CN106392044B - 一种调控镁合金的长周期结构相的方法 - Google Patents

一种调控镁合金的长周期结构相的方法 Download PDF

Info

Publication number
CN106392044B
CN106392044B CN201610846456.9A CN201610846456A CN106392044B CN 106392044 B CN106392044 B CN 106392044B CN 201610846456 A CN201610846456 A CN 201610846456A CN 106392044 B CN106392044 B CN 106392044B
Authority
CN
China
Prior art keywords
alloy
melt
temperature
periodic structure
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610846456.9A
Other languages
English (en)
Other versions
CN106392044A (zh
Inventor
吕书林
杨雄
吴树森
郝良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201610846456.9A priority Critical patent/CN106392044B/zh
Publication of CN106392044A publication Critical patent/CN106392044A/zh
Application granted granted Critical
Publication of CN106392044B publication Critical patent/CN106392044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种调控镁合金中长周期结构相(LPSO)的方法,首先制备含长周期结构相的Mg‑Ni(或Zn)‑Y合金,然后在合金凝固过程中先后施加超声振动和压力来调控长周期结构的形态和分布。合金制备及处理包括以下步骤:在N2及SF6混合气体保护下熔炼合金,当温度达到720℃~730℃后,将熔体置于保温炉内的容器中冷却至合金的液相线温度以上10‑50℃后,对熔体进行超声振动处理,持续时间1‑5min,振动结束后浇入预热200~300℃的模具中进行挤压,使其在压力下凝固,挤压压力50‑500MPa,保压时间1‑3min。用这种方法制备的合金中的LPSO相显著细化且分布均匀,合金性能大幅提高。

