CN106405754B - Structure of the stent and manufacturing method of an optical fiber module with - Google Patents

Structure of the stent and manufacturing method of an optical fiber module with Download PDF

Info

Publication number
CN106405754B
CN106405754B CN 201611051749 CN201611051749A CN106405754B CN 106405754 B CN106405754 B CN 106405754B CN 201611051749 CN201611051749 CN 201611051749 CN 201611051749 A CN201611051749 A CN 201611051749A CN 106405754 B CN106405754 B CN 106405754B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
wafer
pad
surface
fiber
structure
Prior art date
Application number
CN 201611051749
Other languages
Chinese (zh)
Other versions
CN106405754A (en )
Inventor
薛海韵
冯光建
Original Assignee
华进半导体封装先导技术研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开了一种光纤模组用的结构支架及其制作方法,所述结构支架包括键合在一起的至少两块晶圆,晶圆相对面上开设有光纤沟槽,两晶圆的光纤沟槽相配装形成光纤通道;对应光纤通道接口的上层晶圆侧壁以及上层晶圆上表面均设置有焊盘;下层晶圆与上层晶圆设置有焊盘的同一侧壁也设置有焊盘;所述光纤模组的光信号收发芯片焊接在两晶圆侧壁的焊盘上,光纤模组的电芯片焊接在顶层晶圆上表面的焊盘上。 The present invention discloses a method for manufacturing a structural support and a fiber optic module, said structure comprising a bracket bonded together at least two wafers, wafer surface relative to the optical fiber defines a groove, two wafer fibers Matching fiber channel package forming trenches; fiber channel interface on the corresponding side walls of the upper wafer and the upper wafer surface is provided with a pad; lower wafer and the upper wafer is provided with a side wall of the same pad is also provided with a pad ; optical signal transceiver chip bonding of the fiber optic module the wafer on the pad two side walls, electrical chip bonding fiber module on the top layer of the wafer on the pad surface. 本发明的结构支架结构简单,能够简化后续光纤模组中光接收部分和光发射部分器件的焊接工艺,提高生产效率。 Support structure of the present invention a simple structure, it is possible to simplify the welding process subsequent fiber optic module and a light receiving portion of the light emitting portion of the device, improve production efficiency.

Description

一种光纤模组用的结构支架及其制作方法 Structure of the stent and manufacturing method of an optical fiber module with

技术领域 FIELD

[0001] 本发明涉及光通信技术领域,特别是一种光纤模组用的结构支架。 [0001] The present invention relates to the field of optical communications technology, particularly the structural support module with an optical fiber.

背景技术 Background technique

[0002] 近几年通信网络发展迅速,随着光纤通信的广泛普及,通信网络面临着提供更快传输速率、更短时延、更高频带以及更低运营成本的迫切需求。 [0002] In recent years, the rapid development of communication networks, with the widespread adoption of optical fiber communication, the communication network to provide faster transfer rates facing, shorter latency, higher operating costs and lower band urgent needs. 由于目前光纤资源紧张,新铺设费用高,且基站分布距离较远,因此小型可插拔(SFP+)封装的单纤双向光收发模块的需求逐步增大。 Fiber due to the current resource constraints, high cost of newly laid, and the base station distribution distance, so small form factor pluggable (SFP +) package needs Bidirectional optical transceiver module is gradually increased.

[0003] 单纤双向光纤收发器是采用波分复用技术,在一根光纤上实现数据的发送和接收,将网络电信号和光信号互相转换的光电转换设备。 [0003] Bidirectional optical transceiver is the use of wavelength division multiplexing technology, sending and receiving data over an optical fiber, a photoelectric conversion device and an optical network signals are converted electrical signals to each other. SFP单纤双向光收发模块分为光接收和光发射两部分,其中光接收部分由光接收器、跨阻放大器、限幅放大器以及相应的供电器件组成;光发射部分主要由光源、驱动电路、控制电路、光检测器以及激光发射器构成。 Bidirectional SFP optical transceiver module is divided into two light receiving and light-emitting portion, wherein the light receiving portion by the light receiver, the transimpedance amplifier, a limiting amplifier and the respective power supply devices composed; mainly composed of a light source, a light emission driving circuit, a control circuit, a light emitter and a laser detector configured. 在实际生产中,光接收器、跨阻放大器、限幅放大器、光纤、光源、驱动电路、控制电路、光检测器和激光发射器等都是独立的器件,需要一个支架来把这些独立的器件组合在一个模组里面,从而使各部分器件都能发挥各自的作用。 In actual production, the optical receiver, the transimpedance amplifier, limiting amplifier, an optical fiber, a light source, a drive circuit, a control circuit, a photodetector and a laser emitter device and the like are independent, requires a separate bracket for these devices in a combination module inside, so that the portions of the device can play their respective roles.

