CN106295132A - A kind of air separation plant varying duty optimization method based on mould plate technique - Google Patents

A kind of air separation plant varying duty optimization method based on mould plate technique Download PDF

Info

Publication number
CN106295132A
CN106295132A CN201610607664.3A CN201610607664A CN106295132A CN 106295132 A CN106295132 A CN 106295132A CN 201610607664 A CN201610607664 A CN 201610607664A CN 106295132 A CN106295132 A CN 106295132A
Authority
CN
China
Prior art keywords
variable
template
optimization
real
air separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610607664.3A
Other languages
Chinese (zh)
Inventor
王凯
邵之江
纪彭
周芬芳
武凤坤
李翔
金奎�
徐祖华
赵均
陈曦
蒋鹏飞
王可心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Hangzhou Hangyang Co Ltd
Original Assignee
Zhejiang University ZJU
Hangzhou Hangyang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Hangzhou Hangyang Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201610607664.3A priority Critical patent/CN106295132A/en
Publication of CN106295132A publication Critical patent/CN106295132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Feedback Control In General (AREA)

Abstract

一种基于模板技术的空分设备变负荷优化方法,其特征在于所述的变负荷优化方法是:通过建立含有变量标记以及空分装置机理模型的动态模板,在每次实时优化计算之前从实时数据库中获取实时数据以及负荷信息,然后通过模板引擎解析模板产生当前负荷下对应的机理模型,并将生成的实时数据嵌入其中,最后调用优化求解器对机理模型进行优化求解;在空分装置变负荷生产过程中,可以在优化模型结构不变的前提下,根据操作变量的实施情况及时修正模板参数,以适应不断变化的变负荷生产环境;它具有实现简单,环境依赖性小,原理简洁清晰,稳定性和实时性好,方便于计算机上实现,且灵活性很好,能够更好地满足大型空分设备变负荷生产要求等特点。

A variable load optimization method for air separation plant based on template technology, characterized in that the variable load optimization method is: by setting up a dynamic template containing variable marks and air separation plant mechanism models, before each real-time optimization calculation from real-time The real-time data and load information are obtained from the database, and then the template engine is used to analyze the template to generate the corresponding mechanism model under the current load, and the generated real-time data is embedded in it, and finally the optimization solver is called to optimize the mechanism model; During the load production process, the template parameters can be corrected in time according to the implementation of the operating variables on the premise that the optimized model structure remains unchanged, so as to adapt to the ever-changing variable load production environment; it has the advantages of simple implementation, small environmental dependence, and simple and clear principles , good stability and real-time performance, easy to realize on the computer, and good flexibility, can better meet the characteristics of large-scale air separation equipment variable load production requirements and so on.

Description

一种基于模板技术的空分设备变负荷优化方法A variable load optimization method for air separation plant based on template technology

技术领域technical field

本发明涉及化工、冶金行业空分设备的实时优化研究领域,特别的,涉及一种基于模板技术的空分设备变负荷优化方法。The invention relates to the field of real-time optimization research of air separation equipment in chemical and metallurgical industries, and in particular relates to a variable load optimization method for air separation equipment based on template technology.

背景技术Background technique

空分装备是冶金、化工、石化、城市市政工程、医疗和航空航天等领域广泛采用的大型装备,与现代工业特别是各种高新技术产业密切相关,其发展规模与技术状况已成为衡量一个国家的工业和科技发展水平的一个重要标志。近年来随着氧、氮、氩等工业气体的需求急增,对空分装置的需求也越来越大。预计到2015年,我国总的空分装置需求量为1050万~1140万Nm3/h氧当量,平均每年新增需求量为104万~114万Nm3/h氧当量。Air separation equipment is a large-scale equipment widely used in metallurgy, chemical industry, petrochemical, urban municipal engineering, medical treatment, aerospace and other fields. It is closely related to modern industry, especially various high-tech industries. Its development scale and technical status have become a measure of a country's An important symbol of China's industrial and technological development level. In recent years, with the rapid increase in demand for industrial gases such as oxygen, nitrogen, and argon, the demand for air separation units is also increasing. It is estimated that by 2015, the total demand for air separation units in my country will be 10.5 million to 11.4 million Nm3/h oxygen equivalent, and the average annual new demand will be 1.04 million to 1.14 million Nm3/h oxygen equivalent.