Description

一种调控镁合金的长周期结构相的方法
技术领域
本发明属于金属材料制备技术领域,涉及一种调控镁合金的长周期结构相的方法。
背景技术
镁合金是工程应用中最轻的金属结构材料,具有密度小,铸造性能及切削加工性优良、减振及阻尼性能好等特点,其在实现轻量化、降低能耗等方面有显著的优势,在汽车、航空航天、电子技术等领域得到日益广泛的应用。但是,由于镁合金强度低、塑性差、易被氧化侵蚀等基础性问题,极大地限制了镁合金的应用,因此寻找有效的强化手段是开发高强镁合金的关键问题。
镁合金中长周期结构(LPSO)本身强韧性好,硬度高,而且在较高温度下仍能保持较好的稳定性,对镁合金综合性能的提高有着显著效果,因而受到人们极大地关注。长周期结构有多种类型,一般分为6H、10H、14H、18R和24R,其中14H和18R两种类型最为常见。不同类型的结构在镁合金中的分布、形态及尺寸不同,表现出来的性能也有所差异。因此找到一种控制LPSO相的方法,使其分布更均匀、形状更规则、尺寸更小,才能最大限度地发挥其强化作用。徐志超等人提出的“一种LPSO相层状复合镁合金材料的制备方法”(CN104878230A)采用定向凝固的方法控制LPSO相的生长过程,得到一种具有单一方向的LPSO相层状复合镁合金材料。尹建等人提出了“一种长周期结构增强镁合金半固态浆料及其制备方法”(CN104152775A),所制备的合金成分为2.2%Ni,5.8%Gd,5.3Nd%,余量为Mg。先将合金在氩气气氛下熔炼,凝固后得到母合金锭;再将制得的合金放入不锈钢坩埚中重熔,然后在脉冲磁场作用下凝固制得长周期结构增强镁合金半固态浆料,最后得到分布较为均匀的LPSO相。滕新营等人提出的“一种铸造Mg-Zn-Y镁合金长周期结构相的调控方法”(CN105112828A)将制备的Mg-Zn-Y合金进行固溶及时效处理,合金中LPSO相变为均匀分布的细针状,体积分数最大为56.41%,细针状结构厚度最小为27.5nm。罗素琴等人提出的“一种高强度高塑性镁合金”(CN104328320A)制得的合金元素含量为3.0-4.5%Ni、4.0-5.0%Y、0.01-0.1%Zr,余量为Mg以及不可避免的杂质(≤0.15%)。熔炼后凝固得到的铸件在470℃下均匀化退火16h后进行热挤压,制得镁合金棒材。得到的挤压态合金中,LPSO相均匀分布于基体,部分发生了扭折变形,合金力学性能得到明显提高,屈服强度、最大抗拉强度和伸长率分别为300MPa,400MPa,7.8%。
从现有专利文献来看,目前对镁合金中LPSO相进行调控的主要途径有改变元素组成及含量、控制凝固过程、对制件进行塑性变形加工及对制件进行热处理。其中,对合金凝固过程进行控制,不仅能够直接获得高性能的铸件,还可以均化铸锭的初始组织,提高后续热处理或者塑性变形对LPSO相的分布及形态的改善效果。合金凝固过程的控制方法主要包括变质法、合金化法、外场作用法(如施加电磁场)、快速凝固法等。
发明内容
本发明的目的在于提供一种调控镁合金中长周期结构相的方法,该方法可以有效细化初生α-Mg晶粒与LPSO相,并且提高α-Mg晶粒的圆整度;并缩短α-Mg与LPSO相的生长时间,改善铸件品质。
本发明提供的一种调控镁合金中长周期结构相的方法,其特征在于,该方法利用超声振动对镁合金熔体进行处理,以细化初生α-Mg晶粒与LPSO相,并且提高α-Mg晶粒的圆整度;然后将熔体浇入预热好的模具中,并加以压力,使浇入模具中的熔体能够快速凝固,缩短α-Mg与LPSO相的生长时间,以更有效地发挥超声处理的作用,以进一步细化α-Mg与LPSO相,改善铸件品质。
作为上述技术方案的改进,该方法所用的合金成分按质量分数计,为1.0-2.8%Ni或Zn,2.0-3.8%Y,0.0-0.4%Zr,余量为Mg以及不可避免的杂质,通过以下技术方案实现:
第一步按照设计的合金元素进行配比,所用的Mg、Ni或Zn、Y、Zr分别为纯镁、纯镍或纯锌,Mg-(10~30%)Y和Mg-(10~30%)Zr中间合金;
第二步合金原料在760℃-790℃的温度下进行熔炼,整个过程持续通入N2和SF6混合气体保护,其中SF6的体积分数为0.5-1.5%;
第三步原料完全熔化后,将熔体温度降至730℃-760℃,通入氩气进行精炼,精炼结束后扒渣,保温静置;