[0004] 在模组制作过程中,比较先进的做法是先做好具有焊接作用的载体,然后在载体上焊接光接收和光发射部分的器件,最后插入光纤,而光纤端的固定通常还需要有V型槽等设计,结构比较复杂。 [0004] In the module production process, more advanced approach is to make a carrier having a welding action, and then welding light receiving and a device light emitting portion on the carrier, and finally inserting the optical fiber, and the fixed fiber ends usually requires V other-groove design, the structure is complicated.

发明内容 SUMMARY

[0005]本发明需要解决的技术问题是提供一种结构简单的光纤模组用的结构支架以及该结构支架的制作方法,以简化后续光纤模组中光接收部分和光发射部分器件的焊接工艺。 [0005] The present invention is a technical problem to be solved structure of the stent structure and method of manufacturing the stent to provide a simple structure with a fiber optic module, to simplify the subsequent optical fiber portion and the light receiving module in the welding process of the light emitting portion of the device.

[0006]为解决上述技术问题,本发明所采取的技术方案如下。 [0006] To solve the above technical problem, the technical solution by the present invention as follows.

[0007] —种光纤模组用的结构支架,包括键合在一起的至少两块晶圆,晶圆相对面上开设有光纤沟槽,两晶圆的光纤沟槽相配装形成光纤通道;对应光纤通道接口的上层晶圆侧壁以及上层晶圆上表面均设置有焊盘;下层晶圆与上层晶圆设置有焊盘的同一侧壁也设置有焊盘;所述光纤模组的光信号收发芯片焊接在两晶圆侧壁的焊盘上,光纤模组的电芯片焊接在顶层晶圆上表面的焊盘上。 [0007] - with the kind of the fiber optic module structure of the stent, including bonding together at least two wafers, wafer surface relative to the optical fiber defines a groove, the groove matching two wafers fiber means forming an optical fiber path; corresponding to the wafer upper side wall and a fiber channel interface is provided with an upper surface of the wafer pads; lower wafer and the upper wafer is provided with a pad of the same side wall is also provided with a pad; the optical signal in the optical fiber module transceiver chip soldered on the pads of the two side walls of the wafer, electrical chip bonding fiber module on the top surface of the wafer on the pad.

[0008]上述一种光纤模组用的结构支架,所述焊盘上自下而上依次为铜层、镍层、钯层和金层,所述镍层的厚度为2um~10um,钯层的厚度为100nm~10um,金层的厚度为5〇nm〜i〇〇nm。 [0008] The above-described structure of the stent with an optical fiber module, the bottom-up order on a copper pad layer, a nickel layer, a palladium layer and a gold layer, the thickness of the nickel layer is 2um ~ 10um, palladium layer the thickness of 100nm ~ 10um, thickness of the gold layer was 5〇nm~i〇〇nm. [0009]上述一种光纤模组用的结构支架,所述光纤沟槽的横截面为三角形、方形、半圆形或梯形中的一种。 [0009] The above-described structure of the stent with an optical fiber module, the optical fiber grooves with triangular cross section, square, semicircular or trapezoidal in.

[0010] —种光纤模组用的结构支架的制作方法,其特征在于,包括以下步骤: [0010] - A method of fabricating a module structure of the stent with an optical fiber, characterized by comprising the steps of:

[0011] A.在晶圆上表面制作焊盘和硅通孔TSV; [0011] A. Production pad surface and the silicon wafer in TSV vias;

[0012] B•在晶圆表面开设光纤沟槽,通过键合工艺使两片晶圆结合在一起形成光纤通道; [0012] B • fiber defines a trench in the wafer surface, the wafer bonding process that the two together form a bond by Fiber Channel;

[0013] c•通过光刻和刻蚀工艺使侧壁焊点露出并使支架从晶圆上分离 [0013] c • solder is exposed and the bracket side wall separated from the wafer by photolithography and etching processes

[0014] D.在支架上焊接光信号收发芯片和电芯片。 [0014] D. welded to the holder and the optical signal transceiver chip electrically chip.

[0015] 上述一种光纤模组用的结构支架的制作方法,步骤A具体包括: [0015] The method of manufacturing the above-described structure of the stent with an optical fiber module, the step A comprises:

[0016] A1.通过光刻工艺在晶圆表面定义出表面焊盘,并刻蚀出焊盘,焊盘深度lum〜 lOOum; . [0016] A1 is defined by a photolithography process the surface pads on the wafer surface, and etching the pad, the pad depth lum~ lOOum;

[0017] A2.在晶圆一端通过光刻和刻蚀定义出硅通孔TSV,TSV深度10um〜500um;TSV直径10um〜500um; . [0017] A2 is defined at one end of the wafer by photolithography and etched silicon via TSV, TSV depth 10um~500um; TSV diameter 10um~500um;

[0018] A3.通过电镀工艺使TSV和焊盘表面沉积铜金属,通过CMP研磨,使焊盘露出晶圆表面, [0018] A3. By making TSV plating process and the deposition of copper metal pad surface, the polishing by CMP, to expose the pad surface of the wafer,

[0019] A4.化镀使焊盘表面沉积镍钯金;镍的厚度2mn〜lOum,钯的厚度lOOnm〜10um,金厚度50nm〜lOOnm。 . [0019] A4 of the pad surface plated Nickel and palladium; nickel thickness 2mn~lOum, the thickness of the palladium lOOnm~10um, gold thickness 50nm~lOOnm.

[0020]上述一种光纤模组用的结构支架的制作方法,步骤c的具体步骤为:对键合后晶圆的上层晶圆进行光刻和刻蚀工艺,使硅通孔TSV的侧壁和底部金属露出来,同时对晶圆底部进行减薄,使支架分离出来。 [0020] The method of manufacturing the above-described structure of the stent with an optical fiber module, in particular for Step c: the upper layer after the bonding of wafers and photolithographic etching process, the silicon via (TSV) of the side wall and the base metal is exposed, while the bottom of the thinned wafer, the holder separated.

[0021]由于采用了以上技术方案,本发明所取得技术进步如下。 [0021] With the above technical solution, the present invention achieved the following technological progress.

[0022] 本发明通过键合法将两个表面带有光纤沟槽结构的晶圆面对面结合形成光纤通道,然后通过光刻和电镀工艺在晶圆表面和侧面做光接收和光发射部分器件的焊盘,使该支架具有接收和发射两种功能,大大简化了后续的模组焊接工艺,提高了生产效率。 [0022] The present invention will be legitimate wafer having two surfaces of the fiber structure by a key groove formed face binding Fiber Channel, and then do a light emitting portion and a light receiving device and the side pad surface of the wafer by photolithography and electroplating processes the receive and transmit the stent has two functions, greatly simplifies the welding process subsequent modules, improve production efficiency.

附图说明 BRIEF DESCRIPTION

[0023]图1为本发明步骤A所形成的晶圆第一形态; [0023] FIG. 1 a first aspect of the wafer formed in step A of the present invention;

[0024]图2、3为本发明步骤B所形成的晶圆第二形态的俯视图; [0024] The second aspect of a plan view of the wafer of FIG. 2 and 3 of the present invention, step B is formed;

[0025]图4、8、9、10为本发明步骤B所形成的晶圆第二形态的侧视图; [0025] FIG 4,8,9,10 wafer is a side view of the second aspect of the invention is formed in step B;

[0026]图5为本发明步骤C所形成的晶圆第三形态的侧视图; [0026] FIG. 5 is a side view of the third aspect of the wafer formed in Step C of the present invention;

[0027]图6为本发明步骤D所形成的晶圆第四形态的侧视图; A side view of a fourth aspect of the wafer Step [0027] D of FIG. 6 of the present invention is formed;

[0028]图7为本发明焊接光纤模组器件后的侧视图; [0028] Figure 7 a side view of the welding device after the optical module of the present invention;

[0029]图11为本发明实施例2中步骤C所形成的晶圆侧视图; [0029] Figure 11 a side view of the wafer in Example 2, Step C formed in the present embodiment of the invention;

[0030]图12为本发明实施例2中焊接光纤模组器件后的侧视图; [0030] Figure 12 a side view of the fiber optic module in Example 2 welding device according to the present invention;

[0031]图13为本发明实施例2应用于金手指上的机构示意图。 [0031] FIG 13 a schematic view of Example 2 is applied to the mechanism Goldfinger embodiment of the present invention.

[0032] 其中:101 •晶圆,102•光纤沟槽,103• TSV侧壁,104.TSV底部,105•电芯片,106.光信号收发芯片,107 •打线,108.焊盘,109.金手指,110.硅通孔TSV。 [0032] wherein:.. 101 • wafer, 102 • fiber grooves, 103 • TSV sidewall, a bottom 104.TSV, 105 • power chip, the optical signal transceiver chip 106, 107 • wire, pads 108, 109 . Goldfinger, 110 silicon the TSV vias.