然而,在工业生产中,气体需求并不是固定不变的,而是呈现周期性、阶段性、间歇式的特点,这导致空分装置生产负荷需要大幅度的变动,以适应需求的变化。以钢铁企业为例,由于工艺的特殊性(如转炉顶吹、间断用氧、高炉富氧连续使用、煤粉喷吹),其瞬间用氧量很大,且时间不连续;再加上各个转炉大小不同,氧气用量的高峰、低谷的周期也不相同,造成氧气用量需求的极不均衡。用户的不均衡用氧和空气分离过程的复杂特性,导致在缺乏自动变负荷生产优化技术的情况下,生产负荷往往不能及时调整,从而引起生产波动和相伴故障的发生,同时造成大量能耗与经济损失。因此,如何综合应用先进的过程建模、优化控制技术,来实现以变负荷技术为核心的优化控制系统,已成为当今空分行业的一个迫切需求。However, in industrial production, gas demand is not fixed, but cyclical, staged, and intermittent, which leads to large changes in the production load of air separation units to adapt to changes in demand. Taking iron and steel enterprises as an example, due to the particularity of the process (such as converter top blowing, intermittent oxygen use, continuous use of blast furnace oxygen enrichment, pulverized coal injection), the instantaneous oxygen consumption is large and the time is not continuous; The size of the converter is different, and the cycle of the peak and trough of the oxygen consumption is also different, resulting in an extremely unbalanced demand for the oxygen consumption. The user's unbalanced use of oxygen and the complex characteristics of the air separation process lead to the lack of automatic load-variable production optimization technology, and the production load cannot be adjusted in time, resulting in production fluctuations and accompanying failures, and at the same time causing a large amount of energy consumption and Economic losses. Therefore, how to comprehensively apply advanced process modeling and optimization control technology to realize the optimization control system with variable load technology as the core has become an urgent need in today's air separation industry.

发明内容Contents of the invention

本发明的目在于克服现有技术存在的不足,而提供一种实现简单,环境依赖性小,原理简洁清晰,稳定性和实时性好,方便于计算机上实现,且灵活性很好,能够更好地满足大型空分设备变负荷生产要求的基于模板技术的空分设备变负荷优化方法。The object of the present invention is to overcome the deficiencies in the prior art, and provide a simple implementation, small environmental dependence, simple and clear principle, good stability and real-time performance, easy to realize on the computer, and good flexibility, can be more A variable-load optimization method for air separation plants based on template technology that satisfies the variable-load production requirements of large-scale air separation plants well.

本发明的目的是通过以下技术方案来实现的:一种基于模板技术的空分设备变负荷优化方法,所述的变负荷优化方法是:通过建立含有变量标记以及空分装置机理模型的动态模板,在每次实时优化计算之前从实时数据库中获取实时数据以及负荷信息,然后通过模板引擎解析模板产生当前负荷下对应的机理模型,并将生成的实时数据嵌入其中,最后调用优化求解器对机理模型进行优化求解;在空分装置变负荷生产过程中,可以在优化模型结构不变的前提下,根据操作变量的实施情况及时修正模板参数,以适应不断变化的变负荷生产环境。The object of the present invention is achieved through the following technical solutions: a method for optimizing the variable load of an air separation plant based on template technology, wherein the method for variable load optimization is: by setting up a dynamic template containing variable marks and the mechanism model of the air separation plant , obtain real-time data and load information from the real-time database before each real-time optimization calculation, then parse the template through the template engine to generate the corresponding mechanism model under the current load, embed the generated real-time data into it, and finally call the optimization solver to optimize the mechanism The model is optimized and solved; in the variable load production process of the air separation unit, the template parameters can be corrected in time according to the implementation of the operating variables on the premise that the structure of the optimized model remains unchanged, so as to adapt to the constantly changing variable load production environment.

作为优选:所述的变负荷优化方法,具体包括如下步骤:As preferably: described variable load optimization method, specifically comprises the steps:

步骤一:根据物料平衡方程式建立空分装置对应不同负荷的一组优化模型,该组中每一个优化模型的表达形式如下:Step 1: Establish a group of optimization models corresponding to different loads of the air separation unit according to the material balance equation, and the expression form of each optimization model in this group is as follows:

优化目标:optimize the target:

z=FobjFGOX,FLOX,FGAN,FLIN,σi,Δii=1…4 z=FobjFGOX,FLOX,FGAN,FLIN,σi,Δii=1...4

约束条件:Restrictions:

Fcon1FGOX,FLOX,FGAN,FLIN,Y=0Fcon1FGOX,FLOX,FGAN,FLIN,Y=0

FuFGOX,FLOX,FGAN,FLIN,Y<Up FuFGOX,FLOX,FGAN,FLIN,Y<Up

FlFGOX,FLOX,FGAN,FLIN,Y>LowFlFGOX,FLOX,FGAN,FLIN,Y>Low

其中FGOX为氧气产品流量,FLOX为液氧流量,FGAN为氮气产品流量,FLIN为液氮流量,σi表示修正系数,Δi表示上一阶段实际值和计算输出值的偏差,Fcon1表示等式约束,Fu表示为上界约束方程,Fl表示为下界约束方程,Y表示操作变量,Up表示左侧变量的上界约束向量,Low表示左侧变量的下界约束向量;Among them, FGOX is the flow rate of oxygen product, FLOX is the flow rate of liquid oxygen, FGAN is the flow rate of nitrogen product, FLIN is the flow rate of liquid nitrogen, σi represents the correction coefficient, Δi represents the deviation between the actual value and the calculated output value of the previous stage, and Fcon1 represents the equality constraint, Fu represents the upper bound constraint equation, Fl represents the lower bound constraint equation, Y represents the operating variable, Up represents the upper bound constraint vector of the left variable, and Low represents the lower bound constraint vector of the left variable;

步骤二:建立用作空分设备实时优化的动态工作模板Template=T,其中包括:变量标记,差分变量标记,条件标记,常量,优化模型参数。Step 2: Establish a dynamic working template Template=T for real-time optimization of the air separation plant, which includes: variable labels, differential variable labels, condition labels, constants, and optimization model parameters.

