CN106386257A - 一种环保节能农业大棚 - Google Patents

一种环保节能农业大棚 Download PDF

Info

Publication number
CN106386257A
CN106386257A CN201610773668.9A CN201610773668A CN106386257A CN 106386257 A CN106386257 A CN 106386257A CN 201610773668 A CN201610773668 A CN 201610773668A CN 106386257 A CN106386257 A CN 106386257A
Authority
CN
China
Prior art keywords
quantum
node
monitoring
sensor
agricultural greenhouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610773668.9A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610773668.9A priority Critical patent/CN106386257A/zh
Publication of CN106386257A publication Critical patent/CN106386257A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/26Electric devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Abstract

一种环保节能农业大棚,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心。本发明的有益效果为:节约了资源,具有广阔的应用前景。

Description

一种环保节能农业大棚
技术领域
本发明涉及农业领域,具体涉及一种环保节能农业大棚。
背景技术
水资源同样也是人类最宝贵的资源之一,但由于人类的浪费和污染,导致水资源的匮乏。目前,世界上大多国家都存在缺水现象。我国缺水问题更为严重,尤其是在我国的北方地区。雨水作为清洁的水源,正在受到人们的重视。雨水的回收利用有利于提高人们珍惜水资源、节约水资源的意识,具有良好的社会效益。雨水经过处理后,可以回收应用于农业领域,减少水土流失,缓解农业中用水与排水的问题。
量子通信是量子信息学的一个重要分支,其理论是基于量子力学和经典通信,即量子通信是量子力学和经典通信相结合的产物。量子通信通过量子信道传递信息,并能够确保所传输信息的绝对安全。将量子通信技术运用到环境监测中,将大大提高生产环境监测数据传输的安全性。
发明内容
为解决上述问题,本发明旨在提供一种环保节能农业大棚。
本发明的目的采用以下技术方案来实现:
一种环保节能农业大棚,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心;
所述太阳能电池板为一组,安装于农业大棚外侧顶部,并与控制中心连接,所述控制中心分别连接并控制蓄电池、照明设备及喷淋系统;
所述集水管路为开口向上的矩形凹槽,所述凹槽设置于农业大棚顶部外围一周,所述集水管路收集的雨水汇集后经过过滤装置流入底部的蓄水池,所述蓄水池为喷淋系统提供水源;
所述喷淋系统安装于农业大棚内侧顶部,包括:进水管、液压缸及喷淋头。
本发明的有益效果为:节约了资源,具有广阔的应用前景。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1本发明结构示意图;
图2是本发明监测方法的流程示意图。
具体实施方式
结合以下应用场景对本发明作进一步描述。
应用场景1
参见图1、图2,本应用场景的一个实施例的一种环保节能农业大棚,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心;
所述太阳能电池板为一组,安装于农业大棚外侧顶部,并与控制中心连接,所述控制中心分别连接并控制蓄电池、照明设备及喷淋系统;
所述集水管路为开口向上的矩形凹槽,所述凹槽设置于农业大棚顶部外围一周,所述集水管路收集的雨水汇集后经过过滤装置流入底部的蓄水池,所述蓄水池为喷淋系统提供水源;
所述喷淋系统安装于农业大棚内侧顶部,包括:进水管、液压缸及喷淋头。
优选地,所述太阳能电池板为晶体硅太阳能电池或薄膜太阳能电池中的任一种。
本优选实施例成本低、绿色环保。
优选地,所述照明设备为LED光源。
本优选实施节省能源。
优选地,所述室内环境监测网络对大棚内环境进行监测,具体方法包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测网络。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
其中
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.4,传感器节点定位的精度提高了8%,监测精度提高了10%。
应用场景2
参见图1、图2,本应用场景的一个实施例的一种环保节能农业大棚,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心;
所述太阳能电池板为一组,安装于农业大棚外侧顶部,并与控制中心连接,所述控制中心分别连接并控制蓄电池、照明设备及喷淋系统;
所述集水管路为开口向上的矩形凹槽,所述凹槽设置于农业大棚顶部外围一周,所述集水管路收集的雨水汇集后经过过滤装置流入底部的蓄水池,所述蓄水池为喷淋系统提供水源;
所述喷淋系统安装于农业大棚内侧顶部,包括:进水管、液压缸及喷淋头。
优选地,所述太阳能电池板为晶体硅太阳能电池或薄膜太阳能电池中的任一种。
本优选实施例成本低、绿色环保。
优选地,所述照明设备为LED光源。
本优选实施节省能源。
优选地,所述室内环境监测网络对大棚内环境进行监测,具体方法包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测网络。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
其中