具体实施方式 Detailed ways

[0033]下面将结合附图和具体实施例对本发明进行进一步详细说明。 [0033] The present invention will now be further described in detail in conjunction with accompanying drawings and specific embodiments.

[0034] —种光纤模组用的结构支架,包括键合在一起的至少两块晶圆101,晶圆相对面上开设有光纤沟槽102,如图2和图3所示,两晶圆的光纤沟槽相配装形成光纤通道,光纤沟槽的横截面可以为三角形、方形、半圆形或梯形中的一种,如图4、8、9、10所示;光纤沟槽的宽度为1 OOum〜1 OOOum,光纤沟槽可以是等宽的,如图2所示,也可以是梯形的,如图3所示。 [0034] - with the kind of the fiber optic module structure of the stent, including bonding together at least two wafer 101, the wafer surface relative to the optical fiber defines a groove 102, as shown in FIGS. 2 and 3, two wafer Matches fiber package forming trenches fiber channel, fiber cross-section of the trench may be one of triangular, square, semicircular, or trapezoidal, as shown in FIG 4,8,9,10; the groove width of the optical fiber 1 OOum~1 OOOum, fiber grooves may be of equal width, as shown in Fig, 2 may also be trapezoidal, as shown in FIG.

[0035]对应光纤通道接口的上层晶圆侧壁以及上层晶圆上表面均设置有焊盘108,下层晶圆与上层晶圆设置有焊盘的同一侧壁也设置有焊盘,如图7所示,焊盘上自下而上依次有铜层、镍层、钯层和金层,镍层的厚度为2um〜l〇um,钯层的厚度为l〇〇nm〜l〇um,金层的厚度为50nm 〜100nm〇 [0035] Fiber Channel interface on the corresponding side walls of the upper wafer and the upper wafer surface is provided with a pad 108, an upper wafer and a lower wafer provided with the same side wall is also provided with a pad pads 7 as shown in ascending order on the pad with a copper layer, a nickel layer, the thickness of the palladium layer and the gold layer, the nickel layer is 2um~l〇um, l〇〇nm~l〇um thickness of the palladium layer, the gold thickness of the layer of 50nm ~100nm〇

[0036]光纤模组的光信号收发芯片106焊接在两晶圆侧壁的焊盘上,光纤模组的电芯片105焊接在顶层晶圆上表面的焊盘上,如图7和图12所示。 [0036] The optical signal transceiver chip optical module 106 is soldered on the pads of the two side walls of the wafer, chip 105 is electrically welded fiber module on the top layer of the surface of the wafer on the pad, as shown in FIGS. 7 and 12 shows.

[0037] —种光纤模组用的结构支架的制作方法,包括的主要步骤为:在晶圆上表面制作焊盘和硅通孔TSV;在晶圆表面开设光纤沟槽,通过键合工艺使两片晶圆结合在一起形成光纤通道;通过光刻和刻蚀工艺使侧壁焊点露出并使支架从晶圆上分离;在支架上焊接光信号收发芯片和电芯片。 [0037] - A method of fabricating a module structure of the stent with an optical fiber, mainly comprising the step of: making the surface of the pad and the silicon wafer in TSV vias; fiber defines a trench in the wafer surface, by a bonding process to make two wafers joined together to form a fiber channel; by photolithography and etching process to expose the side wall joints and separated from the wafer holder; welding optical signal on the carrier and electrically chip transceiver chip.

[0038] 实施例1 [0038] Example 1

[0039]本实施例中,光纤模组用的结构支架由两块晶圆制作而成,上层晶圆的下表面和下层晶圆的上表面分别开设有光纤沟槽102,两晶圆的光纤沟槽相配装形成光纤通道,对应光纤通道接口的上层晶圆侧壁以及上层晶圆上表面均设置有焊盘,下层晶圆与上层晶圆设置有焊盘的同一侧壁也设置有焊盘;光纤模组的光信号收发芯片焊接在两晶圆侧壁的焊盘上,光纤模组的电芯片焊接在顶层晶圆上表面的焊盘上,如图7所示。 [0039] In embodiments, the structural support is made of an optical fiber module with two wafers made according to the present embodiment, the upper surface of the lower surface of the upper wafer and the lower wafer 102 are defined in an optical fiber grooves, two optical fibers wafer mating means formed on the groove fiber channel, fiber channel interface corresponding to an upper side wall and the upper surface of the wafer the wafer is provided with a pad, a lower wafer and the upper wafer is provided with a side wall of the same pad is also provided with a pad ; optical fiber signal transmission and reception module chip bonding pad on two side walls of the wafer, electrical chip bonding fiber module on the top layer of the surface of the wafer on the pad, as shown in FIG.

[0040] 本实施例的具体制作方法如下。 [0040] DETAILED manufacturing method of the present embodiment is as follows.

[0041 ] A.在晶圆上表面制作焊盘和硅通孔TSV。 [0041] A. Production pad surface and the silicon wafer in TSV vias.

[0042] A1.如图1所示,首先通过光刻工艺在上层晶圆的上表面表面定义出表面焊盘,并刻蚀出焊盘,焊盘深度lum〜lOOum。 [0042] A1. As shown in FIG 1, first define the upper surface of the surface of the wafer on the surface of the pad by a photolithography process and etched pad, pad depth lum~lOOum. 焊盘可以分为两种,一种是上表面做芯片焊接,另一种是做打线,本实施例中用于做芯片焊接。 Pad may be divided into two types, one is to make the upper surface of the die bonding, wire and the other is made, for example according to the present embodiment to make the welding die.

[0043] A2.在上层晶圆一端通过光刻和刻蚀定义出硅通孔TSV,TSV深度10um〜500um;TSV 直径10um 〜500um。 . [0043] A2 is defined in the upper end of the wafer by photolithography and etched silicon via TSV, TSV depth 10um~500um; TSV 10um ~500um diameter. t〇〇44] A3.通过电镀工艺使TSV和焊盘表面沉积铜金属,通过CMP研磨,使焊盘露出晶圆表面。 t〇〇44] A3. By making TSV plating process and the deposition of copper metal pad surface, the polishing by CMP, a wafer surface to expose the pad.

[0045] A4.化镀使焊盘表面沉积镍钯金;镍的厚度2um,钯的厚度100nm,金厚度50nm。 . [0045] A4 of the pad surface plated Nickel and palladium; nickel thickness 2um, the thickness of the palladium 100nm, gold thickness 50nm.

[0046] 硅通孔TSV在化镀过程中,可以镀满;也可以镀一层铜后,继续进行孔底完全填充, 填充高度在孔深的十分之一到二分之一之间。 [0046] silicon via (TSV) in the process of plating, the plating may be full; post may be plated with copper, continued bottom of the hole is completely filled, the filling height of between one tenth of the hole depth to half.

[0047] B.在晶圆表面开设光纤沟槽,通过键合工艺使两片晶圆结合在一起形成光纤通道。 [0047] B. fiber defines a trench in the wafer surface, the wafer bonding process that the two bond together to form bonded by Fiber Channel. 如图2所示,通过光刻定义在上层晶圆的下表面和下层晶圆的上表面分别定义出光纤沟道,沟道宽度在lOOum,沟道是等宽的;通过干法刻蚀或者湿法刻蚀工艺在晶圆表面进行作用使光纤沟槽102形成;光纤沟槽的截面可以是三角形、方形、半圆形或者梯形,本实施例中,光纤沟槽为方形,如图4所示;通过键合工艺使两个晶圆键合在一起,键合工艺可以是硅硅直接键合,也可以是铜铜键合等。 2, respectively defined by photolithography on the surface of the surface defining the lower layer of the wafer and the upper wafer at the fiber channel, the channel width in lOOum, is the channel width; and by dry etching or wet etching process is performed on the wafer surface action of the optical fiber groove 102 is formed; the fiber cross section of the trench may be triangular, square, semicircular or trapezoidal, in the present embodiment, the optical fiber groove is square, as shown in FIG 4 shown; bonding process of the two wafers are bonded together by a bond, the bonding process may be a silicon-silicon direct bonding, the copper may be copper bonding or the like.

[0048]对于键合后的上层晶圆,其上表面有焊盘,此处光纤沟槽在焊盘面的另一侧;对于下层键合晶圆,则光纤沟槽可以在焊盘面的同一侧,也可以在另一侧。 [0048] For the upper layer of the wafer after the bonding, the pads on the surface thereof, where the fiber grooves on the other side pad surface; a lower layer bonded to the wafer, the grooves may be the same side of the optical fiber in the pad surface , on the other side may be.

[0049] C.对键合后晶圆的上层晶圆进行光刻和刻蚀工艺,使硅通孔TSV的侧壁103和底部金属104露出来,如图5所示,同时对晶圆底部进行减薄,使支架分离出来,如图6所示。 [0049] C. upper layer after the bonding of wafers and photolithographic etching process, the silicon via (TSV) of the side walls 103 and a bottom metal 104 is exposed, as shown in FIG. 5, while the bottom of the wafer thinning, the stent is separated, as shown in FIG. [0050] D.通过焊接工艺在对应光纤沟槽的上层晶圆和下层晶圆侧壁上焊接光信号收发芯片106,同时在上层晶圆的上表面焊接电芯片105,使支架具有光信号收发功能,如图7所不。 [0050] D. welding processes by the optical signal transceiver chip wafer 106 on the upper and lower sidewalls of the wafer corresponding to the optical fiber groove, while power chip 105 at the welding surface of the upper wafer, the stent having an optical signal transmission and reception functions, not shown in FIG 7.

[0051] 实施例2 [0051] Example 2

[0052] 本实施例与实施例1的不同之处在于:包含多片上下层叠的晶圆,相邻晶圆之间通过键合工艺装配在一起,中间层晶圆与顶层晶圆结构相同,且所有晶圆的硅通孔TSV都能对上层晶圆中的焊点,如图11所示,以便能够将电信号引导到最上面有焊盘的顶层晶圆上。 [0052] The present embodiment is different from Embodiment 1 in that: the upper and lower sheets comprising a plurality of stacked wafers, between the adjacent wafers assembled together by a bonding process, the same intermediate layer and the top wafer of the wafer structure, and all silicon via (TSV) wafer in the wafer can be an upper layer of solder, 11, so that electrical signals can be directed onto the wafer with a top layer of the top pad. 光纤模组的光信号收发芯片焊接在相邻两晶圆侧壁的焊盘上,光纤模组的电芯片焊接在顶层晶圆上表面的焊盘上,如图12所示。 An optical fiber signal transmission and reception module chip bonding on two adjacent side walls of a wafer pad electrically chip bonding fiber module on the top surface of the wafer on the pad, as shown in Fig.

[0053]本实施例应用于金手指上的结构如图I3所示,将焊接好的支架直接跟带有金手指109的PCB—起粘结在基板底座上,通过打线工艺使支架上的打线107焊盘跟金手指互联,达到电联通的目的。 [0053] The present embodiment is applied to cheat on the structure as shown in FIG bracket welded directly bonded with PCB- from cheat with the base 109 on the substrate through the upper wire stent process I3 wire bonding pads 107 interconnected with Goldfinger, the purpose of electrical communication.

Claims (6)

1. 一种光纤模组用的结构支架,其特征在于:包括键合在一起的至少两块晶圆(101), 晶圆相对面上开设有光纤沟槽(102),两晶圆的光纤沟槽相配装形成光纤通道;对应光纤通道接口的上层晶圆侧壁以及上层晶圆上表面均设置有焊盘(108);下层晶圆与上层晶圆设置有焊盘的同一侧壁也设置有焊盘; 所述光纤模组的光信号收发芯片(106)焊接在两晶圆侧壁的焊盘上,光纤模组的电芯片(1〇5)焊接在顶层晶圆上表面的焊盘上。 A stent structure with fiber optic modules, characterized by: at least two wafers (101) are bonded together, relative to the wafer surface defines a fiber groove (102), two optical fibers wafer Matching fiber channel package forming trenches; surface provided with a pad (108) corresponding to the fiber channel interfaces of the upper wafer and the upper wafer sidewall; lower wafer and the upper wafer is provided with a side wall of the same pad is also provided a pad; the fiber optic module chip optical signal transceiver (106) soldered to the pad of the two side walls of the wafer, an electrical optical module chip (1〇5) welded on the top layer of the wafer surface pad on.
2.根据权利要求1所述的一种光纤模组用的结构支架,其特征在于:所述焊盘上自下而上依次为铜层、镍层、钯层和金层,所述镍层的厚度为2um~10um,钯层的厚度为100nm~10um, 金层的厚度为50nm〜1 OOnm。 An optical fiber module according to claim 1 with the stent structure as claimed in claim, wherein: said upper pad bottom-up order of a copper layer, a nickel layer, a palladium layer and a gold layer, a nickel layer the thickness of 2um ~ 10um, the thickness of the palladium layer is 100nm ~ 10um, thickness of the gold layer was 50nm~1 OOnm.
3. 根据权利要求1所述的一种光纤模组用的结构支架,其特征在于:所述光纤沟槽(102)的横截面为三角形、方形、半圆形或梯形中的一种。 An optical fiber module according to claim 1 with the stent structure as claimed in claim, wherein: said optical fiber groove (102) as a cross-section of triangular, square, semicircular or trapezoidal in.
4. 如权利要求1所述的一种光纤模组用的结构支架的制作方法,其特征在于,包括以下步骤: A. 在晶圆上表面制作焊盘和硅通孔TSV; B. 在晶圆表面开设光纤沟槽,通过键合工艺使两片晶圆结合在一起形成光纤通道; C. 通过光刻和刻蚀工艺使侧壁焊点露出并使支架从晶圆上分离D. 在支架上焊接光信号收发芯片和电芯片。 4. The method for manufacturing structure of the stent as an optical fiber module according to claim 1, characterized in that it comprises the steps of: A. making the pad surface and the silicon wafer in TSV vias; grain B. fiber rounded surface defines a groove, by a bonding process to make two wafers joined together to form a fiber channel; C. by photolithography and etching process to expose the side wall and the bracket pads separated from the wafer holder in D. welding the optical signal transceiver chip and the electrical chip.
5. 根据权利要求4所述的一种光纤模组用的结构支架的制作方法,其特征在于,步骤A 具体包括: A1.通过光刻工艺在晶圆表面定义出表面焊盘,并刻蚀出焊盘,焊盘深度lum〜lOOuin; A2.在晶圆一端通过光刻和刻蚀定义出硅通孔TSV,TSV深度10um〜500um;TSV直径10um〜 500um; A3.通过电镀工艺使TSV和焊盘表面沉积铜金属,通过CMP研磨,使焊盘露出晶圆表面, A4.化镀使焊盘表面沉积镍钮金;镍的厚度2um〜10um,销的厚度100nm〜10um,金厚度50nm〜lOOnm。 5. The structure of the stent manufacturing method, wherein an optical fiber module according to claim 4, wherein the step A comprises:. A1 defines the surface pads on the wafer surface by a photolithography process and etched a pad, the pad depth lum~lOOuin; A2 at one end of the wafer by photolithography and etching define TSV TSV, TSV depth 10um~500um;. TSV 10um~ 500um in diameter;. A3 by the plating process of a TSV and depositing copper metal pad surface, the polishing by CMP, a wafer surface to expose the pad, A4 of the pad surface plated Nickel button gold; thickness of the nickel thickness 2um~10um, pin 100nm~10um, thickness of gold 50nm~ lOOnm.
6. 根据权利要求4所述的一种光纤模组用的结构支架的制作方法,其特征在于,步骤C 的具体步骤为:对键合后晶圆的上层晶圆进行光刻和刻蚀工艺,使硅通孔TSV的侧壁和底部金属露出来,同时对晶圆底部进行减薄,使支架分离出来。 6. The method of manufacturing a structure of the stent, characterized in that an optical fiber module according to claim 4, Step C is specifically: the upper layer after the bonding of wafers in photolithography and etch processes the sidewalls and the bottom silicon vias (TSV) of the exposed metal, while the bottom of the thinned wafer, the holder separated.
CN 201611051749 2016-11-25 2016-11-25 Structure of the stent and manufacturing method of an optical fiber module with CN106405754B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201611051749 CN106405754B (en) 2016-11-25 2016-11-25 Structure of the stent and manufacturing method of an optical fiber module with

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201611051749 CN106405754B (en) 2016-11-25 2016-11-25 Structure of the stent and manufacturing method of an optical fiber module with

Publications (2)

Publication Number Publication Date
CN106405754A true CN106405754A (en) 2017-02-15
CN106405754B true CN106405754B (en) 2018-01-16

Family

ID=58082838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201611051749 CN106405754B (en) 2016-11-25 2016-11-25 Structure of the stent and manufacturing method of an optical fiber module with

Country Status (1)

Country Link
CN (1) CN106405754B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874217A (en) * 1987-04-21 1989-10-17 Stc Plc Light source and detector packages
US5812716A (en) * 1996-01-31 1998-09-22 The Furukawa Electric Co., Ltd. Optical module and a temperature control method therefor
US5815616A (en) * 1997-01-02 1998-09-29 Lucent Technologies Inc. Optical packaging assembly for reflective devices
CN101251632A (en) * 2008-03-19 2008-08-27 香港应用科技研究院有限公司 Photoelectric encapsulation structure
CN101382622A (en) * 2007-09-05 2009-03-11 中国科学院微电子研究所 Passive coupling method between photodevice matrix and optical fiber array and method for making assembly thereof
CN102062911A (en) * 2011-01-18 2011-05-18 成都锐华光电技术有限责任公司 GPON (Gigabit-Capable PON) module basic unit and manufacturing method thereof
CN102062910A (en) * 2011-01-18 2011-05-18 成都锐华光电技术有限责任公司 GPON (Gigabit-Capable PON) module basic unit and manufacturing method thereof
CN102073109A (en) * 2010-12-21 2011-05-25 成都锐华光电技术有限责任公司 Manufacturing method of QSFP (Quad Small Form-factor Pluggable) module subelement
CN104898215A (en) * 2015-06-24 2015-09-09 苏州洛合镭信光电科技有限公司 Simple coupled parallel light transmit-receive engine used for interconnection between boards