第四步将熔体温度降至710-730℃,用预热好的容器盛金属液,置于保温炉中保温,保温温度为合金液相线温度以下10-30℃;
第五步待容器内熔体温度降至合金液相线温度以上10℃-60℃时开始进行超声处理;超声功率500-3000W,持续时间1min-5min;
第六步振动结束后,将金属液浇入预热的模具中,合模后立即施加压力,压力大小为50-500MPa,保压时间1min-3min。
作为上述技术方案的进一步改进,第三步中通入氩气进行精炼的持续时间为10-15min。
本发明方法中氩气选用高纯度的,一般说高纯氩气的纯度是99.999%。
本发明在Mg-RE合金中加入Zn、Cu、Ni等元素,并满足一定的比例时能生成大量的长周期结构,本发明根据现有的Mg-X-RE(X=Zn,Cu,Ni)系合金中长周期结构的形成规律,通过改变Ni(或Zn)/Y元素的加入量设计合金成分,并结合超声处理及较高压力下的凝固来控制LPSO相的形态、尺寸及分布,以充分发挥其强化作用。经过这种方法制备的合金中LPSO相的尺寸与未经处理合金中LPSO相尺寸相比明显减小,并且分布于晶内的粗大层片状LPSO相数量减少,而细针状相增多,因此能有效强化合金,提高合金综合性能,为制备高强度高韧性镁合金提供一种新技术。具体而言,本发明有以下有益效果:
(1)本发明能够打断合金中的立体网状LPSO相,减少其对镁基体的割裂作用;
(2)本发明能够消除晶界处块状的LPSO相,减小LPSO相的厚度,充分发挥其强化作用;
(3)超声处理能降低成分偏析,使LPSO相均匀分布,提高铸件性能的稳定性;
(4)超声振动与压力作用于合金的凝固过程,基体组织大幅细化。经过处理后的熔体在压力下凝固,冷却速度快,能够保留超声处理得到的细小圆整的晶粒,提高合金强度。
附图说明
图1是本发明方法的流程图:其中,1-熔炼炉;2-坩埚;3-通气管;4-超声变幅杆;5-保温炉;6-凸模;7-凹模;
图2是Mg-1.4Zn-3.0Y-0.3Zr(wt.%)合金直接浇铸(a)与超声处理后挤压成形(b)显微组织对比。
具体实施方式
对合金液施加超声是一种绿色无污染的外场处理技术,超声不仅能细化合金的初生相,还能改善二次相或共晶组织的形态和分布,近年来受到广泛关注。对凝固过程中的合金施加压力,可使合金与铸型始终紧密接触,提高冷却速度,从而起到改善凝固组织的作用。将超声振动和压力先后作用于凝固中的镁合金,将大幅改善LPSO相的形态和分布。
本发明利用超声振动对镁合金熔体进行处理,然后将熔体浇入预热好的模具中,使其在较高的压力下凝固成形;本发明的主要思想是,超声振动是一种简便、高效、无污染的技术,可以有效细化初生α-Mg晶粒与LPSO相,并且提高α-Mg晶粒的圆整度。但是经过超声处理后的熔体在模具中冷却凝固时,原本细小而圆整的晶粒会继续长大成为树枝晶,降低合金性能;若浇入模具中的熔体能够快速凝固,缩短α-Mg与LPSO相的生长时间,则能更有效地发挥超声处理的作用,而挤压铸造成形能够达到这一目的,并且可以进一步细化α-Mg与LPSO相,改善铸件品质。
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明方法包括下述步骤:
第一步根据合金成分准备原料。
第二步所有合金原料在干燥箱中进行烘干预热,温度150-200℃,预热时间10-30min。
第三步将预热后的镁锭放入图1熔炼炉1内的坩埚2中,升温至500℃,保温10-30min;整个熔炼过程均由通气管3持续通入N2和SF6混合气体保护,其中SF6体积占比0.5-1.5%;
第四步继续升温至700℃,保温;
第五步待镁锭完全熔化后,将熔体升温至750-770℃,加入剩余合金原料,保温20-40min;
第六步将熔体继续升温至780℃,搅拌后保温10min-40min;
第七步调节坩埚2内的熔体温度至730-760℃,通入高纯氩气进行精炼,持续时间10min-15min;精炼后扒渣,静置30-60min;
第八步将熔体降温至710℃-730℃,待温度稳定后用预热好的容器盛金属液,置于保温炉5中保温,保温温度在液相线以下10-30℃,熔体冷却速度0.1-3℃/s。
