CN106328492A - Low temperature solution method of preparing indium oxide thin film transistor having high mobility - Google Patents

Low temperature solution method of preparing indium oxide thin film transistor having high mobility Download PDF

Info

Publication number
CN106328492A
CN106328492A CN201610821768.4A CN201610821768A CN106328492A CN 106328492 A CN106328492 A CN 106328492A CN 201610821768 A CN201610821768 A CN 201610821768A CN 106328492 A CN106328492 A CN 106328492A
Authority
CN
China
Prior art keywords
thin film
indium oxide
indium
film transistor
preparing
Prior art date
Application number
CN201610821768.4A
Other languages
Chinese (zh)
Inventor
夏国栋
王素梅
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Priority to CN201610821768.4A priority Critical patent/CN106328492A/en
Publication of CN106328492A publication Critical patent/CN106328492A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Abstract

The invention belongs to the semiconductor and microelectronic device field, especially relates to a low temperature solution method of preparing an indium oxide thin film transistor having high mobility. The low temperature solution method comprises steps that a soluble indium salt is weighed, and solvent is measured, and then an indium oxide precursor solution having concentration in a range from 0.01 mol/L to 0.5 mol/L is configured, and clear and transparent indium oxide precursor solution is formed after 0.1-3h magnetic stirring and ultrasonic dispersion; the preparation of the indium oxide thin film: the indium oxide precursor solution is coated on a substrate, which is provided with a dielectric layer/grid thin film in a coated manner in advance, to form an indium oxide precursor thin film, and pre-heating treatment at a temperature in a range from 50DEGC to 150DEGC is carried out, and after optical wave annealing at a certain power, time, and temperature, the multiple coating of the precursor indium oxide solution and the annealing treatment are carried out according to the thickness requirement of the indium oxide thin film, and an indium oxide transparent semiconductive thin film is acquired. A source drain electrode is deposited on the indium oxide transparent semiconductive thin film to acquire an indium oxide thin film transistor. The indium oxide thin film transistor provided by the invention has high performance, and an important application prospect in an information electronic field. By adopting the technology provided by the invention, a common high temperature solution technology, a long technological period, or expensive devices are prevented, and costs are low, and therefore the low temperature solution method of preparing indium oxide thin film transistor having high mobility is suitable for industrial large-scale production.

Description

一种制备高迁移率氧化铟薄膜晶体管的低温溶液方法 Low-temperature solution process for the preparation of high mobility thin film transistor indium oxide

技术领域 FIELD

[0001]本发明属于半导体及微电子器件领域,特别涉及一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,氧化铟薄膜晶体管在信息电子领域有重要应用前景。 [0001] The present invention is a semiconductor and microelectronic devices, and more particularly relates to low-temperature solution process for the preparation of high shift Gan indium oxide thin film transistor, an indium oxide thin film transistor important potential applications in the field of electronic information.

背景技术 Background technique

[0002]进入二十一世纪后,显示器件已经成为人们获取信息、进行信息交换的主要终端设备,薄膜晶体管(Thin Film Transistor)作为有源驱动技术的关键器件对显示设备的整体性能有着举足轻重的影响。 [0002] In the twenty-first century, a display device has become the main terminal device access to information, exchange information, and a thin film transistor (Thin Film Transistor) active driving device as a key technology for the overall performance of the display device has a significant influences. 到目前为止,发展最为成熟的是非晶硅薄膜晶体管及多晶硅薄膜晶体管。 So far, the most mature of amorphous silicon thin film transistor and a polysilicon thin film transistor. 然而非晶硅晶体管的缺点是载流子迀移率低(〈lcm2/VS),难以满足有机发光二极管电流驱动的要求,同时a_S1:H晶体管易受光照影响,使得工作稳定性较差;多晶硅晶体管生产工艺比较复杂,成本较高,同时受激光晶化工艺的限制,大尺寸化比较困难。 However, a disadvantage of amorphous silicon transistors is a carrier shift Gan low (<lcm2 / VS), an organic light emitting diode current is difficult to meet the requirements of the drive, while a_S1: H transistor susceptible to the influence of light, so that the work stability is poor; poly transistor production process is relatively complex and costly, while limiting the laser crystallization process, the more difficult by the large size. 经过多年研究,硅基晶体管的缺点难以得到改善,而以非晶态氧化物半导体作为沟道层的薄膜晶体管得到了快速发展,非晶态氧化物晶体管的优点在于:载流子迀移率较高,器件综合性能优异,制备工艺成熟,上述优点使其具有很大的应用价值。 After years of research, the disadvantages of the silicon transistors can hardly be improved, while in an amorphous oxide semiconductor as a channel layer of a thin film transistor has been rapid development, advantages in that the amorphous oxide transistor: the carrier shift rate than Gan high, the device is excellent in overall performance, the preparation process is mature, it has a great advantage of the above-described value.

[0003] 2004年,东京工业大学的Hosono小组在著名学术期刊《Nature》上发表了非晶铟镓锌氧薄膜晶体管。 [0003] 2004, Hosono of the Tokyo Institute of Technology team published amorphous indium gallium zinc oxide thin film transistor in the prestigious academic journal "Nature". 该铟镓锌氧晶体管的载流子迀移率为10 cmVVs,开关电流比达到了106。 The carrier Gan indium gallium zinc oxide was shifted transistor 10 cmVVs, switching current ratio reached 106. 自此,以非晶铟镓锌氧为主的多元非晶态氧化物引起了科研人员的广泛关注。 Since then, amorphous indium gallium zinc oxide-based amorphous oxide of polyhydric attracted attention of researchers. 因此研究高性能的氧化铟基薄膜晶体管具有极其重要的意义。 Thus an indium oxide based thin film transistor of high performance is extremely important.

[0004]目前制备氧化铟基薄膜晶体管的方法多种多样,主要包括气相法和液相法两大类。 [0004] The present method of preparing an indium oxide based thin film transistors is varied, including gas-phase and liquid-phase method two categories. 例如,磁控溅射、电子束蒸发、原子层沉积及化学气相沉积等方法都被用来制备氧化铟基薄膜晶体管。 For example, magnetron sputtering, electron beam evaporation, atomic layer deposition and chemical vapor deposition methods are used for the preparation of an indium oxide based thin film transistors. 然而,这些气相方法通常需要真空环境,增加了设备的复杂,提高了成本。 However, these gas phase processes typically require a vacuum environment, the increasing complexity of the device, increase the cost. 近年来,液相方法日益引起了广泛的关注,得到了迅速的发展,例如溶胶-凝胶法、喷雾热解法等。 In recent years, liquid phase process increasingly attracted wide attention, has been the rapid development, such as sol - gel method, spray pyrolysis and so on. 近年来发展的液相法合成氧化铟基薄膜晶体管的研究报道有许多。 Recent studies have reported the development of liquid-phase synthesis of an indium oxide based thin film transistors are many. 例如,公开号为CN103779425B的中国发明专利公开了一种铟镓锌氧化物半导体薄膜和铟镓锌薄膜晶体管的制备方法,包括a )制备乙酰丙酮镓的乙醇溶液、乙酰丙酮锌水合物的乙醇溶液和乙酰丙酮铟的四氢呋喃溶液;b)将三种溶液进行混合并搅拌均匀,制得铟镓锌氧化物的前驱体溶液;c)将前驱体溶液沉积在基板材料上并进行退火处理,制得铟镓锌氧化物半导体薄膜。 For example, Publication No. discloses a method of preparing indium gallium zinc oxide semiconductor thin film and the thin film transistor indium gallium zinc Chinese patent CN103779425B invention, comprising a) preparing an ethanol solution of gallium acetylacetonate, zinc acetylacetonate hydrate ethanol solution of tetrahydrofuran and indium acetylacetonate; b) the three solutions were mixed and stirred uniformly, to prepare a precursor solution of indium gallium zinc oxide; c) the precursor solution is deposited on the substrate material and annealed to prepare indium gallium zinc oxide semiconductor thin film. 由上述发明专利可以看出,虽然液相法可以制备较高性能的氧化铟基薄膜晶体管,但液相法通常需要高温(高于400°C)退火,才能促使前驱体薄膜分解并致密化,形成致密的氧化铟基薄膜。 As can be seen from the above patents, while a liquid phase method indium oxide based thin film transistors of higher performance can be produced, but a liquid phase method generally requires high temperatures (above 400 ° C) anneal, in order to promote decomposition of the precursor film and densified, It forms a dense oxide indium-based film. 因此,寻找一种新的低温液相制备技术,对于氧化铟薄膜晶体管在各种领域的大规模应用是极为重要和迫切的。 Thus, to find a new preparation technique cryogenic liquid, it is extremely important and urgent for large scale applications indium oxide thin film transistor is used in various fields.

发明内容 SUMMARY

[0005]本发明的目的在于提供一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,实现氧化铟薄膜晶体管的简易高效制备,更易于大规模生产和应用。 [0005] The object of the present invention to provide a low-temperature solution process for the preparation of high shift Gan indium oxide thin film transistor prepared in a simple and efficient implementation of an indium oxide thin film transistor, easier mass production and application. 本发明的创新点主要在于:发展了新的低温光波方法制备高迀移率氧化铟薄膜晶体管。 The main innovation of this invention is that: the development of a new process for producing high Wenguang Bo Gan low drift rates indium oxide thin film transistor.

[0006]本发明的技术方案,具体包括以下步骤: [0006] aspect of the present invention, includes the following steps:

(1)制备氧化铟前驱体溶液:称取可溶性的铟盐,量取溶剂,配置浓度为0.01-0.5摩尔/升的氧化铟前驱体溶液,经过0.1-3小时的磁力搅拌和超声分散形成澄清透明的氧化铟前驱体溶液; (1) Preparation of indium oxide precursor solution: Weigh-soluble indium salt, amount of solvent, at a concentration of 0.01 to 0.5 configured mol / l indium oxide precursor solution, after 0.1 to 3 hours magnetic stirring and ultrasonic dispersion to form a clear transparent indium oxide precursor solution;

(2)制备氧化铟薄膜:将氧化铟前驱体溶液涂覆到预先涂有介电层/栅极薄膜的衬底上形成氧化铟前驱体薄膜,进行50-150 °C的预热处理,然后经过一定功率、时间和温度的光波退火,根据氧化铟薄膜的厚度要求可多次涂覆前驱体氧化铟溶液并退火处理,即得到氧化铟透明半导体薄膜。 (2) Preparation of film of indium oxide: indium oxide coated precursor solution to a pre-coated with indium oxide precursor thin film is formed on the substrate dielectric layer / gate electrode film, preheated to 50-150 ° C, and then after a certain power, light wave annealing time and temperature, depending on the thickness of the thin film of indium oxide can be used repeatedly in claim indium precursor solution was coated and annealed oxide, indium oxide to obtain a transparent semiconductor thin film.

[0007] (3)制备氧化铟薄膜晶体管:在氧化铟透明半导体薄膜上沉积源漏电极,即得到氧化铟薄膜晶体管。 [0007] (3) Preparation of a thin film transistor indium oxide: indium oxide on a transparent semiconductor thin film deposition source and drain electrodes, to obtain an indium oxide thin film transistor.

[0008]本发明所述制备方法的步骤(I)中,所述的可溶性的铟盐为硝酸铟、氯化铟、硫酸铟或乙酸铟中的一种或两种以上。 [0008] Step (I) of the present invention is the preparation process, the soluble indium salt is indium nitrate, indium chloride, indium sulfate, indium acetate, or of one or two or more kinds.

[0009]本发明所述制备方法的步骤(I)中,所述的溶剂为乙二醇甲醚、乙醇、水、乙二醇或二甲基甲酰胺中的一种或两种以上。 [0009] Step (I) of the present invention is the preparation process, the solvent is ethylene glycol monomethyl ether, ethanol, water, glycol or dimethylformamide one or two or more kinds.

[0010]本发明所述制备方法的步骤(I)中,所述涂覆方法为旋转涂覆法、滴涂法、浸涂法、喷雾法或喷墨打印法。 [0010] Step (I) of the present invention is the preparation method, the coating method is spin coating, drop coating, dip coating, spraying method or an inkjet printing method.

[0011 ]本发明所述制备方法的步骤(I)中,所述介电层为氧化硅、氧化锆、氧化铪、氧化铝、氧化钇或氧化镧中的一种或两种以上。 The preparation method step of the invention [0011] The present formula (I), the dielectric layer is a silicon oxide, zirconium oxide, hafnium oxide, alumina, yttria or lanthanum oxide or two or more kinds.

[0012]本发明所述制备方法的步骤(I)中,所述的栅极薄膜为铝、铜、银、钼、氧化铟锡或金薄膜中的一种或两种以上。 [0012] Step (I) of the present invention is the preparation method, the gate electrode film of aluminum, copper, silver, molybdenum, gold, indium tin oxide, or one or two or more films.

[0013]本发明所述制备方法的步骤(I)中,所述的光波的生成仪器为用作厨具的光波炉或具有卤素灯管的加热仪器。 [0013] Step (I) of the present invention is the preparation method, the light wave generating apparatus is used as a kitchen oven or a heating apparatus of the halogen lamp.

[0014]本发明所述制备方法的步骤(I)中,所述的光波退火的功率为100-900 W0 [0014] Step production method according to the present invention (I), the power of the light wave is annealed 100-900 W0

[0015]本发明所述制备方法的步骤(I)中,所述的光波退火的时间为5-120分钟。 The preparation method step of the invention [0015] (I), the optical wave annealing time is 5-120 minutes.

[0016]本发明所述制备方法的步骤(I)中,所述的光波退火过程中的温度为100-300 °C。 The preparation method step of the invention [0016] (I) of the temperature of the optical wave annealing process is 100-300 ° C.

[0017]本发明所述制备方法的步骤(I)中,所述的源漏电极为铝、铜、银、钼、氧化铟锡或金薄膜中的一种或两种以上。 The preparation method step of the invention [0017] The present formula (I), the drain electrode are a source of aluminum, copper, silver, molybdenum, indium tin oxide or gold thin film of one or two or more kinds.

[0018]本发明的有益效果是:本发明工艺简单容易操作,原料廉价易得,所制备的氧化铟薄膜晶体管性能高。 [0018] Advantageous effects of the present invention are: the process of the present invention is easy to operate, inexpensive, readily available raw materials, high transistor performance indium oxide films produced. 通过本发明的工艺可以避免通常的高温溶液工艺、工艺周期长或昂贵设备等,成本低,适合工业化大规模生产。 Can be avoided by the process of the present invention is generally a high-temperature solution process, a long process cycle or expensive equipment, low cost, suitable for industrial mass production.

附图说明 BRIEF DESCRIPTION

[0019]下面结合附图对本发明作进一步的说明。 [0019] The following drawings further illustrate the present invention in combination.

[0020]附图1为实施例之一的氧化铟薄膜晶体管的器件结构图; [0020] Figure 1 is a device configuration diagram of indium oxide thin film transistor of one of the embodiments;

附图2是实施例之一的氧化铟薄膜晶体管的的转移特性曲线。 Figure 2 is the transfer characteristic of an indium oxide thin film transistor of one of the embodiments curve.

具体实施方式 Detailed ways

[0021]下面结合附图和具体实施例对本发明作进一步的说明。 Drawings and specific embodiments of the present invention will be further described [0021] below in conjunction.

[0022] 实施例1: 称取1.106 g氯化铟,量取10毫升乙二醇甲醚溶液,配置浓度为0.5摩尔/升的氧化铟前驱体溶液,经过2小时的磁力搅拌和超声分散形成澄清透明的氧化铟前驱体溶液。 [0022] Example 1: Weigh 1.106 g of indium chloride, weighed 10 ml ethylene glycol methyl ether solution, a concentration of 0.5 configured mol / l indium oxide precursor solution, after 2 hours, magnetic stirring and ultrasonic dispersing formed clear and transparent indium oxide precursor solution. 将氧化铟前驱体溶液涂覆到预先涂有氧化硅的单晶硅衬底上形成氧化铟前驱体薄膜,进行100 °C的预热处理,然后经过300W、60分钟和200 °C的光波退火,即得到氧化铟透明半导体薄膜。 The formed indium oxide precursor solution applied to the pre-coated with silicon oxide, indium oxide on a single crystal silicon substrate precursor thin film, preheated to 100 ° C, and then through the light wave 300W, 60 minutes, and annealing to 200 ° C , i.e., to obtain a transparent semiconductor thin film of indium oxide. 在氧化铟透明半导体薄膜上沉积源漏电极,即得到氧化铟薄膜晶体管。 Indium oxide on a transparent semiconductor thin film deposition source and drain electrodes, to obtain an indium oxide thin film transistor.

[0023] 实施例2: [0023] Example 2:

称取0.032 g硝酸铟,量取10毫升乙醇溶液,配置浓度为0.01摩尔/升的氧化铟前驱体溶液,经过0.5小时的磁力搅拌和超声分散形成澄清透明的氧化铟前驱体溶液。 Weigh 0.032 g of indium nitrate, weighed 10 ml ethanol was arranged at a concentration of 0.01 mol / l of indium oxide precursor solution, after 0.5 hours of magnetic stirring and ultrasonic dispersion to form a clear and transparent indium oxide precursor solution. 将氧化铟前驱体溶液涂覆到预先涂有氧化锆的单晶硅衬底上形成氧化铟前驱体薄膜,进行50 °C的预热处理,然后经过700W、30分钟和280 °C的光波退火,即得到氧化铟透明半导体薄膜。 The formed indium oxide precursor solution is coated to a pre-coated with a zirconia single crystal silicon substrate on the indium oxide precursor thin film, preheated to 50 ° C, and then through the light wave 700W, 30 minutes, and 280 ° C annealing , i.e., to obtain a transparent semiconductor thin film of indium oxide. 在氧化铟透明半导体薄膜上沉积源漏电极,即得到氧化铟薄膜晶体管。 Indium oxide on a transparent semiconductor thin film deposition source and drain electrodes, to obtain an indium oxide thin film transistor.

[0024] 实施例3: [0024] Example 3:

称取0.146 g乙酸铟,量取5毫升水溶液,配置浓度为0.1摩尔/升的氧化铟前驱体溶液,经过I小时的磁力搅拌和超声分散形成澄清透明的氧化铟前驱体溶液。 Weigh 0.146 g of indium acetate, amount of 5 ml aqueous configured concentration of 0.1 mol / l of indium precursor solution After I hr magnetic stirring and ultrasonic dispersion to form a clear and transparent indium oxide precursor solution. 将氧化铟前驱体溶液涂覆到预先涂有氧化铝的氧化铟锡玻璃上形成氧化铟前驱体薄膜,进行90 °C的预热处理,然后经过900W、5分钟和300 °C的光波退火,即得到氧化铟透明半导体薄膜。 The indium oxide precursor solution is coated to a pre-coated with indium tin oxide, aluminum oxide glass precursor thin film is formed of indium oxide, preheated to 90 ° C, and then through the light wave 900W, 5 minutes, and annealing to 300 ° C, i.e., obtain a transparent semiconductor thin film of indium oxide. 在氧化铟透明半导体薄膜上沉积源漏电极,即得到氧化铟薄膜晶体管。 Indium oxide on a transparent semiconductor thin film deposition source and drain electrodes, to obtain an indium oxide thin film transistor.

[0025] 实施例4: [0025] Example 4:

称取0.221 g氯化铟,量取20毫升乙二醇溶液,配置浓度为0.05摩尔/升的氧化铟前驱体溶液,经过2小时的磁力搅拌和超声分散形成澄清透明的氧化铟前驱体溶液。 Weigh 0.221 g of indium chloride, 20 ml of ethylene glycol was weighed, arranged at a concentration of 0.05 mol / l of indium oxide precursor solution, after 2 hours, magnetic stirring and ultrasonic dispersion to form a clear and transparent indium oxide precursor solution. 将氧化铟前驱体溶液涂覆到预先涂有氧化镧的氧化铟锡玻璃上形成氧化铟前驱体薄膜,进行120 °C的预热处理,然后经过500W、20分钟和250 °C的光波退火,即得到氧化铟透明半导体薄膜。 The indium precursor solution applied to the pre-coated with indium oxide is formed on the precursor thin film of indium tin oxide, lanthanum oxide, glass, preheated to 120 ° C, and then through the light wave 500W, 20 minutes, and to 250 ° C annealing, i.e., obtain a transparent semiconductor thin film of indium oxide. 在氧化铟透明半导体薄膜上沉积源漏电极,即得到氧化铟薄膜晶体管。 Indium oxide on a transparent semiconductor thin film deposition source and drain electrodes, to obtain an indium oxide thin film transistor.

[0026] 实施例5: [0026] Example 5:

称取2.4 g硝酸铟,量取15毫升二甲基甲酰胺溶液,配置浓度为0.5摩尔/升的氧化铟前驱体溶液,经过3小时的磁力搅拌和超声分散形成澄清透明的氧化铟前驱体溶液。 Weigh 2.4 g of indium nitrate, weighed 15 ml dimethyl formamide, 0.5 mole liter concentration configured indium oxide precursor solution / after 3 hours magnetic stirring and ultrasonic dispersion to form a clear and transparent indium oxide precursor solution . 将氧化铟前驱体溶液涂覆到预先涂有氧化钇的氧化铟锡玻璃上形成氧化铟前驱体薄膜,进行70 V的预热处理,然后经过100W、120分钟和150 °C的光波退火,即得到氧化铟透明半导体薄膜。 The coated indium oxide precursor solution to form a pre-coated with indium oxide precursor thin film of indium tin oxide, yttrium oxide, glass, preheated to 70 V, and the light waves through the annealing 100W, 120 minutes, and to 150 ° C, i.e. indium oxide transparent semiconductor thin film obtained. 在氧化铟透明半导体薄膜上沉积源漏电极,即得到氧化铟薄膜晶体管。 Indium oxide on a transparent semiconductor thin film deposition source and drain electrodes, to obtain an indium oxide thin film transistor.

[0027]上述实施例结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制。 [0027] The above-described embodiments in conjunction with the accompanying drawings of specific embodiments of the present invention have been described, but not limit the scope of the present invention. 所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的对本发明的各种修改或变形,仍在本发明的保护范围以内。 Those skilled in the art will appreciate, on the basis of the technical solution of the present invention, those skilled in the art within the scope not need to pay for various modifications and variations, the present invention is still protected by the present invention can be made creative work.

Claims (10)

1.一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于包括如下步骤: (1)制备氧化铟前驱体溶液:称取可溶性的铟盐,量取溶剂,配置浓度为0.01-0.5摩尔/升的氧化铟前驱体溶液,经过0.1-3小时的磁力搅拌和超声分散形成澄清透明的氧化铟前驱体溶液; (2)制备氧化铟薄膜:将氧化铟前驱体溶液涂覆到预先涂有介电层/栅极薄膜的衬底上形成氧化铟前驱体薄膜,进行50-150 °C的预热处理,然后经过一定功率、时间和温度的光波退火,根据氧化铟薄膜的厚度要求可多次涂覆前驱体氧化铟溶液并退火处理,得到氧化铟透明半导体薄膜; (3)制备氧化铟薄膜晶体管:在氧化铟透明半导体薄膜上沉积源漏电极,即得到氧化铟薄膜晶体管; 所述的光波的生成仪器为用作厨具的光波炉或具有卤素灯管的加热仪器。 1. A process for preparing a high rate of low-temperature solution method Gan shift indium oxide thin film transistor, comprising the steps of: (1) Preparation of indium oxide precursor solution: Weigh-soluble indium salt, amount of solvent, configure a concentration of 0.01 -0.5 mol l indium oxide precursor solution / after 0.1 to 3 hours magnetic stirring and ultrasonic dispersion to form a clear and transparent indium oxide precursor solution; (2) preparing a thin film of indium oxide: indium oxide coated precursor solution to pre-coated with indium oxide precursor thin film is formed on the substrate dielectric layer / gate electrode film, preheated to 50-150 ° C, then subjected to annealing lightwave certain power, time and temperature, depending on the thickness of the thin film of indium oxide It requires multiple coating precursor may be an indium oxide and solution annealing treatment, to obtain a transparent semiconductor thin film of indium oxide; (3) an indium oxide thin film transistor prepared: depositing an indium source and drain on oxide semiconductor thin film transparent electrode, indium oxide to obtain a thin film transistor; the light wave generating apparatus is used as a kitchen oven or a heating apparatus of the halogen lamp.
2.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述的可溶性的铟盐为硝酸铟、氯化铟、硫酸铟或乙酸铟中的一种或两种以上。 2. A process for preparing a high-Gan said low-temperature solution method of shifting indium oxide thin film transistor as claimed in claim, wherein: said soluble indium salt is indium nitrate, indium chloride, indium sulfate or indium acetic acid one or two more.
3.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述的溶剂为乙二醇甲醚、乙醇、水、乙二醇或二甲基甲酰胺中的一种或两种以上。 3. A process for preparing a high-Gan said low-temperature solution method of shifting indium oxide thin film transistor as claimed in claim, wherein: said solvent is ethylene glycol monomethyl ether, ethanol, water, glycol, or dimethyl formamide group of one or two or more kinds.
4.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述涂覆方法为旋转涂覆法、滴涂法、浸涂法、喷雾法或喷墨打印法。 The high temperature solution process for preparing a shift of indium oxide thin film transistor according to Gan claimed in claim 1, wherein: said coating method is a spin coating method, dispenser method, a dip coating method, a spray method or inkjet printing method.
5.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述介电层为氧化硅、氧化锆、氧化铪、氧化铝、氧化钇或氧化镧中的一种或两种以上。 5. A process for preparing a high-Gan said low-temperature solution method of shifting indium oxide thin film transistor as claimed in claim, wherein: said dielectric layer is a silicon oxide, zirconium oxide, hafnium oxide, alumina, yttria or lanthanum oxide one or two or more kinds.
6.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述的栅极薄膜为铝、铜、银、钼、氧化铟锡或金薄膜中的一种或两种以上。 6. A process for preparing a high-Gan said low-temperature solution method of shifting indium oxide thin film transistor as claimed in claim, wherein: said gate thin film of aluminum, copper, silver, molybdenum, indium tin oxide or gold film one or two or more kinds.
7.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述的光波退火的功率为100-900 W。 7. A process for preparing a high-Gan said low-temperature solution method of shifting indium oxide thin film transistor as claimed in claim, wherein: the power of the light wave annealing is 100-900 W.
8.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述的光波退火的时间为5-120分钟。 A process for preparing according to claim 1, wherein said low-temperature solution method of shifting the high rate Gan indium oxide thin film transistor, wherein: said optical wave annealing time is 5-120 minutes.
9.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述的光波退火过程中的温度为100-300 °C。 A process for preparing according to claim 1, wherein said low-temperature solution method of shifting the high rate Gan indium oxide thin film transistor, wherein: the temperature of the optical wave annealing process is 100-300 ° C.
10.根据权利要求1所述的一种制备高迀移率氧化铟薄膜晶体管的低温溶液方法,其特征在于:所述的源漏电极为铝、铜、银、氧化铟锡或金薄膜中的一种或两种以上。 10. A process for preparing high-Gan said low-temperature solution method of claim 1 indium oxide thin film transistor of shift, wherein: the source-drain extremely aluminum, copper, silver, gold, indium tin oxide or a thin film or two or more species.
CN201610821768.4A 2016-09-14 2016-09-14 Low temperature solution method of preparing indium oxide thin film transistor having high mobility CN106328492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610821768.4A CN106328492A (en) 2016-09-14 2016-09-14 Low temperature solution method of preparing indium oxide thin film transistor having high mobility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610821768.4A CN106328492A (en) 2016-09-14 2016-09-14 Low temperature solution method of preparing indium oxide thin film transistor having high mobility

Publications (1)

Publication Number Publication Date
CN106328492A true CN106328492A (en) 2017-01-11

Family

ID=57786705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610821768.4A CN106328492A (en) 2016-09-14 2016-09-14 Low temperature solution method of preparing indium oxide thin film transistor having high mobility

Country Status (1)

Country Link
CN (1) CN106328492A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828018A (en) * 2011-01-28 2014-05-28 西北大学 Low-temperature fabrication of metal oxide thin films and nanomaterial-derived metal composite thin films
CN105489486A (en) * 2016-01-18 2016-04-13 青岛大学 Method for preparing thin-film transistor based on ultra-thin magnesium oxide high-k dielectric layer
CN105706243A (en) * 2013-12-06 2016-06-22 富士胶片株式会社 Metal oxide semiconductor film, thin-film transistor, display device, image sensor, and x-ray sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828018A (en) * 2011-01-28 2014-05-28 西北大学 Low-temperature fabrication of metal oxide thin films and nanomaterial-derived metal composite thin films
CN105706243A (en) * 2013-12-06 2016-06-22 富士胶片株式会社 Metal oxide semiconductor film, thin-film transistor, display device, image sensor, and x-ray sensor
CN105489486A (en) * 2016-01-18 2016-04-13 青岛大学 Method for preparing thin-film transistor based on ultra-thin magnesium oxide high-k dielectric layer

Similar Documents

Publication Publication Date Title
Xu et al. Structural and optical properties of ZnO thin films prepared by sol–gel method with different thickness
CN101931009B (en) Thin film transistor and method of producing thin film transistor
Banerjee et al. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique
JP5644111B2 (en) Metal oxide semiconductor and a manufacturing method thereof, a semiconductor device, a thin film transistor
JP5132151B2 (en) Transparent conductor, a transparent electrode, a solar cell, the light emitting element and a display panel
JP6080167B2 (en) Materials based on gallium arsenide for use in thin film transistors applications
Hennek et al. Exploratory combustion synthesis: amorphous indium yttrium oxide for thin-film transistors
Tao et al. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method
CN101897031A (en) Field effect transistor using oxide semiconductor and method for manufacturing the same
Esro et al. High‐Mobility ZnO Thin Film Transistors Based on Solution‐processed Hafnium Oxide Gate Dielectrics
Jo et al. Highly Stable and Imperceptible Electronics Utilizing Photoactivated Heterogeneous Sol‐Gel Metal–Oxide Dielectrics and Semiconductors
US6376691B1 (en) Metal organic precursors for transparent metal oxide thin films and method of making same
Chen et al. The effect of La doping concentration on the properties of zinc oxide films prepared by the sol–gel method
Xu et al. The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors
Kenanakis et al. Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter
CN103400751B (en) Manufacturing method of laminate structure including oxide semiconductor thin film layer
Li et al. Performance improvement for solution-processed high-mobility ZnO thin-film transistors
Adamopoulos et al. Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin‐film transistors
Du Ahn et al. A review on the recent developments of solution processes for oxide thin film transistors
Rim et al. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis
CN102257177B (en) Method for producing semiconducting indium oxide layers, indium oxide layers produced according to said method and their use
Ravichandran et al. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique
KR101662862B1 (en) Compositions containing indium alkoxide, method for the production thereof, and use thereof
Tari et al. Sol–gel synthesis of ZnO transparent and conductive films: A critical approach
Yu et al. Transparent conducting yttrium-doped ZnO thin films deposited by sol–gel method

Legal Events

Date Code Title Description
PB01
C10 Entry into substantive examination