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1〉,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1〉,|o〉,…,|oN〉}的量子信道C为:将|i〉∈I送入信道,信道的输出是由密度算子ρ(|i〉)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.45,传感器节点定位的精度提高了9%,监测精度提高了11%。
应用场景3
参见图1、图2,本应用场景的一个实施例的一种环保节能农业大棚,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心;
所述太阳能电池板为一组,安装于农业大棚外侧顶部,并与控制中心连接,所述控制中心分别连接并控制蓄电池、照明设备及喷淋系统;
所述集水管路为开口向上的矩形凹槽,所述凹槽设置于农业大棚顶部外围一周,所述集水管路收集的雨水汇集后经过过滤装置流入底部的蓄水池,所述蓄水池为喷淋系统提供水源;
所述喷淋系统安装于农业大棚内侧顶部,包括:进水管、液压缸及喷淋头。
优选地,所述太阳能电池板为晶体硅太阳能电池或薄膜太阳能电池中的任一种。
本优选实施例成本低、绿色环保。
优选地,所述照明设备为LED光源。
本优选实施节省能源。
优选地,所述室内环境监测网络对大棚内环境进行监测,具体方法包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测网络。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
其中
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.5,传感器节点定位的精度提高了10%,监测精度提高了12%。
应用场景4
参见图1、图2,本应用场景的一个实施例的一种环保节能农业大棚,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心;
所述太阳能电池板为一组,安装于农业大棚外侧顶部,并与控制中心连接,所述控制中心分别连接并控制蓄电池、照明设备及喷淋系统;
所述集水管路为开口向上的矩形凹槽,所述凹槽设置于农业大棚顶部外围一周,所述集水管路收集的雨水汇集后经过过滤装置流入底部的蓄水池,所述蓄水池为喷淋系统提供水源;
所述喷淋系统安装于农业大棚内侧顶部,包括:进水管、液压缸及喷淋头。
优选地,所述太阳能电池板为晶体硅太阳能电池或薄膜太阳能电池中的任一种。
本优选实施例成本低、绿色环保。
优选地,所述照明设备为LED光源。
本优选实施节省能源。
优选地,所述室内环境监测网络对大棚内环境进行监测,具体方法包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测网络。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
其中
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN〉},输出量子比特的有限集合为O={|o1〉,|o〉,…,|oN〉}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i〉)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.55,传感器节点定位的精度提高了8.5%,监测精度提高了8%。
应用场景5
参见图1、图2,本应用场景的一个实施例的一种环保节能农业大棚,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心;
所述太阳能电池板为一组,安装于农业大棚外侧顶部,并与控制中心连接,所述控制中心分别连接并控制蓄电池、照明设备及喷淋系统;
所述集水管路为开口向上的矩形凹槽,所述凹槽设置于农业大棚顶部外围一周,所述集水管路收集的雨水汇集后经过过滤装置流入底部的蓄水池,所述蓄水池为喷淋系统提供水源;
所述喷淋系统安装于农业大棚内侧顶部,包括:进水管、液压缸及喷淋头。
优选地,所述太阳能电池板为晶体硅太阳能电池或薄膜太阳能电池中的任一种。
本优选实施例成本低、绿色环保。
优选地,所述照明设备为LED光源。
本优选实施节省能源。
优选地,所述室内环境监测网络对大棚内环境进行监测,具体方法包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测网络。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
其中
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.6,传感器节点定位的精度提高了9.5%,监测精度提高了10.5%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.一种环保节能农业大棚,其特征是,包括:室内环境监测网络和智能控制系统,所述智能控制系统包括太阳能电池板、蓄电池、照明设备、集水管路、过滤装置、蓄水池、喷淋系统及控制中心;
所述太阳能电池板为一组,安装于农业大棚外侧顶部,并与控制中心连接,所述控制中心分别连接并控制蓄电池、照明设备及喷淋系统;
所述集水管路为开口向上的矩形凹槽,所述凹槽设置于农业大棚顶部外围一周,所述集水管路收集的雨水汇集后经过过滤装置流入底部的蓄水池,所述蓄水池为喷淋系统提供水源;
所述喷淋系统安装于农业大棚内侧顶部,包括:进水管、液压缸及喷淋头。
2.根据权利要求1所述的一种环保节能农业大棚,其特征是,所述太阳能电池板为晶体硅太阳能电池或薄膜太阳能电池中的任一种。
3.根据权利要求2所述的一种环保节能农业大棚,其特征是,所述照明设备为LED光源。
CN201610773668.9A 2016-08-30 2016-08-30 一种环保节能农业大棚 Pending CN106386257A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610773668.9A CN106386257A (zh) 2016-08-30 2016-08-30 一种环保节能农业大棚

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610773668.9A CN106386257A (zh) 2016-08-30 2016-08-30 一种环保节能农业大棚

Publications (1)

Publication Number Publication Date
CN106386257A true CN106386257A (zh) 2017-02-15

Family

ID=58003958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610773668.9A Pending CN106386257A (zh) 2016-08-30 2016-08-30 一种环保节能农业大棚

Country Status (1)

Country Link
CN (1) CN106386257A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107736147A (zh) * 2017-11-22 2018-02-27 广西超星太阳能科技有限公司 一种基于太阳能电池板的农业大棚

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487521A (zh) * 2016-02-24 2016-04-13 江苏超数信息科技有限公司 基于云计算的农业大棚安全控制系统及控制方法
CN105532321A (zh) * 2016-01-29 2016-05-04 滦南林海科技发展有限责任公司 一种农光互补的光伏组件及其在农业大棚上的应用方法
CN105746237A (zh) * 2016-03-31 2016-07-13 太仓市璜泾新明农机作业专业合作社 一种环保节能农业大棚

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105532321A (zh) * 2016-01-29 2016-05-04 滦南林海科技发展有限责任公司 一种农光互补的光伏组件及其在农业大棚上的应用方法
CN105487521A (zh) * 2016-02-24 2016-04-13 江苏超数信息科技有限公司 基于云计算的农业大棚安全控制系统及控制方法
CN105746237A (zh) * 2016-03-31 2016-07-13 太仓市璜泾新明农机作业专业合作社 一种环保节能农业大棚

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107736147A (zh) * 2017-11-22 2018-02-27 广西超星太阳能科技有限公司 一种基于太阳能电池板的农业大棚

Similar Documents

Publication Publication Date Title
CN106453488A (zh) 一种基于量子通信的农产品生产环境监测方法与系统
CN102109511B (zh) 一种基于无线传感器网络的污水监测网络结构
CN106295800B (zh) 一种基于递归自组织rbf神经网络的出水总氮tn智能检测方法
US20220082545A1 (en) Total Nitrogen Intelligent Detection Method Based on Multi-objective Optimized Fuzzy Neural Network
CN105510546A (zh) 一种基于自组织递归rbf神经网络的生化需氧量bod智能检测方法
CN103267832A (zh) 地表水在线水质监测系统
CN106779418A (zh) 基于神经网络和证据理论的水污染事件智能决策方法
CN103235098A (zh) 地下水在线水质监测系统
CN103530818A (zh) 一种基于brb系统的供水管网建模方法
CN107449884B (zh) 一种基于无线传感器网络的污水监测系统
CN106383037A (zh) 一种基于大数据理念的桥梁结构健康监测系统及其实现方法
CN104848901A (zh) 一种墒情实时监测和预测系统及其检测方法
CN109000733A (zh) 基于模拟退火优化神经网络的能见度传感器及其检测方法
CN106441425A (zh) 一种森林环境监测系统
CN106386257A (zh) 一种环保节能农业大棚
CN106485351A (zh) 一种海洋环境监测站位布局优化方法
CN204854800U (zh) 一种水文水质在线监测及预警系统
CN110443442A (zh) 一种基于均方差赋权法的耕地生态风险评价的方法
CN109060618A (zh) 一种光伏发电功率预测装置及方法
Zixuan et al. Research on marine environmental monitoring system based on the Internet of Things technology
CN106302793A (zh) 一种基于云计算的大棚空气质量监测系统
CN106331130A (zh) 一种火灾监测控制系统
Xing et al. Water quality evaluation by the fuzzy comprehensive evaluation based on EW method
CN106404321A (zh) 一种用于桥梁变形监测的挠度传感器及其实现方法
CN106375402A (zh) 一种基于云计算平台的高速公路能见度监测预警系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170215