第九步待温度冷却至合金液相线温度以上10-50℃时将超声变幅杆4伸入金属液中开始振动,功率500-3000W,时间1-5min;
第十步振动结束后,将金属液浇入预热凹模7中,然后立即降下凸模6进行挤压成形,模具预热温度200-300℃,挤压压力50-500Mpa,保压时间1-3min。
实例:
实施例1
制备化学成分为Mg-2.8Ni-3.8Y-0.4Zr(wt.%)的合金。采用99.9%纯镁,99.9%纯镍,Mg-30%Y和Mg-30%Zr中间合金为原料,在200℃下烘干30min。将镁锭放入熔炼炉1内的坩埚2中,随炉升温至500℃后保温10min,继续升温至700℃。待镁锭全部熔化后将镍屑加入熔体中,并升温至770℃;镍屑溶解后,加入Mg-30%Zr和Mg-30%Y中间合金并保温30min;随后升温至780℃进行搅拌。所有原料全部熔化后,调节熔体温度,使熔体温度稳定在730℃后通入高纯氩气进行精炼,调节氩气流量保证金属液不发生飞溅,持续时间12min,并扒除表面浮渣,静置30min。整个熔炼过程均由通气管3通入N2和SF6混合气体保护。
调节熔体温度至720℃,将金属液倒入保温炉5内的容器中(保温温度630℃),同时向炉膛内通入氩气保护。熔体温度降至680℃后利用变幅杆4对金属液进行超声振动处理,超声功率2500W,持续振动120s后,熔体温度降至640℃,将容器内金属液浇入凹模7中,模具提前预热至270℃;然后立即降下凸模6,挤压金属液获得铸件,挤压压力300MPa,保压时间150s。实施例2
制备化学成分为Mg-1.4Zn-3.0Y-0.3Zr(wt.%)的合金。采用99.9%纯镁,99.9%纯锌,Mg-10%Y和Mg-20%Zr中间合金为原料,在150℃下烘干50min。先将镁锭放入熔炼炉1内的坩埚2中,随炉升温至500℃后保温10min,继续升温至700℃。待镁锭全部熔化后升温至770℃,加入小块状锌和Mg-30%Zr、Mg-30%Y合金并保温30min;随后升温至780℃进行搅拌。所有原料全部熔化后,调节熔体温度至730℃,向其中通入高纯氩气进行精炼,调节氩气流量保证金属液不发生飞溅,持续通气10min,接着扒除表面浮渣,静置30min。整个熔炼过程均由通气管3通入N2和SF6混合气体保护。
调节熔体温度至710℃,待温度稳定后,将金属液倒入保温炉内的容器中(保温温度为620℃),同时向炉膛内通入氩气保护。熔体温度降至665℃后利用变幅杆4对金属液进行超声振动处理,超声功率1500W,持续振动90s后,熔体温度降至625℃,将容器内金属液浇入凹模7中,模具提前预热至250℃;然后立即降下凸模6,挤压金属液获得铸件,挤压压力400MPa,保压时间90s。所得合金显微组织如图2(右)所示。可以看出,经过超声振动及压力下凝固得到的合金中LPSO相尺寸明显减小,有利于提高合金综合性能。
实施例3:
制备化学成分为Mg-1.0Ni-2.0Y(wt.%)的合金。采用99.9%纯镁,99.9%纯镍,Mg-20%Y中间合金为原料,在200℃下烘干60min。将镁锭放入熔炼炉1内的坩埚2中,随炉升温至500℃后保温10min,继续升温至700℃。待镁锭全部熔化后将镍屑加入熔体中,并升温至770℃,保温30min;镍屑溶解后,加入Mg-30%Y中间合金并保温30min;随后升温至780℃进行搅拌。所有原料全部熔化后,调节熔炼炉温控,使熔体温度稳定在740℃,然后通入高纯氩气进行精炼,调节氩气流量保证金属液不发生飞溅,持续时间15min,并扒除表面浮渣,静置40min。整个熔炼过程均由通气管3通入N2和SF6混合气体保护。
调节熔体温度至730℃,将金属液倒入保温炉内的容器中(保温温度630℃),同时向炉膛内通入氩气保护。熔体温度降至700℃后利用变幅杆4对金属液进行超声振动处理,超声功率2000W,持续振动150s后,熔体温度降至635℃,将容器内金属液浇入凹模7中,模具提前预热至300℃;然后立即降下凸模6,挤压金属液获得铸件,挤压压力200MPa,保压时间130s。
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例和附图所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (3)

