的直线段来表示,然后计算当前扫描模型中每个点到扫描模型中各直线段距离中的最近距离,并以此作为各扫描点到参考模型的相似度,然后利用聚类法将符合目标特征的点合并成一条线段。 First scan indoor environment model approximated with straight line segments to represent a plurality of segments, and calculates the current scan for each model point to the nearest distance of each scanning pattern some distance in a straight line, and each scanning point as the reference model similarity and clustering method using a feature point will meet the target combined into one segment. 在得到多条线段后,利用最小二乘法对所得到的线段进行拟合从而得到实际的直线特征,用拟合后的直线便可以表示智能小车的环境。 After obtaining the plurality of line segments, the line segment obtained using the method of least squares fitting a straight line to obtain the actual characteristics of the fitted straight line can represent a smart car environment. 最后,终端系统2通过将激光扫描模块13从不同角度扫描的地图进行匹配后可得到最终的环境地图。 Finally, the terminal system 2 after the final environment map matching can be obtained by scanning the laser scanning module 13 maps from different angles. 这样,智能小车及探测到的生命体的坐标信息便可显示在环境地图中,而智能小车的实时坐标位置的显示可生成自身的运动轨迹,这些运动轨迹保存在主控单元中,方便调用和查询。 In this way, the smart car and coordinate information detected by the living body can be displayed in the environment map, and display real-time coordinates of the position of the smart car can generate its own trajectory, the trajectory is stored in the master unit, and easy call Inquire.

Claims (7)

1. 一种自主定位与地图构建的智能生命探测机器人,其特征在于它包括:移动系统、终端系统及定位系统,移动系统通过无线连接实现与终端系统、定位系统的双向信息交互,定位系统通过无线连接向终端系统单向传输数据;其中,所述的移动系统包括行走模块、微处理单元、生命探测模块、远程报警模块、激光扫描模块、无线模块和定位标签模块;所述的终端系统包括主控单元和无线通信模块;所述的定位系统包括定位基站模块和无线数据传输模块;其中: 所述移动系统的行走模块由小车、驱动小车的直流电机以及电机驱动模块组成,电机驱动模块和直流电机通过有线连接,并安装在小车上; 所述移动系统的定位标签模块由启动休眠模块、调制模块、UWB发射模块组成,启动休眠模块、调制模块、UWB发射模块通过有线电路集成;启动休眠模块与调制模块 An autonomous positioning detection robot intelligent life and Mapping, characterized in that it comprises: a mobile system, a terminal system and a positioning system, the mobile system connections to interact with the terminal to achieve bidirectional information system, via a wireless positioning system, the positioning system by a wireless connection to the one-way data transmission terminal system; wherein said system comprises a traveling mobile module, a micro processing unit, a life detection module, a remote alarm modules, laser scanning module, a radio module and a location tag module; said terminal system comprises the main control unit and a wireless communication module; said positioning system comprises a positioning base station module and wireless data transmission module; wherein: said mobile system module traveling by car, the car driven DC motor and a motor drive module, and the motor driving module DC motor via a wired connection, and mounted on the trolley; said mobile positioning system tags by a module start the hibernation module, the modulation module, UWB transmitting module, start the hibernation module, the modulation module, UWB transmitting module through a wired integrated circuit; hibernation start module and modulation module 连接,调制模块与UWB发射模块连接; 所述移动系统的激光扫描模块包括激光扫描电机模块和激光扫描逻辑模块;激光扫描电机模块和激光扫描逻辑模块通过有线连接; 所述定位系统的定位基站模块包括UWB接收模块和解调模块,UWB接收模块与解调模块通过有线电路集成,定位基站模块与无线数据传输模块有线连接; 所述终端系统的主控单元与无线通信模块有线连接; 所述的行走模块、生命探测模块、远程报警模块、无线模块、定位标签模块、激光扫描模块与微处理单元通过有线连接,实现信息交互;所述的移动系统的定位标签模块通过内置的UWB发射模块向定位系统的定位基站模块发送UWB信号,定位基站模块再通过无线数据传输模块实现与主控单元的信息交互;终端系统的主控单元通过无线通信模块将处理完的信息发送给移动系统的微处理单元,实现对 Connection, UWB transmitter module and modulation module; said mobile laser scanning system includes a laser module and the laser scanning module scanning motor logic module; laser scanning motor and the laser scanning module logic module through a wired connection; positioning system positioning said base station module UWB includes a receiving module and a demodulation module, a UWB receiver module through a wired and demodulation integrated circuit module, and the wireless base station module positioning data transmission module wired connection; the main control unit of the terminal system and a wireless communication module wired connection; the walk module, life detection module, remote alarm module, a wireless module, a tag module is positioned, with the laser scanning module micro processing unit through a wired connection, implement information exchange; mobile positioning system of the tag module built-in to the positioning UWB transmission module positioning system base station module transmits UWB signals, and then to realize the positioning station module information exchange with the master unit through the wireless data transmission module; information terminal system transmits the master unit through the wireless communication module will be processed to the microprocessor unit of the mobile system , to achieve 移动系统的控制;其中: 激光扫描模块通过激光扫描来产生所在空间的平面点云地图信息并判断与周围障碍物的距离和位置;微处理单元利用激光扫描模块采集的距离和位置信息来控制行走模块实现自主行走;终端系统利用激光扫描模块采集的环境平面点云信息来构建周围环境地图; 生命探测模块检测环境中的生命特征,当检测到生命时,将电信号反馈给微处理单元,微处理单元控制远程报警模块进行报警;定位系统向终端系统提供行走模块在所处环境中的实时坐标信息并记录历史运动轨迹。 Movement control system; wherein: the laser scanning module to generate a spatial plane where the point cloud map information by laser light and determines the distance and position of the surrounding obstacles; microprocessing unit using the distance and the position information acquired by the laser scanning module walking control modules to achieve self-traveling; plane terminal system using point cloud environment information collected by laser scanning module to construct a map surroundings; detection module detects the vital life environment, upon detection of the life, the electrical signal back to the micro processing unit, a micro remote alarm processing unit controls the alarm module; walk module provides real-time positioning system coordinate information of the environment of the system to the terminal and recorded history trajectory.
2. 如权利要求1所述的智能生命探测机器人,其特征在于:所述的无线模块的最大通讯距离为150米,支持UART协议数据传输模式,高达1M缓存空间,最高支持波特率460800bps。 2. The intelligent life detection robot according to claim 1, wherein: the maximum communication distance of the wireless module 150 m, UART protocol to support data transmission mode, up to 1M buffer space up to the baud rate 460800bps.
3. 如权利要求1所述的智能生命探测机器人,其特征在于:所述的生命探测模块的红外福射范围为3~50μηι。 Intelligent life detection robot according to claim 1, wherein: Four infrared range of the emitted detection module life is 3 ~ 50μηι.
4. 如权利要求1所述的智能生命探测机器人,其特征在于:所述激光扫描模块具有360 度的扫描区域,有效测距为5~8米,距离和角度分辨率分别为10~15毫米和0.5~1度。 4. The intelligent life detection robot according to claim 1, wherein: said laser scanning region having a scanning module 360, the effective distance of 5-8 meters, the distance and angular resolutions are 10 to 15 mm and 0.5 to 1 degree.
5. 如权利要求1所述的智能生命探测机器人,其特征在于:所述定位基站模块定位精度达10~15厘米,射频带宽为2~3GHz。 5. The intelligent life detection robot according to claim 1, wherein: the positioning accuracy of the positioning base station module 10 to 15 cm, RF bandwidth of 2 ~ 3GHz.
6. 如权利要求1所述的智能生命探测机器人,其特征在于:所述定位标签模块标签的更新速率为1~10Hz,标签中心频率为6~7GHz。 Said intelligent life detection robot as claimed in claim 1, wherein: said module tag label positioning update rate of 1 ~ 10Hz, the center frequency of the tag 6 ~ 7GHz.
7. 如权利要求1所述的智能生命探测机器人,其特征在于:所述无线模块、无线数据传输模块及无线通信模块具有相同的结构。 7. The intelligent life detection robot according to claim 1, wherein: said wireless module, wireless data transmission module and a wireless communication module has the same structure.
CN201610905625.1A 2016-10-18 2016-10-18 Intelligent life detecting robot with capabilities of independent positioning and map building CN106441306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610905625.1A CN106441306A (en) 2016-10-18 2016-10-18 Intelligent life detecting robot with capabilities of independent positioning and map building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610905625.1A CN106441306A (en) 2016-10-18 2016-10-18 Intelligent life detecting robot with capabilities of independent positioning and map building

Publications (1)

Publication Number Publication Date
CN106441306A true CN106441306A (en) 2017-02-22

Family

ID=58175368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610905625.1A CN106441306A (en) 2016-10-18 2016-10-18 Intelligent life detecting robot with capabilities of independent positioning and map building

Country Status (1)

Country Link
CN (1) CN106441306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898249A (en) * 2017-04-20 2017-06-27 中国石油大学(华东) System and method for map construction aiming at communication failure area of earthquake area

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110046836A1 (en) * 2009-08-18 2011-02-24 Noel Wayne Anderson Modular and scalable positioning and navigation system
CN203287775U (en) * 2013-05-30 2013-11-13 上海理工大学 Infrared life detection robot
CN103760899A (en) * 2013-05-30 2014-04-30 上海理工大学 Infrared life detection robot
CN103862457A (en) * 2014-03-13 2014-06-18 湖南信息职业技术学院 Service robot with visual system
CN104902563A (en) * 2015-04-13 2015-09-09 梁步阁 Multi-base networking UWB three-dimensional positioning system for indoor positioning and positioning method thereof
CN105216905A (en) * 2015-10-27 2016-01-06 北京林业大学 Survey, search and rescue robot with functions of simultaneous localization and map building
CN106003064A (en) * 2016-06-17 2016-10-12 上海工程技术大学 Complex-environment multi-sensor intelligent detection robot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110046836A1 (en) * 2009-08-18 2011-02-24 Noel Wayne Anderson Modular and scalable positioning and navigation system
CN203287775U (en) * 2013-05-30 2013-11-13 上海理工大学 Infrared life detection robot
CN103760899A (en) * 2013-05-30 2014-04-30 上海理工大学 Infrared life detection robot
CN103862457A (en) * 2014-03-13 2014-06-18 湖南信息职业技术学院 Service robot with visual system
CN104902563A (en) * 2015-04-13 2015-09-09 梁步阁 Multi-base networking UWB three-dimensional positioning system for indoor positioning and positioning method thereof
CN105216905A (en) * 2015-10-27 2016-01-06 北京林业大学 Survey, search and rescue robot with functions of simultaneous localization and map building
CN106003064A (en) * 2016-06-17 2016-10-12 上海工程技术大学 Complex-environment multi-sensor intelligent detection robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898249A (en) * 2017-04-20 2017-06-27 中国石油大学(华东) System and method for map construction aiming at communication failure area of earthquake area

Similar Documents

Publication Publication Date Title
CN102096413B (en) Security patrol robot system and control method thereof
CN102186141B (en) Blind user navigation service system based on global positioning system (GPS) and 3rd-generation (3G) network
CN101984382B (en) Method for intelligently inspection substation equipment by using robot
CN101122242B (en) Mine down-hole visual positioning and multifunctional safety monitoring network system
CN103716877A (en) Earth positioning system
CN103110485B (en) Multifunctional intelligent medical guardian wheelchair and wheelchair control method
CN102033222B (en) Large-scale multiple-object ultrasonic tracking and locating system and method
CN103976791B (en) System and method for monitoring and managing medical quality
CN103439973A (en) Household cleaning robot capable of establishing map by self and cleaning method
CN101661098A (en) Multi-robot automatic locating system for robot restaurant
CN203244562U (en) Intelligent blindness guide walking stick based on GPS/GPRS
CN102176232B (en) Individual safety locating and guiding operating system and application method thereof
CN103363988A (en) Method for realizing geomagnetic indoor positioning and navigation by utilization of smartphone sensors
WO2009058904A2 (en) System and method for determining locations of medical devices
CN102097860A (en) Intelligent robot patrol system for safety detection of substation
CN103191006A (en) Indoor wireless omni-directional positioning guide system
CN201812315U (en) Polling robot with navigation device
CN102867163A (en) Positioning method for detecting fixed radio frequency identification (RFID) electronic tag by utilizing movable reader
CN202153615U (en) Robot for transformer station device inspection tour
CN101957447A (en) System and method for positioning indoor moveable robot based on active RFID
CN202369306U (en) Safety monitoring and prewarning device for tower crane and safety monitoring system
CN102116859A (en) Indoor positioning perception system
CN102913275B (en) Search and rescue system based on crawler robots
CN201811722U (en) Tunnel surrounding rock deformation monitoring and alarm device
CN104991228A (en) Three dimensions indoor positioning method based on visible light signal intensity

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01 Rejection of invention patent application after publication