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874950B2 (en) * 2002-12-17 2005-04-05 International Business Machines Corporation Devices and methods for side-coupling optical fibers to optoelectronic components

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874217A (en) * 1987-04-21 1989-10-17 Stc Plc Light source and detector packages
US5812716A (en) * 1996-01-31 1998-09-22 The Furukawa Electric Co., Ltd. Optical module and a temperature control method therefor
US5815616A (en) * 1997-01-02 1998-09-29 Lucent Technologies Inc. Optical packaging assembly for reflective devices
CN101382622A (en) * 2007-09-05 2009-03-11 中国科学院微电子研究所 Passive coupling method between photodevice matrix and optical fiber array and method for making assembly thereof
CN101251632A (en) * 2008-03-19 2008-08-27 香港应用科技研究院有限公司 Photoelectric encapsulation structure
CN102073109A (en) * 2010-12-21 2011-05-25 成都锐华光电技术有限责任公司 Manufacturing method of QSFP (Quad Small Form-factor Pluggable) module subelement
CN102062911A (en) * 2011-01-18 2011-05-18 成都锐华光电技术有限责任公司 GPON (Gigabit-Capable PON) module basic unit and manufacturing method thereof
CN102062910A (en) * 2011-01-18 2011-05-18 成都锐华光电技术有限责任公司 GPON (Gigabit-Capable PON) module basic unit and manufacturing method thereof
CN104898215A (en) * 2015-06-24 2015-09-09 苏州洛合镭信光电科技有限公司 Simple coupled parallel light transmit-receive engine used for interconnection between boards

Also Published As

Publication number Publication date Type
CN106405754A (en) 2017-02-15 application

Similar Documents

Publication Publication Date Title
US6343171B1 (en) Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making
US5199087A (en) Optoelectronic integrated circuit for transmitting optical and electrical signals and method of forming same
US20020039464A1 (en) Optical reflective structures and method for making
US7239767B2 (en) Packaging apparatus for optical interconnection on optical printed circuit board
US20060093002A1 (en) Hybrid type integrated optical device
US20100006330A1 (en) Structure and process of embedded chip package
US20040005119A1 (en) Parallel optical interconnection module and method for manufacturing the same
US20020028045A1 (en) Optical coupling structures and the fabrication processes
US7263256B2 (en) Optical connection block, optical module, and optical axis alignment method using the same
US6828606B2 (en) Substrate with embedded free space optical interconnects
US6624507B1 (en) Miniature semiconductor package for opto-electronic devices
JP2000114581A (en) Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
US6640021B2 (en) Fabrication of a hybrid integrated circuit device including an optoelectronic chip
US20050063634A1 (en) Apparatus and methods for integrally packaging optoelectronic devices, IC chips and optical transmission lines
JP2002237468A (en) Method of forming electrode passed through substrate, and substrate having through electrode
US20050224946A1 (en) Stackable optoelectronics chip-to-chip interconnects and method of manufacturing
US20030173663A1 (en) Semiconductor device
JPH09281352A (en) Formation of opto-electric transmission path and opto-electric wiring board
US20040136099A1 (en) Printed circuit board assembly with multi-channel block-type optical devices packaged therein
CN101521194A (en) High-speed photoelectric subassembly and flip chip structure thereof
US20060198570A1 (en) Hybrid module and production method for same, and hybrid circuit device
US7340121B2 (en) Optoelectric composite substrate and method of manufacturing the same
JP2008065287A (en) Photoelectric converter
JP2003046057A (en) Semiconductor device
JP2005084165A (en) Electro-optical composite wiring structure, structure comprising optical element mounting substrate, optical waveguide layer, and optical path conversion component; structure comprising optical element mounting substrate and optical path conversion component; structure comprising optical path conversion component and optical waveguide layer; optical path conversion component comprising alignment structure; and micro lens array comprising alignment structure

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01