1.一种调控镁合金中长周期结构相的方法,其特征在于,该方法利用超声振动对镁合金熔体进行处理,以细化初生α-Mg晶粒与LPSO相,并且提高α-Mg晶粒的圆整度,所述镁合金熔体的合金成分按质量分数计,为1.0-1.4%Ni或Zn,2.0-3.8%Y,0.0-0.4%Zr,余量为Mg以及不可避免的杂质;然后将熔体浇入预热好的模具中,并加以压力,使浇入模具中的熔体能够快速凝固,缩短α-Mg与镁合金中长周期结构LPSO相的生长时间,以更有效地发挥超声处理的作用,以进一步细化α-Mg与镁合金中长周期结构LPSO相,改善铸件品质。
2.根据权利要求1所述的调控镁合金中长周期结构相的方法,其特征在于,该方法通过以下技术方案实现:
第一步 按照设计的合金元素进行配比,所用的Mg、Ni或Zn、Y、Zr分别为纯镁、纯镍或纯锌,Mg-(10~30%)Y和Mg-(10~30%)Zr中间合金;
第二步 合金原料在760℃-790℃的温度下进行熔炼,整个过程持续通入N2和SF6混合气体保护,其中SF6的体积分数为0.5-1.5%;
第三步 原料完全熔化后,将熔体温度降至730℃-760℃,通入氩气进行精炼,精炼结束后扒渣,保温静置;
第四步 将熔体温度降至710-730℃,用预热好的容器盛金属液,置于保温炉中保温,保温温度为合金液相线温度以下10-30℃;
第五步 待容器内熔体温度降至合金液相线温度以上10℃-60℃时开始进行超声处理;超声功率500-3000W,持续时间1min-5min;
第六步 振动结束后,将金属液浇入预热的模具中,合模后立即施加压力,压力大小为50-500MPa,保压时间1min-3min。
3.根据权利要求2所述的方法,其特征在于,第三步中通入氩气进行精炼的持续时间为10-15min。
CN201610846456.9A 2016-09-20 2016-09-20 一种调控镁合金的长周期结构相的方法 Active CN106392044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610846456.9A CN106392044B (zh) 2016-09-20 2016-09-20 一种调控镁合金的长周期结构相的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610846456.9A CN106392044B (zh) 2016-09-20 2016-09-20 一种调控镁合金的长周期结构相的方法