步骤三:根据需要从现场实时数据库中获取反映生产负荷的关键参数以及阶段目标设定值,然后利用此数据对步骤二所建立的动态工作模板进行模板解析,将工作模板中的标记替换成反映实际工况条件的实时信息,并将其嵌入到用于最终求解的优化模型中;Step 3: Obtain the key parameters reflecting the production load and stage target setting values from the on-site real-time database as needed, and then use this data to analyze the dynamic work template established in step 2, and replace the tags in the work template with reflective Real-time information on actual operating conditions and embedding it in the optimization model for the final solution;

步骤四:调用求解器对步骤三所产生的反应空分设备当前工况的优化模型进行优化求解;Step 4: calling the solver to optimize and solve the optimization model of the current working condition of the reaction air separation plant generated in step 3;

步骤五:根据步骤四所述的空分装置操作点优化命题计算是否收敛判断求解是否成功;若优化命题计算收敛则跳至步骤六;如果计算过程不收敛、求解失败或者求解时间超过优化时间T则跳至后面的步骤八;Step 5: Judging whether the solution is successful according to whether the optimization proposition calculation of the operating point of the air separation plant described in step 4 converges; if the optimization proposition calculation converges, then skip to step 6; if the calculation process does not converge, the solution fails or the solution time exceeds the optimization time T Then skip to the following step eight;

步骤六:将空分设备最优操作点计算结果输入现场实时数据库;Step 6: Input the calculation results of the optimal operating point of the air separation plant into the on-site real-time database;

步骤七:等待操作人员确认工况稳定后,计算上一阶段输出变量与实际值的偏差并获取下一阶段的变负荷目标设定值并返回步骤三;直到变负荷过程完成,操作人员退出系统;Step 7: After waiting for the operator to confirm that the working conditions are stable, calculate the deviation between the output variable and the actual value in the previous stage and obtain the variable load target setting value in the next stage and return to step 3; until the load variable process is completed, the operator exits the system ;

步骤八:等待操作人员重新输入下一阶段的变负荷目标设定值。Step 8: Wait for the operator to re-input the variable load target setting value of the next stage.

作为优选:所述的步骤二中,所述变量标记参数表示模板在解析的时候需要使用实时生产数据进行替换的变量,差分变量参数标记表示模板在解析的时候需要使用实时生产数据的当前值与前一时刻的采样值做差分后进行替换的变量;条件标记参数表示模板在解析的时候根据标记所设定的条件选择是否使用条件标记中设定的内容;常量参数表示数学模型中与工艺相关的代数常量;优化模型参数表示步骤一所建立的优化模型集合中最匹配当前负荷的优化模型。As a preference: in the step 2, the variable mark parameter indicates that the template needs to use real-time production data to replace the variable when parsing, and the differential variable parameter mark represents that the template needs to use the current value of the real-time production data when parsing. The variable that is replaced after the sampling value at the previous moment is differentiated; the condition tag parameter indicates whether the template uses the content set in the condition tag according to the conditions set by the tag during parsing; the constant parameter indicates that the mathematical model is related to the process The algebraic constant of ; the optimization model parameter represents the optimization model that best matches the current load in the optimization model set established in step 1.

本发明的有益技术效果是:The beneficial technical effect of the present invention is:

1)本发明通过模板将生产实时数据传递到数据模型中进行优化计算,在传统方法无法进行实时优化的情况下,此方法实现了空分生产过程的实时优化;1) The present invention transmits the production real-time data into the data model to carry out optimization calculation by template, under the situation that traditional method can't carry out real-time optimization, this method has realized the real-time optimization of air separation production process;

2)本发明实现简单,环境依赖性小;2) The present invention is simple to realize and has little environmental dependence;

3)本发明原理简洁清晰,方便于计算机上实现,且灵活性很好,能够更好地满足大型空分设备变负荷生产的复杂要求。3) The principle of the present invention is simple and clear, easy to implement on a computer, and has good flexibility, which can better meet the complex requirements of variable load production of large-scale air separation equipment.

附图说明Description of drawings

图1为空分设备基于模板技术的实时优化系统的示意图。Figure 1 is a schematic diagram of a real-time optimization system based on template technology for an air separation plant.

具体实施方式detailed description

以下参照本发明的附图对本发明作更详细的描述。但是本发明也可以以许多不同形式实施,因此不应认为它局限于说明书列出的实施例,相反,提供这种实施例是为了说明本发明的实施和完全,以及能向本领域的技术人员描述本发明的具体实施过程。The present invention will be described in more detail below with reference to the accompanying drawings of the present invention. However, the present invention can be embodied in many different forms, and therefore it should not be considered limited to the examples set forth in the specification. Describe the specific implementation process of the present invention.

如图1所示,本发明包括OPC(OLE for Process Control)Server,一套针对非线性规划问题的专用求解器(GAMS),以及用与传递生产数据进行实时优化的工作模板。首先通过OPC Server获取现场生成数据,然后通过模板解析引擎工作模板得到对应当前实际工况的工艺机理模型文件。最后调用GAMS求解器进行优化求解得到一系列最优操作变量。最后将这些最优操作变量值通过OPC Server送入现场APC先进控制器作为最优设定值。As shown in Fig. 1, the present invention includes OPC (OLE for Process Control) Server, a set of special solver (GAMS) for nonlinear programming problems, and a working template for real-time optimization with and transmission of production data. First, the on-site generated data is obtained through the OPC Server, and then the process mechanism model file corresponding to the current actual working condition is obtained through the template analysis engine working template. Finally, the GAMS solver is called to optimize the solution to obtain a series of optimal operating variables. Finally, these optimal operating variable values are sent to the on-site APC advanced controller through the OPC Server as the optimal setting value.

本发明所述的一种基于模板技术的空分设备变负荷优化方法,该变负荷优化方法是:通过建立含有变量标记以及空分装置机理模型的动态模板,在每次实时优化计算之前从实时数据库中获取实时数据以及负荷信息,然后通过模板引擎解析模板产生当前负荷下对应的机理模型,并将生成的实时数据嵌入其中,最后调用优化求解器对机理模型进行优化求解;在空分装置变负荷生产过程中,可以在优化模型结构不变的前提下,根据操作变量的实施情况及时修正模板参数,以适应不断变化的变负荷生产环境。A kind of variable load optimization method of air separation plant based on template technology described in the present invention, this variable load optimization method is: by setting up the dynamic template that contains variable mark and mechanism model of air separation plant, before each real-time optimization calculation, from real-time The real-time data and load information are obtained from the database, and then the template engine is used to analyze the template to generate the corresponding mechanism model under the current load, and the generated real-time data is embedded in it, and finally the optimization solver is called to optimize the mechanism model; During the load production process, the template parameters can be corrected in time according to the implementation of the operating variables on the premise that the optimized model structure remains unchanged, so as to adapt to the ever-changing variable load production environment.

本发明所述的变负荷优化方法,具体包括如下步骤:The variable load optimization method of the present invention specifically comprises the following steps:

步骤一:根据物料平衡方程式建立空分装置对应不同负荷的一组优化模型,该组中每一个优化模型的表达形式如下:Step 1: Establish a group of optimization models corresponding to different loads of the air separation unit according to the material balance equation, and the expression form of each optimization model in this group is as follows:

优化目标:optimize the target:

z=FobjFGOX,FLOX,FGAN,FLIN,σi,Δii=1…4 z=FobjFGOX,FLOX,FGAN,FLIN,σi,Δii=1...4

约束条件:Restrictions:

Fcon1FGOX,FLOX,FGAN,FLIN,Y=0Fcon1FGOX,FLOX,FGAN,FLIN,Y=0

FuFGOX,FLOX,FGAN,FLIN,Y<Up FuFGOX,FLOX,FGAN,FLIN,Y<Up

FlFGOX,FLOX,FGAN,FLIN,Y>LowFlFGOX,FLOX,FGAN,FLIN,Y>Low

其中FGOX为氧气产品流量,FLOX为液氧流量,FGAN为氮气产品流量,FLIN为液氮流量,σi表示修正系数,Δi表示上一阶段实际值和计算输出值的偏差,Fcon1表示等式约束,Fu表示为上界约束方程,Fl表示为下界约束方程,Y表示操作变量,Up表示左侧变量的上界约束向量,Low表示左侧变量的下界约束向量;Among them, FGOX is the flow rate of oxygen product, FLOX is the flow rate of liquid oxygen, FGAN is the flow rate of nitrogen product, FLIN is the flow rate of liquid nitrogen, σi represents the correction coefficient, Δi represents the deviation between the actual value and the calculated output value of the previous stage, and Fcon1 represents the equality constraint, Fu represents the upper bound constraint equation, Fl represents the lower bound constraint equation, Y represents the operating variable, Up represents the upper bound constraint vector of the left variable, and Low represents the lower bound constraint vector of the left variable;

步骤二:建立用作空分设备实时优化的动态工作模板Template=T,其中包括:变量标记,差分变量标记,条件标记,常量,优化模型参数。Step 2: Establish a dynamic working template Template=T for real-time optimization of the air separation plant, which includes: variable labels, differential variable labels, condition labels, constants, and optimization model parameters.

步骤三:根据需要从现场实时数据库中获取反映生产负荷的关键参数以及阶段目标设定值,然后利用此数据对步骤二所建立的动态工作模板进行模板解析,将工作模板中的标记替换成反映实际工况条件的实时信息,并将其嵌入到用于最终求解的优化模型中;Step 3: Obtain the key parameters reflecting the production load and stage target setting values from the on-site real-time database as needed, and then use this data to analyze the dynamic work template established in step 2, and replace the tags in the work template with reflective Real-time information on actual operating conditions and embedding it in the optimization model for the final solution;

步骤四:调用求解器对步骤三所产生的反应空分设备当前工况的优化模型进行优化求解;Step 4: calling the solver to optimize and solve the optimization model of the current working condition of the reaction air separation plant generated in step 3;

步骤五:根据步骤四所述的空分装置操作点优化命题计算是否收敛判断求解是否成功;若优化命题计算收敛则跳至步骤六;如果计算过程不收敛、求解失败或者求解时间超过优化时间T则跳至后面的步骤八;Step 5: Judging whether the solution is successful according to whether the optimization proposition calculation of the operating point of the air separation plant described in step 4 converges; if the optimization proposition calculation converges, then skip to step 6; if the calculation process does not converge, the solution fails or the solution time exceeds the optimization time T Then skip to the following step eight;

步骤六:将空分设备最优操作点计算结果输入现场实时数据库;Step 6: Input the calculation results of the optimal operating point of the air separation plant into the on-site real-time database;

步骤七:等待操作人员确认工况稳定后,计算上一阶段输出变量与实际值的偏差并获取下一阶段的变负荷目标设定值并返回步骤三;直到变负荷过程完成,操作人员退出系统;Step 7: After waiting for the operator to confirm that the working conditions are stable, calculate the deviation between the output variable and the actual value in the previous stage and obtain the variable load target setting value in the next stage and return to step 3; until the load variable process is completed, the operator exits the system ;

步骤八:等待操作人员重新输入下一阶段的变负荷目标设定值。Step 8: Wait for the operator to re-input the variable load target setting value of the next stage.

本发明所述的步骤二中,所述变量标记参数表示模板在解析的时候需要使用实时生产数据进行替换的变量,差分变量参数标记表示模板在解析的时候需要使用实时生产数据的当前值与前一时刻的采样值做差分后进行替换的变量;条件标记参数表示模板在解析的时候根据标记所设定的条件选择是否使用条件标记中设定的内容;常量参数表示数学模型中与工艺相关的代数常量;优化模型参数表示步骤一所建立的优化模型集合中最匹配当前负荷的优化模型。In step 2 of the present invention, the variable mark parameter indicates that the template needs to use real-time production data to replace the variable when parsing, and the difference variable parameter mark represents that the template needs to use the current value and previous value of real-time production data during parsing. The variable that is replaced after the sampling value at a moment is differentiated; the condition tag parameter indicates whether the template uses the content set in the condition tag according to the conditions set by the tag during parsing; the constant parameter indicates the process-related parameters in the mathematical model Algebraic constant; the optimization model parameter represents the optimization model that best matches the current load in the optimization model set established in step 1.

实施例:Example:

以江苏某钢厂气体公司二万空分装置为例,采用模板技术对空分装置生产过程进行实时优化,包含在计算机系统以下的实行步骤:Taking the 20,000 air separation unit of a gas company in a steel plant in Jiangsu as an example, the template technology is used to optimize the production process of the air separation unit in real time, including the following steps in the computer system:

步骤一:选择输出变量为产品产量FGOX、FLOX、FGAN和FLIN。操作变量为FAIR、FTURBINE、FHPAIR、FWN2、FLAR、FGAR根据物理平衡建立工况优化模型如下:Step 1: Select output variables as product output FGOX, FLOX, FGAN and FLIN. The operating variables are FAIR, FTURBINE, FHPAIR, FWN2, FLAR, and FGAR, and the working condition optimization model is established according to the physical balance as follows:

Min: Min:

z=sqrFLOX+δ1ΔLOX-FLOXSP1600+sqrFGOX+δ2ΔGOX-FGOXSP20000+sqrFLIN+δ3ΔLIN-FLz=sqrFLOX+δ1ΔLOX-FLOXSP1600+sqrFGOX+δ2ΔGOX-FGOXSP20000+sqrFLIN+δ3ΔLIN-FL

INSP1600+sqrFGAN+δ4ΔGAN-FGANSP40000 INSP1600+sqrFGAN+δ4ΔGAN-FGANSP40000

s.ts.t

FkXi,Yj=0(i=1…4,j=1…6,k=高,中,低) FkXi, Yj=0 (i=1...4, j=1...6, k=high, middle, low)

12000,0,24000,0T<X<[24000,1680,48000,1680]T 12000,0,24000,0T<X<[24000,1680,48000,1680]T

[61980,7250,17250,20000,50,400]T<Y<[123960,34500,34500,64000,600,400]T [61980,7250,17250,20000,50,400]T<Y<[123960,34500,34500,64000,600,400]T

其中:FLOX表示产品液氧流量,FGOX表示产品氧气流量,FLIN表示产品液氮流量,FGAN表示产品氮气流量,δ1、δ2、δ3、δ4分别表示四个输出变量的修正系数(本例设置为0.92,0.95,1.02,1.17),ΔLOX、ΔGOX、ΔLIN、ΔGAN表示上一阶段产品的实际值与计算输出值的偏差,FAIR表示总空气流量,FTURBINE表示膨胀空气流量,FHPAIR表示高压空气流量,FWN2表示污氮流量,FLAR表示液氩流量,FGAR表示粗氩流量,X表示输出变量列向量,Y表示操作变量列向量,Fk表示典型负荷对应的优化模型。下标k表示对应负荷段。FLOXSP,FGOXSP,FLINSP,FGANSP表示当前目标产量设定值根据实际负荷来进行取值,取值表如下:Among them: FLOX represents the product liquid oxygen flow rate, FGOX represents the product oxygen flow rate, FLIN represents the product liquid nitrogen flow rate, FGAN represents the product nitrogen gas flow rate, and δ1, δ2, δ3, and δ4 represent the correction coefficients of the four output variables respectively (in this example, it is set to 0.92 ,0.95,1.02,1.17), ΔLOX, ΔGOX, ΔLIN, ΔGAN represent the deviation between the actual value of the product in the previous stage and the calculated output value, FAIR represents the total air flow, FTURBINE represents the expansion air flow, FHPAIR represents the high-pressure air flow, FWN2 represents Contaminated nitrogen flow, FLAR represents liquid argon flow, FGAR represents crude argon flow, X represents the output variable column vector, Y represents the operating variable column vector, Fk represents the optimization model corresponding to the typical load. The subscript k indicates the corresponding load segment. FLOXSP, FGOXSP, FLINSP, and FGANSP indicate that the current target output setting value is selected according to the actual load. The value table is as follows:

表一:不同负荷段取值表Table 1: Value table for different load segments

注:不在负荷取值表中的负荷下对应的阶段产量目标取值可以根据负荷表进行线性插值计算得出。Note: The output target value of the stage corresponding to the load not in the load value table can be calculated by linear interpolation according to the load table.

步骤二:使用模板的变量标记替换步骤一建立的输入变量和操作变量,用以连接机理模型和实际生产数据。其对应替换表格如下:Step 2: Replace the input variables and operating variables established in step 1 with the variable tags of the template to connect the mechanism model and actual production data. The corresponding replacement table is as follows:

表二:变量标记对照表Table 2: Variable label comparison table

步骤三:工作人员需要对生产操作进行实时优化时,启动系统。Step 3: When the staff needs to optimize the production operation in real time, start the system.

步骤四:系统的模板引擎通过OPC接口采集生产数据并利用步骤一建立的优化模型集产生当前负荷对应的优化模型。Step 4: The template engine of the system collects production data through the OPC interface and uses the optimization model set established in step 1 to generate an optimization model corresponding to the current load.

步骤五:根据步骤四产生的对应当前负荷的空分装置操作点优化命题计算是否收敛判断求解是否成功。若优化命题计算收敛则跳至步骤六。如果计算过程不收敛、求解失败或者求解时间超过六十秒则跳至步骤七。Step 5: Judging whether the solution is successful or not according to whether the optimization proposition calculation of the operating point of the air separation plant corresponding to the current load generated in step 4 converges. If the optimization proposition calculation converges, skip to step six. If the calculation process does not converge, the solution fails or the solution takes more than 60 seconds, skip to step 7.

步骤六:将优化计算得出的最优操作变量输出到工厂OPC服务器中Step 6: Output the optimal operating variables obtained from the optimization calculation to the OPC server of the factory

步骤七:等待操作人员确认工况稳定后,计算上一阶段输出变量与实际值的偏差并获取下一阶段的变负荷目标设定值并返回步骤四。直到变负荷过程完成操作人员退出系统。Step 7: After waiting for the operator to confirm that the working conditions are stable, calculate the deviation between the output variable of the previous stage and the actual value and obtain the variable load target setting value of the next stage, and return to step 4. The operator exits the system until the load changing process is completed.

步骤八:等待操作人员输入另外一组阶段目标值。Step 8: Wait for the operator to input another set of stage target values.

如上所述,本发明也可以以许多不同形式实施,因此不应认为它局限于说明书列出的实施例。本发明采用的方法原理简洁清晰,方便于计算机上实现,且灵活性很好,能够很好的满足空分设备实时优化快速性、安全性等要求。As mentioned above, the invention can also be embodied in many different forms and therefore should not be considered limited to the embodiments set forth in the specification. The principle of the method adopted in the present invention is simple and clear, and is convenient to implement on a computer, has good flexibility, and can well meet the requirements of real-time optimization, rapidity, safety and the like of the air separation plant.

Claims (3)

1.一种基于模板技术的空分设备变负荷优化方法,其特征在于所述的变负荷优化方法是:通过建立含有变量标记以及空分装置机理模型的动态模板,在每次实时优化计算之前从实时数据库中获取实时数据以及负荷信息,然后通过模板引擎解析模板产生当前负荷下对应的机理模型,并将生成的实时数据嵌入其中,最后调用优化求解器对机理模型进行优化求解;在空分装置变负荷生产过程中,可以在优化模型结构不变的前提下,根据操作变量的实施情况及时修正模板参数,以适应不断变化的变负荷生产环境。1. A variable load optimization method for air separation plant based on template technology, characterized in that the variable load optimization method is: by setting up a dynamic template containing variable marks and air separation plant mechanism models, before each real-time optimization calculation Obtain real-time data and load information from the real-time database, then parse the template through the template engine to generate the corresponding mechanism model under the current load, embed the generated real-time data into it, and finally call the optimization solver to optimize the mechanism model; in the air separation During the variable load production process of the device, under the premise that the optimized model structure remains unchanged, the template parameters can be corrected in time according to the implementation of the operating variables to adapt to the constantly changing variable load production environment. 2.根据权利要求1所述的基于模板技术的空分设备变负荷优化方法,其特征在于所述的变负荷优化方法,具体包括如下步骤:2. the variable load optimization method of air separation plant based on template technology according to claim 1, is characterized in that described variable load optimization method, specifically comprises the steps: 步骤一:根据物料平衡方程式建立空分装置对应不同负荷的一组优化模型,该组中每一个优化模型的表达形式如下:Step 1: Establish a group of optimization models corresponding to different loads of the air separation unit according to the material balance equation, and the expression form of each optimization model in this group is as follows: 其中FGOX为氧气产品流量,FLOX为液氧流量,FGAN为氮气产品流量,FLIN为液氮流量,σi表示修正系数,Δi表示上一阶段实际值和计算输出值的偏差,Fcon1表示等式约束,Fu表示为上界约束方程,Fl表示为下界约束方程,Y表示操作变量,Up表示左侧变量的上界约束向量,Low表示左侧变量的下界约束向量;Among them, FGOX is the flow rate of oxygen product, FLOX is the flow rate of liquid oxygen, FGAN is the flow rate of nitrogen product, FLIN is the flow rate of liquid nitrogen, σi represents the correction coefficient, Δi represents the deviation between the actual value and the calculated output value of the previous stage, and Fcon1 represents the equality constraint, Fu represents the upper bound constraint equation, Fl represents the lower bound constraint equation, Y represents the operating variable, Up represents the upper bound constraint vector of the left variable, and Low represents the lower bound constraint vector of the left variable; 步骤二:建立用作空分设备实时优化的动态工作模板Template=T,其中包括:变量标记,差分变量标记,条件标记,常量,优化模型参数。Step 2: Establish a dynamic working template Template=T for real-time optimization of the air separation plant, which includes: variable labels, differential variable labels, condition labels, constants, and optimization model parameters. 步骤三:根据需要从现场实时数据库中获取反映生产负荷的关键参数以及阶段目标设定值,然后利用此数据对步骤二所建立的动态工作模板进行模板解析,将工作模板中的标记替换成反映实际工况条件的实时信息,并将其嵌入到用于最终求解的优化模型中;Step 3: Obtain the key parameters reflecting the production load and stage target setting values from the on-site real-time database as needed, and then use this data to analyze the dynamic work template established in step 2, and replace the tags in the work template with reflective Real-time information on actual operating conditions and embedding it in the optimization model for the final solution; 步骤四:调用求解器对步骤三所产生的反应空分设备当前工况的优化模型进行优化求解;Step 4: calling the solver to optimize and solve the optimization model of the current working condition of the reaction air separation plant generated in step 3; 步骤五:根据步骤四所述的空分装置操作点优化命题计算是否收敛判断求解是否成功;若优化命题计算收敛则跳至步骤六;如果计算过程不收敛、求解失败或者求解时间超过优化时间T则跳至后面的步骤八;Step 5: Judging whether the solution is successful according to whether the optimization proposition calculation of the operating point of the air separation plant described in step 4 converges; if the optimization proposition calculation converges, then skip to step 6; if the calculation process does not converge, the solution fails or the solution time exceeds the optimization time T Then skip to the following step eight; 步骤六:将空分设备最优操作点计算结果输入现场实时数据库;Step 6: Input the calculation results of the optimal operating point of the air separation plant into the on-site real-time database; 步骤七:等待操作人员确认工况稳定后,计算上一阶段输出变量与实际值的偏差并获取下一阶段的变负荷目标设定值并返回步骤三;直到变负荷过程完成,操作人员退出系统;Step 7: After waiting for the operator to confirm that the working conditions are stable, calculate the deviation between the output variable and the actual value in the previous stage and obtain the variable load target setting value in the next stage and return to step 3; until the load variable process is completed, the operator exits the system ; 步骤八:等待操作人员重新输入下一阶段的变负荷目标设定值。Step 8: Wait for the operator to re-input the variable load target setting value of the next stage. 3.根据权利要求2所述的基于模板技术的空分设备变负荷优化方法,其特征在于所述的步骤二中,所述变量标记参数表示模板在解析的时候需要使用实时生产数据进行替换的变量,差分变量参数标记表示模板在解析的时候需要使用实时生产数据的当前值与前一时刻的采样值做差分后进行替换的变量;条件标记参数表示模板在解析的时候根据标记所设定的条件选择是否使用条件标记中设定的内容;常量参数表示数学模型中与工艺相关的代数常量;优化模型参数表示步骤一所建立的优化模型集合中最匹配当前负荷的优化模型。3. the variable load optimization method of air separation plant based on template technology according to claim 2, is characterized in that in described step 2, described variable mark parameter expression template needs to use real-time production data to replace when analyzing Variable, difference variable parameter mark indicates that the template needs to use the current value of real-time production data and the sampling value of the previous moment to make a difference and replace the variable when parsing; the condition mark parameter represents the template that is set according to the mark when parsing The condition selects whether to use the content set in the condition mark; the constant parameter indicates the algebraic constant related to the process in the mathematical model; the optimization model parameter indicates the optimization model that best matches the current load in the optimization model set established in step 1.
CN201610607664.3A 2016-07-27 2016-07-27 A kind of air separation plant varying duty optimization method based on mould plate technique Pending CN106295132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610607664.3A CN106295132A (en) 2016-07-27 2016-07-27 A kind of air separation plant varying duty optimization method based on mould plate technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610607664.3A CN106295132A (en) 2016-07-27 2016-07-27 A kind of air separation plant varying duty optimization method based on mould plate technique

Publications (1)

Publication Number Publication Date
CN106295132A true CN106295132A (en) 2017-01-04

Family

ID=57662807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610607664.3A Pending CN106295132A (en) 2016-07-27 2016-07-27 A kind of air separation plant varying duty optimization method based on mould plate technique

Country Status (1)

Country Link
CN (1) CN106295132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109213099A (en) * 2018-08-28 2019-01-15 天津闪速炼铁技术有限公司 The application method and system of mathematical model control production Internet-based
CN110197050A (en) * 2019-07-01 2019-09-03 山西云时代太钢信息自动化技术有限公司 A kind of distribution of vacuum induction furnace smelting nickel-base alloy
CN111062111A (en) * 2019-10-10 2020-04-24 杭州杭氧股份有限公司 An optimization method of automatic variable load target for air separation plant
CN112748666A (en) * 2020-12-25 2021-05-04 国家能源集团宁夏煤业有限责任公司 Adaptive scheduling control method for variable load of air separation equipment
WO2022111209A1 (en) * 2020-11-30 2022-06-02 浙江中控技术股份有限公司 Data acquisition method and apparatus, data acquisition device and readable storage medium

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LINGYU ZHU ET AL: ""Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method"", 《SEPARATION AND PURIFICATION TECHNOLOGY》 *
周芬芳 等: ""空分设备自动变负荷先进控制技术"", 《深冷技术》 *
纪彭: ""空气分离设备变负荷调库控制及诊断"", 《中国优秀硕士学位论文全文数据库-工程科技II辑》 *
陈秋霞 等: ""空分设备自动变负荷控制技术综述"", 《深冷技术》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109213099A (en) * 2018-08-28 2019-01-15 天津闪速炼铁技术有限公司 The application method and system of mathematical model control production Internet-based
CN109213099B (en) * 2018-08-28 2020-10-16 天津闪速炼铁技术有限公司 Application method and system for controlling production based on internet mathematical model
CN110197050A (en) * 2019-07-01 2019-09-03 山西云时代太钢信息自动化技术有限公司 A kind of distribution of vacuum induction furnace smelting nickel-base alloy
CN111062111A (en) * 2019-10-10 2020-04-24 杭州杭氧股份有限公司 An optimization method of automatic variable load target for air separation plant
WO2022111209A1 (en) * 2020-11-30 2022-06-02 浙江中控技术股份有限公司 Data acquisition method and apparatus, data acquisition device and readable storage medium
CN112748666A (en) * 2020-12-25 2021-05-04 国家能源集团宁夏煤业有限责任公司 Adaptive scheduling control method for variable load of air separation equipment
CN112748666B (en) * 2020-12-25 2022-07-01 国家能源集团宁夏煤业有限责任公司 Adaptive scheduling control method for variable load of air separation equipment

Similar Documents

Publication Publication Date Title
CN106295132A (en) A kind of air separation plant varying duty optimization method based on mould plate technique
CN111020118B (en) A RH end-point temperature prediction method based on particle swarm optimization case reasoning
CN105974896B (en) A kind of pneumatic steelmaking Optimal Control System and method based on information physical fusion
CN106295840A (en) A kind of optimize the method for production line operation, device and production line
CN101377679A (en) Synthesis optimizing and scheduling method of energy system
CN100445901C (en) Dynamic cost control method of process industry production process based on AR(p) model
CN201255834Y (en) Synthetic optimization scheduling system for energy system
CN106021899B (en) High sulfur-containing natural gas desulfurization efficiency method for quantitatively evaluating
CN101763037B (en) Nonlinear prediction control system and method for energy-saving air separation process
CN101598927B (en) A neural network-based soda ash carbonization process control system and its control method
Zhang et al. ASU model with multiple adjustment types for oxygen scheduling concerning pipe pressure safety in steel enterprises
CN111008458A (en) Intelligent nesting method for large oil-gas module pipeline
CN111062111A (en) An optimization method of automatic variable load target for air separation plant
CN100583136C (en) Blast furnace iron-smelting expert system decision-making synthesis method
Yang et al. Data-driven demand forecasting method for fused magnesium furnaces
CN104267600A (en) Ladle refining furnace electrode adjustment control system and control method thereof
CN103105869A (en) Three-tank single-loop liquid level system
CN112541628B (en) Method and system for predicting blast furnace gas production capacity driven by multi-model coupling
CN102890639B (en) Optimal simulation system for methanol rectification process
Xiong et al. Embodied energy of parts in sheet metal forming: modeling and application for energy saving in the workshop
CN103105870A (en) Three-tank single-loop liquid level system and control method thereof
Yang et al. Development of a novel type operator training simulator framework for air separation process
CN110701029B (en) Air compressor set allocation system and method based on pressure track prediction and pipe network pressure loss
CN117366583A (en) Sulfur ratio control method and device, computer equipment and storage medium
CN103105871A (en) Double-holding cascade stage liquid level system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104