Publications (2)

Publication Number Publication Date
CN106392044A CN106392044A (zh) 2017-02-15
CN106392044B true CN106392044B (zh) 2019-03-05

Family

ID=57996960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610846456.9A Active CN106392044B (zh) 2016-09-20 2016-09-20 一种调控镁合金的长周期结构相的方法

Country Status (1)

Country Link
CN (1) CN106392044B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106939388B (zh) * 2017-05-19 2018-05-01 重庆大学 一种低成本高强高韧各向同性Mg-Zn-Y合金及其制备方法
CN107838387A (zh) * 2017-11-28 2018-03-27 上海航天精密机械研究所 超声波辅助制备zm5镁合金铸件的方法
CN108436038A (zh) * 2018-02-08 2018-08-24 海宁双迪电子照明有限公司 一种照明灯具铸造装置
CN109536797A (zh) * 2018-03-30 2019-03-29 上海大学 高强度高塑性铸造Mg-Ni-Y合金及其制备方法
CN110863129A (zh) * 2019-11-18 2020-03-06 华中科技大学 含氮化硼颗粒的镁镍钇合金基体复合材料及其制备方法
CN112210730A (zh) * 2020-09-27 2021-01-12 绵阳市优泰精工科技有限公司 一种稀土合金材料的热处理方法
CN113913661B (zh) * 2021-09-16 2022-09-06 中北大学 一种高阻尼Mg-Zn-Ni-Y合金及其制备工艺
CN114058890B (zh) * 2021-11-24 2022-04-19 西北工业大学 一种三维超声结合声场检测制备Mg-Al-Zn-Mn-Cu多元合金的方法
CN115786828B (zh) * 2022-11-09 2023-11-28 上海交通大学 镁合金层片状lpso结构的层间距调控方法及诱导再结晶方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152775A (zh) * 2014-08-21 2014-11-19 南昌航空大学 一种长周期结构增强镁合金半固态浆料及其制备方法
CN104313370A (zh) * 2014-09-24 2015-01-28 华中科技大学 一种细化稀土镁合金中富稀土相的方法
CN104651693A (zh) * 2013-11-22 2015-05-27 北京有色金属研究总院 含微量Al的稀土变形镁合金及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651693A (zh) * 2013-11-22 2015-05-27 北京有色金属研究总院 含微量Al的稀土变形镁合金及其制备方法
CN104152775A (zh) * 2014-08-21 2014-11-19 南昌航空大学 一种长周期结构增强镁合金半固态浆料及其制备方法
CN104313370A (zh) * 2014-09-24 2015-01-28 华中科技大学 一种细化稀土镁合金中富稀土相的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Effect of Ultrasonic Power on Microstructure and Mechanical Properties of Mg-3RE-3Zn-0.7Y Alloy;Fang Xiaogang等;《Rare Metal Materials and Engineering》;20160131;第45卷(第1期);0007-0012
Mg-Zn-Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior;Xu Zhao et al.;《Materials Science and Engineering C》;20130503;第33卷;3627-3637
稀土镁合金的流变挤压铸造工艺及其组织与性能;吴树森等;《2015年中国铸造活动周论文集》;20151025;401-407
长周期堆垛有序结构增强镁合金的研究进展;王卫等;《稀有金属》;20140131;第38卷(第1期);138-145

Also Published As

Publication number Publication date
CN106392044A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106392044B (zh) 一种调控镁合金的长周期结构相的方法
CN109530468B (zh) 一种轻质车身用原位纳米强化铝合金挤压材及等温变速挤压制备方法
CN102127665B (zh) 可作为超高强铸造铝合金使用的Al-Zn-Mg-Cu-Sc-Zr-RE合金
CN107460386B (zh) 一种磁场铸造调控含lpso结构高强韧镁合金制备方法
CN104152775B (zh) 一种长周期结构增强镁合金半固态浆料及其制备方法
CN104178670B (zh) 超高强铝合金材料的制备方法
CN107747014A (zh) 一种具有高延展性高强镁合金及其制备方法
CN108315621A (zh) 一种阻燃镁合金半固态流变压铸成形方法
CN106676346A (zh) 可阳极氧化并适合半固态成形的铝合金材料及其制备方法
CN104561705A (zh) 一种含稀土元素Er的喷射成形7xxx系铝合金及其制备方法
CN109295362A (zh) 一种超高强高韧Al-Zn-Mg-Cu铝合金及其加工工艺
CN109930045A (zh) 适于重力铸造的高强韧耐热Mg-Gd合金及其制备方法
CN111647785A (zh) 高强度压铸铝合金及其制备方法
CN101279361B (zh) 一种高强韧镁合金的制备方法
CN104550888B (zh) 一种可连续生产金属半固态浆体的方法
CN109852859A (zh) 适于重力铸造的高强韧耐热Mg-Y-Er合金及其制备方法
CN109666832A (zh) 高强耐热变形镁合金及其制备方法
CN106086537B (zh) 一种铝钛硼合金及其粉末冶金成型方法
CN104831137A (zh) 一种时效强化型镁合金及其热处理工艺
CN106801206A (zh) 一种提高含LPSO结构相的Mg‑RE‑Zn系合金室温塑性的方法
CN109881065B (zh) 适于低压铸造的高强韧耐热Mg-Gd-Er合金及其制备方法
CN109797332B (zh) 适于低压铸造的高强韧耐热Mg-Gd-Y合金及其制备方法
CN109943759B (zh) 适于重力铸造的高强韧耐热Mg-Er合金及其制备方法
CN112553486A (zh) 一种提升镍锭质量的熔炼工艺
CN106011563A (zh) 一种熔体复合处理增强亚共晶铝-镁合金的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant