CN106290382A - 泡罩药片包装缺陷视觉检测装置及方法 - Google Patents

泡罩药片包装缺陷视觉检测装置及方法 Download PDF

Info

Publication number
CN106290382A
CN106290382A CN201610545572.7A CN201610545572A CN106290382A CN 106290382 A CN106290382 A CN 106290382A CN 201610545572 A CN201610545572 A CN 201610545572A CN 106290382 A CN106290382 A CN 106290382A
Authority
CN
China
Prior art keywords
image
bubble
cap
tablet
cap tablet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610545572.7A
Other languages
English (en)
Inventor
梁鹏
郑振兴
吴玉婷
蓝钊泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Polytechnic Normal University
Original Assignee
Guangdong Polytechnic Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Polytechnic Normal University filed Critical Guangdong Polytechnic Normal University
Priority to CN201610545572.7A priority Critical patent/CN106290382A/zh
Publication of CN106290382A publication Critical patent/CN106290382A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/04Sorting according to size
    • B07C5/10Sorting according to size measured by light-responsive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/361Processing or control devices therefor, e.g. escort memory
    • B07C5/362Separating or distributor mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N2021/8909Scan signal processing specially adapted for inspection of running sheets

Abstract

本发明公开了一种泡罩药片包装缺陷视觉检测装置及方法,该检测装置包括检测平台和检测系统,所述检测平台包括用于放置泡罩药片的工作台、气动分拣结构和传送机构组成;所述检测系统包括图像采集模块、运动控制模块以及上位计算机;所述的图像采集模块包括光电传感器、图像采集卡、照明光源和CCD相机;所述的运动控制模块包括所述传动机构、运动控制卡和气动分拣机构。本发明采用基于视觉的检测方案,对泡罩药片的包装进行视觉检测分析,以实现不同尺寸的泡罩药片的不同缺陷检测以及缺陷产品的剔除,保证了泡罩药片包装的高速自动生产。

Description

泡罩药片包装缺陷视觉检测装置及方法
技术领域
[0001] 本发明涉及机器视觉装置及方法,具体涉及泡罩药片包装缺陷视觉检测装置及方 法。
背景技术
[0002] 近年来,药品的铝塑泡罩包装在我国得到了快速发展,由于这种包装具有贮存期 长、携带方便的特点,越来越受到制药企业和消费者的欢迎,正在逐步取代传统的玻璃瓶包 装和散包装,而成为固体药品包装的主流。铝塑泡罩包装是先将透明塑料硬片吸塑成型后, 将片剂、丸剂、胶囊等固体药品填充在凹槽内,再与涂有粘合剂的铝箱片加热粘合在一起, 形成独立的密封包装。
[0003] 由于在包装过程中,会出现药品漏装、缺损、污渍和蚊虫粘附等情况,因此药品包 装的质量检测是药片生产过程中的一个重要环节。目前主要的检测方法是采用人工挑选法 来检测药品包装质量。人工挑选法需要人眼时时盯着流水线上密密麻麻的药品,劳动强度 大,由于人工目测不可避免会受到个人的视力、情绪、光线等因素的影响,带有很大的个人 主观性,故而检测标准难以统一、检测效率低、分选差异大,加上现场环境噪音和药品包装 本身反光,工人极易疲劳。这种检测方法既费时费工,又难以保证检测质量。另一种主流方 法是光电自动检测方法,然而该方法只能检测出药片的漏装,不能检测出泡罩表面缺损、污 渍和蚊虫粘附等情况,而且每一种包装药型都要求有对应的光电检测模具配套使用,这在 频繁更换药型的生产线上难以实现大规模应用。另一种主流方法是重量验测法,通过检测 产品重量来区分合格与不合格产品,但药片生产是流水线生产,该方法易受流水线机械震 动干扰而造成误检和漏检,且无法检测出裂片和碎片的产品,因此难以广泛推广。
[0004] 本发明提供的泡罩药片包装缺陷视觉检测装置采用CCD相机进行检测和识别泡罩 药片的缺陷,利用运动控制和气动分拣实现不同缺陷的药片的分拣,不仅显著地降低工人 的劳动强度,大幅提高生产效率和产品合格率,同时促进泡罩药品包装检测行业的自动化、 智能化。
[0005] 通过相关专利查询,发现有以下的公开文献:
[0006] 专利"一种具有质量追溯功能的小袋包装横封检测方法及检测系统" [CN104417788A]通过在小袋包装机的包装袋与背板之间设置镜头及工业摄像机,并在适当 的位置放置光源,待小袋包装机完成横封后,触发工业摄像机采集横封周围的图像,并将图 像传送至工控机,进行横封质量检测。该专利方法没有涉及具体的检测装置结构,且该检测 方法不适用于具有多种缺陷的泡罩药片包装检测的工作场合。
[0007] 专利"泡罩包装检测系统" [CN1934439A]将粘附着罩盖的泡罩包装提供到图像拾 取装置的视场中,对泡罩区域的灰度级进行成像和确定,并且将所成像的灰度级与预定灰 度级值进行比较,所成像的灰度级与预定灰度级值实质上相同则通过所述泡罩包装的检 测,否则未通过泡罩包装的检测。该专利方法仅使用简单的灰度阈值判断泡罩包装的完整 性,不能适用于具有不同尺寸大小的药片包装检测,且无法识别出泡罩药片包装的缺陷种 类。
[0008] 论文"药品泡罩包装缺陷机器视觉检测技术的研究"[谢丹毅,2007年,硕士毕业论 文]设计了一种基于机器视觉的泡罩药片包装缺陷检测系统,使用直方图均衡化、灰度阈值 分割、边缘检测、模板匹配方法识别出包装缺陷。该论文并没有提出整个检测装置的机械结 构及传动方式,其次,模板识别方法计算量大,需要逐个像素点进行匹配,难以实现实时的 检测。
发明内容
[0009] 本发明目的在于克服现有技术的不足,尤其解决现有的泡罩药片包装缺陷检测手 段缺乏自动检测装置、缺乏针对不同缺陷类型进行自动分拣过程,且不能应对不同类型尺 寸的药片检测等问题。提供一种泡罩药片包装缺陷视觉检测装置,该检测装置通过运动控 制来实现图像的自动采集,采用图像识别方法识别不同类型的包装缺陷,并采用气动分拣 结构完成不同包装缺陷的自动分拣,使得包装缺陷检测过程更加智能、高效。
[0010] 本发明的另一个目的在于提供一种应用上述泡罩药片包装缺陷检测的机器视觉 方法,该方法实现了不同类型的泡罩药片包装缺陷检测,同时可适用于不同尺寸的泡罩药 片,使得检测结果更为快速、准确、可靠。
[0011] 为解决上述技术问题,本发明采用如下的技术方案:
[0012] -种泡罩药片包装缺陷视觉检测装置,其特征在于,该检测装置包括检测台和检 测系统,其中:
[0013] 所述检测平台包括用于放置泡罩药片的工作台、传动机构和气动分拣机构;所述 工作台由装夹泡罩药片的夹具、支承在所述工作台上的支柱、在所述立柱上方的安装板、设 在工作台底部的照明光源和CCD相机组成;所述传动机构由分别支撑在工作台两侧的两个 同步带和与同步带相连的驱动电机组成;所述气动分拣机构由电磁控制阀和侧推气缸组 成;所述CCD相机悬吊于所述安装板上,且CCD相机镜面朝所述工作台的台面。
[0014]所述检测系统包括图像采集模块、运动控制模块以及上位计算机,其中:
[0015]所述图像采集模块包括依次相连的光电传感器、图像采集卡、照明光源和所述的 CCD相机,其中,所述光电传感器位于同步带两侧,用于感应传送过来的泡罩药片;所述图像 采集卡控制CCD相机采集装夹在工作台上的待检测玻璃的图像,并将所采集到的图像上传 至上位计算机;所述照明光源位于工作台底部,用于给CCD相机提供照明。
[0016] 所述的运动控制模块包括运动控制卡、传动机构和气动分拣机构,其中:
[0017] 所述的传动机构包括驱动电机和同步带,其中,所述的驱动电机与所述的运动控 制卡连接,该驱动电机的主轴与同步带中的主动带轮连接;所述运动控制卡接收到上位计 算机的传动指令后,驱动同步电机带动同步带运动,同步带带动装夹在工作台上的待检测 药片在直线方向上运动,使得CCD相机能够实现图像采集。
[0018] 所述气动分拣机构包括电磁控制阀、侧推气缸和推杆,其中,所述电磁控制阀与运 动控制卡连接,电磁控制阀与侧推气缸连接。所述运动控制卡接收到上位计算机的分拣指 令后,驱动电磁控制阀打开侧推气缸,侧推气缸驱动推杆将不合格的泡罩药片从传动带中 推出。
[0019] 所述上位计算机不断地扫描与所述运动控制卡连接的端口,当位于同步带两侧的 光电传感器检测到所述的工作台有泡罩药片经过时,向图像采集卡发送采集待检测泡罩药 片的指令;然后,上位计算机对采集到的图像进行处理和识别,并算出待检测泡罩药片的包 装缺陷及相关参数。
[0020] 进一步地,所述工作台的一侧设有立柱,立柱上方设有安装板;所述CCD相机设置 于安装板上。
[0021] 本发明的泡罩药片包装缺陷视觉检测方法,包括以下步骤:
[0022] (1)图像米集:
[0023] 当泡罩药片经过光电传感器时,与光电传感器相连的图像采集卡驱动CCD相机进 行图像采集,图像采集卡再将采集到的图像传输到上位计算机进行图像处理;
[0024] (2)图像处理:由上位计算机中的图像处理模块对泡罩药片图像进行处理,以提取 泡罩药片图像中的信息,供图像识别模块使用;
[0025] (3)图像识别:上位计算机中的图像识别模块对泡罩药片图像处理得到的信息进 行识别,并算出泡罩药片图像的包装缺陷及相关参数。
[0026] 本发明的基于机器视觉的玻璃表面缺陷检测方法中,在步骤(2)中,所述图像处理 包括、图像二值化、图像去噪声、图像像素级边缘检测,其中:
[0027] 图像标定:将CXD相机生成的图像还原为真实比例;
[0028] 图像二值化:将彩色图像变为黑白图像并实现前景与背景的分割;
[0029] 图像去噪声:去除图像中目标泡罩药片周围的噪声;
[0030] 图像像素级边缘检测:检测出图像中目标泡罩药片的边缘;
[0031] 本发明的泡罩药片包装缺陷视觉检测方法中,在步骤(3)中,所述图像识别使用基 于快速模板匹配的缺陷识别方法。
附图说明
[0032] 图1和图2是本发明的泡罩药片包装缺陷视觉检测装置的一个具体实施例的结构 不意图,图1是主视图,图2是俯视图。
[0033] 图3为本发明的第一个具体实施方式中运动控制模块的工作流程图。
[0034] 图4为本发明的第一个具体实施方式中图像处理模块的工作流程图。
[0035]图5为本发明的第一个具体实施方式中图像识别模块的工作流程图。
具体实施方式
[0036] 下面结合附图及具体实施例对本发明进行更加详细与完整的说明。可以理解的 是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。
[0037] 参见图1,本发明的泡罩药片包装缺陷视觉检测装置由检测台和检测系统构成,其 中:
[0038] 所述检测平台包括用于放置泡罩药片的工作台1、传动机构和气动分拣机构;所述 工作台由装夹泡罩药片的夹具2、支承在所述工作台上的支柱3、在所述立柱上方的安装板 4、设在工作台底部的照明光源5和CCD相机6组成;所述传动机构由分别支撑在工作台两侧 的两个同步带7和与同步带相连的驱动电机8组成;所述气动分拣机构由电磁控制阀9和侧 推气缸10组成;所述CCD相机6悬吊于所述安装板4上,且CCD相机镜面朝所述工作台1的台 面。
[0039] 所述检测系统包括图像采集模块、运动控制模块以及上位计算机11,其中:
[0040] 所述图像采集模块包括依次相连的光电传感器16、图像采集卡12、照明光源5和所 述的CCD相机6,其中,所述光电传感器16位于同步带7两侧,用于感应传送过来的泡罩药片; 所述图像采集卡12控制CCD相机6采集装夹在工作台上的待检测泡罩药片的图像,并将所采 集到的图像上传至上位计算机11;所述照明光源5位于工作台1底部,用于给CCD相机6提供 照明。
[0041] 参见图1-2,所述的运动控制模块包括运动控制卡13、传动机构和气动分拣机构, 其中:
[0042] 所述的传动机构包括驱动电机8和同步带7,其中,所述的驱动电机8与所述的运动 控制卡13连接,该驱动电机8的主轴与同步带7中的主动带轮14连接;所述运动控制卡13收 到上位计算机11的传动指令后,驱动同步电机8带动同步带7运动,同步带7带动装夹在工作 台1上的待检测药片在直线方向上运动,使得CCD相机6能够实现图像采集。
[0043] 所述气动分拣机构包括电磁控制阀9、侧推气缸10和推杆15,其中,所述电磁控制 阀9与运动控制卡13连接,电磁控制阀9与侧推气缸10连接。所述运动控制卡13收到上位计 算机11的分拣指令后,驱动电磁控制阀9打开侧推气缸,侧推气缸驱动推杆15将不合格的泡 罩药片从传动带中推出。
[0044] 所述上位计算机11不断地扫描与所述运动控制卡13连接的端口,当光电传感器16 检测到所述的工作台1有泡罩药片经过时,向图像采集卡12发送采集待检测泡罩药片的指 令;然后,上位计算机11对采集到的图像进行处理和识别,并算出待检测泡罩药片的包装缺 陷及相关参数。
[0045] CCD相机采用日本TK-C1381EG,1/2英寸,220V供电,0.95LUX 470线;光源采用IOW/ 12V的日光灯,使用直流电源供电,可通过调节电压改变灯光强弱以适应不同的光照情况; 在光源与CCD相机之间添加四块毛玻璃,可获取柔和的低强度散射光以便得到柔和的图像; 图像采集卡使用加拿大的Matrox Meter采集卡,支持3路同步采集;运动控制卡使用固高 ECI3800网络控制卡,使用232通讯接口和上位计算机相连;光电传感器使用QS18光电传感 器。
[0046]如图1-4所示,本发明的一种泡罩药片包装缺陷视觉检测方法,具体包括以下步 骤:
[0047] (1)图像采集:
[0048] 如图3所示,当泡罩药片经过光电传感器16时,与光电传感器16相连的图像采集卡 12驱动CCD相机6进行图像采集,图像采集卡12再将采集到的图像传输到上位计算机11进行 图像处理;
[0049] (2)图像处理:参见图4,由于CCD相机6的特性,其产生的图像与实际图像的比例可 能存在偏差,需要对图片进行预处理,具体包括以下过程:
[0050] (2.1)图像标定:将C⑶相机6生成的图像还原为真实比例,过程为:
[0051 ] 1)计算标准件图像的X向长度A Dx与Y向长度A Dy,进一步计算出标定系数Ccai:
[0052]
Figure CN106290382AD00071
[0053] 2)根据标定系数Ccal对需要标定的线扫描图像的Y向像素点灰度值进行双线性插 值,即可得到以X向的像素点间距为基准的标定图像。
[0054] (2.2)图像二值化:标定完成后,用最大类间方差法进行图像二值化,将图像的前 景与背景进行分割,过程为:
[0055] 1)设图像共有L个灰度级,灰度值为i的像素点共有m个,图像共有N个像素点,归 一化灰度直方图,令
Figure CN106290382AD00081
[0056] 2)设定一个阈值t,根据灰度值将像素点分成CdPC1两类。Co的概率《〇、均值ii 0:
Figure CN106290382AD00082
[0057]
[0058]
[0059] C1的概率O1、均值y1:
Figure CN106290382AD00083
[0060]
[0061] I
[0062] 其中,
Figure CN106290382AD00084
》由此可知cdPC1的类间方差〇2(t)为:
[0063] o2(t)= « O(U-IiO)2+« I(Ui-U)2 (6)
[0064] 于是将t从0到i进行取值,当〇取最大值时t为最佳阈值,即可得到最佳的二值化图 像。
[0065] (2.3)图像去噪声:使用团块面积阈值法进行图像滤波去噪声,去除图像中目标零 件周围的噪声,过程为:
[0066] 采用二值数学形态学中的连通组元提取算法来求取团块的面积,小于阈值的团块 为噪声,将该团块的像素点灰度值都设成255即可去除噪声。
[0067] (2.4)图像像素级边缘检测:对二值图像用数学形态学方法进行边缘检测,检测出 图像中目标零件的边缘,过程为:
[0068] 1)腐蚀的算符为©,集合A被集合B腐蚀定义为:
[0069]
Figure CN106290382AD00085
[0070] 2)膨胀的算符为©,集合A被集合B膨胀定义为:
[0071]
Figure CN106290382AD00086
[0072] 采用膨胀腐蚀型梯度算子,即用膨胀后的图像减去腐蚀后的图像,即可得到图像 中的边缘。由于此时的边缘不是单像素宽连通的,还需要再用区域骨架提取算法对边缘进 行细化。
[0073] 3)设B是图像,S(A)代表A的骨架,B是结构元素,则:
[0074]
Figure CN106290382AD00091
[0075] 其中,K表示将A腐蚀成空集前的迭代次数,即:
[0076]
Figure CN106290382AD00092
[0077] Sk(A)称为骨架子集,可写为:
[0078]
Figure CN106290382AD00093
[0079] A 0kB表示连续k次用B对A进行腐蚀。
[0080] (3)图像识别:使用基于快速模板匹配的方法对图像处理得到的边缘图像进行识 另IJ,算出待检测泡罩药片包装的表面缺陷及相关参数。模板匹配法就是在一幅图像中寻找 是否存在己知的模板图像,基本原理是通过相关函数来比较模板图像以及在被搜索图像中 的坐标位置。如果在被搜索图像与模板图像匹配,且同模板有一样的尺寸和方向,比较函数 的相似度较高。
[0081] 然而被搜索图像的每个像素点都与模板图像的对应像素点进行相关性比较,计算 量大,因此提出一种近似快速模板匹配方法,只需要对应像素点进行误差比较,属于加减计 算,大幅度减少了匹配所需的计算量,实现实时监测,该识别方法具体包括以下过程:
[0082] (3.1)如图5所示,在N X N大小的被搜索图像S中,匹配M X M大小的模板图像T,即从 图像T中查找一个子图SU与模板图像T是否匹配,(i,j)是该子图SU的左上角像素点在图 像S中的坐标,定义子图S m'n中像素点(i,j)的绝对误差值如下所示:
[0083]
Figure CN106290382AD00094
[0084] 歹(m,《)表示子图Sm'n的灰度均值,f表示模板图像的灰度均值。
[0085] (3.2)给定阈值0,在子图Sm'n中随机选择像素点,计算该点与模板图像T中对应像 素点的误差,并将该误差累积,当累加误差值到达给定阈值卵寸,停止像素点比较并记录当 前误差比较的次数r,定义当前子图S m'n的检测曲面I(m,n)计算公式如下:
[0086]
Figure CN106290382AD00095
[0087]选择整个被搜索图像中I(m,n)最大的点(m,n)作为匹配点。

Claims (7)

1. 一种泡罩药片包装缺陷视觉检测装置,其特征在于,该检测装置包括检测平台和检 测系统,其中: 所述检测平台包括用于放置泡罩药片的工作台、传动机构和气动分拣机构;所述工作 台由装夹泡罩药片的夹具、支承在所述工作台上的支柱、在所述立柱上方的安装板、设在工 作台底部的照明光源和CCD相机组成;所述传动机构由分别支撑在工作台两侧的两个同步 带和与同步带相连的驱动电机组成;所述气动分拣机构由电磁控制阀和侧推气缸组成;所 述CCD相机悬吊于所述安装板上,且CCD相机镜面朝所述工作台的台面。 所述检测系统包括图像采集模块、运动控制模块以及上位计算机,其特征在于,其中: 所述图像采集模块包括依次相连的光电传感器、图像采集卡、照明光源和所述的CCD相 机,其中,所述光电传感器位于同步带两侧,用于感应传送过来的泡罩药片;所述图像采集 卡控制CCD相机采集装夹在工作台上的待检测玻璃的图像,并将所采集到的图像上传至上 位计算机;所述照明光源位于工作台底部,用于给CCD相机提供照明。 所述的运动控制模块包括运动控制卡、传动机构和气动分拣机构,其特征在于,其中: 所述的传动机构包括驱动电机和同步带,其中,所述的驱动电机与所述的运动控制卡 连接,该驱动电机的主轴与同步带中的主动带轮连接;所述运动控制卡接收到上位计算机 的传动指令后,驱动同步电机带动同步带运动,同步带带动装夹在工作台上的待检测药片 在直线方向上运动,使得CCD相机能够实现图像采集。 所述气动分拣机构包括电磁控制阀、侧推气缸和推杆,其中,所述电磁控制阀与运动控 制卡连接,电磁控制阀与侧推气缸连接。所述运动控制卡接收到上位计算机的分拣指令后, 驱动电磁控制阀打开侧推气缸,侧推气缸驱动推杆将不合格的泡罩药片从传动带中推出。
2. 根据权利要求1所述的泡罩药片包装缺陷视觉检测装置,其特征在于,所述传动机构 包括驱动电机和同步带,其中,所述驱动电机与运动控制卡连接,该驱动电机主轴与同步带 中的主动带轮连接。
3. 根据权利要求1所述的泡罩药片包装缺陷视觉检测装置,其特征在于,所述气动分拣 机构包括电磁控制阀和侧推气缸,其中,所述电磁控制阀与运动控制卡连接,电磁控制阀与 侧推气缸连接。
4. 根据权利要求2所述的泡罩药片包装缺陷视觉检测装置,其特征在于,所述工作台的 一侧设有立柱,立柱上方设有安装板;所述CCD相机设置于安装板上。
5. -种应用权利要求1-4任一项所述的泡罩药片包装缺陷视觉检测装置实现的泡罩药 片包装视觉检测方法,其特征在于,包括以下步骤: (1) 图像采集: 当泡罩药片经过光电传感器时,与光电传感器相连的图像采集卡驱动CCD相机进行图 像采集,图像采集卡再将采集到的图像传输到上位计算机进行图像处理; (2) 图像处理:由上位计算机中的图像处理模块对泡罩药片图像进行处理,以提取泡罩 药片图像中的信息,供图像识别模块使用; (3) 图像识别:上位计算机中的图像识别模块对泡罩药片图像处理得到的信息进行识 另IJ,并算出泡罩药片图像的缺陷及相关参数。
6. 根据权利要求5所述的泡罩药片包装缺陷视觉检测方法中,其特征在于,在步骤(2) 中,所述图像处理包括、图像二值化、图像去噪声、图像像素级边缘检测,其中: 图像标定:将CCD相机生成的图像还原为真实比例; 图像二值化:将彩色图像变为黑白图像并实现前景与背景的分割; 图像去噪声:去除图像中目标泡罩药片周围的噪声; 图像像素级边缘检测:检测出图像中目标泡罩药片的边缘。
7.根据权利要求5所述的泡罩药片包装缺陷视觉检测方法中,其特征在于,在步骤(3) 中,所述图像识别使用基于快速模板匹配的缺陷识别方法。
CN201610545572.7A 2016-07-01 2016-07-01 泡罩药片包装缺陷视觉检测装置及方法 Withdrawn CN106290382A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610545572.7A CN106290382A (zh) 2016-07-01 2016-07-01 泡罩药片包装缺陷视觉检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610545572.7A CN106290382A (zh) 2016-07-01 2016-07-01 泡罩药片包装缺陷视觉检测装置及方法

Publications (1)

Publication Number Publication Date
CN106290382A true CN106290382A (zh) 2017-01-04

Family

ID=57651540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610545572.7A Withdrawn CN106290382A (zh) 2016-07-01 2016-07-01 泡罩药片包装缺陷视觉检测装置及方法

Country Status (1)

Country Link
CN (1) CN106290382A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179996A (zh) * 2016-07-14 2016-12-07 广东技术师范学院 泡罩药片包装缺陷视觉检测装置
CN107020250A (zh) * 2017-05-24 2017-08-08 赵亮 一种含胶囊的泡罩胶囊板的检测及剔除机
CN107084992A (zh) * 2017-04-20 2017-08-22 佛山市南海区广工大数控装备协同创新研究院 一种基于机器视觉的胶囊检测方法及系统
CN107168136A (zh) * 2017-06-27 2017-09-15 合肥市老海新材料有限公司 一种色选机检测系统
CN107525808A (zh) * 2017-07-27 2017-12-29 佛山市南海区广工大数控装备协同创新研究院 一种生产线上泡罩药品分类及缺陷在线视觉检测方法
CN107729826A (zh) * 2017-09-29 2018-02-23 苏州安斯特灵智能科技有限公司 药品包装图像识别方法及其装置
CN108838099A (zh) * 2018-03-28 2018-11-20 广州大学 基于机器视觉的别针徽章瑕疵检测系统及方法
JP2019002735A (ja) * 2017-06-13 2019-01-10 株式会社Screenホールディングス 固体製剤及びその検査方法
CN109490320A (zh) * 2018-11-23 2019-03-19 奇瑞汽车股份有限公司 一种基于机器视觉的动力电池组正负极异常检测系统和方法
CN109884070A (zh) * 2019-03-08 2019-06-14 武汉大学 一种基于机器视觉的铝铝泡罩包装药片缺陷检测方法
CN110032946A (zh) * 2019-03-21 2019-07-19 西安交通大学 一种基于机器视觉的铝/铝泡罩包装药片识别与定位方法
CN112345534A (zh) * 2020-10-30 2021-02-09 上海电机学院 一种基于视觉的泡罩板中颗粒的缺陷检测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221139A (ja) * 1999-01-29 2000-08-11 Yamatake Corp 欠陥検出装置
CN202061824U (zh) * 2011-03-29 2011-12-07 杭州旭美智能科技有限公司 一种视觉智能识别胶囊装置
CN103134810A (zh) * 2011-11-26 2013-06-05 西安中科麦特电子技术设备有限公司 一种自动光学检测仪
CN203889162U (zh) * 2014-04-21 2014-10-22 北京双鹤制药装备有限责任公司 泡罩包装机的剔除装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221139A (ja) * 1999-01-29 2000-08-11 Yamatake Corp 欠陥検出装置
CN202061824U (zh) * 2011-03-29 2011-12-07 杭州旭美智能科技有限公司 一种视觉智能识别胶囊装置
CN103134810A (zh) * 2011-11-26 2013-06-05 西安中科麦特电子技术设备有限公司 一种自动光学检测仪
CN203889162U (zh) * 2014-04-21 2014-10-22 北京双鹤制药装备有限责任公司 泡罩包装机的剔除装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵鹏: "基于机器视觉的药品包装检测技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
陈财彪: "泡罩药品包装缺陷检测中光照处理和图像匹配方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179996A (zh) * 2016-07-14 2016-12-07 广东技术师范学院 泡罩药片包装缺陷视觉检测装置
CN107084992B (zh) * 2017-04-20 2020-04-21 佛山市南海区广工大数控装备协同创新研究院 一种基于机器视觉的胶囊检测方法及系统
CN107084992A (zh) * 2017-04-20 2017-08-22 佛山市南海区广工大数控装备协同创新研究院 一种基于机器视觉的胶囊检测方法及系统
CN107020250A (zh) * 2017-05-24 2017-08-08 赵亮 一种含胶囊的泡罩胶囊板的检测及剔除机
JP2019002735A (ja) * 2017-06-13 2019-01-10 株式会社Screenホールディングス 固体製剤及びその検査方法
JP2021105617A (ja) * 2017-06-13 2021-07-26 株式会社Screenホールディングス 固体製剤及びその検査方法
CN107168136A (zh) * 2017-06-27 2017-09-15 合肥市老海新材料有限公司 一种色选机检测系统
CN107525808A (zh) * 2017-07-27 2017-12-29 佛山市南海区广工大数控装备协同创新研究院 一种生产线上泡罩药品分类及缺陷在线视觉检测方法
CN107729826A (zh) * 2017-09-29 2018-02-23 苏州安斯特灵智能科技有限公司 药品包装图像识别方法及其装置
CN108838099A (zh) * 2018-03-28 2018-11-20 广州大学 基于机器视觉的别针徽章瑕疵检测系统及方法
CN109490320A (zh) * 2018-11-23 2019-03-19 奇瑞汽车股份有限公司 一种基于机器视觉的动力电池组正负极异常检测系统和方法
CN109884070A (zh) * 2019-03-08 2019-06-14 武汉大学 一种基于机器视觉的铝铝泡罩包装药片缺陷检测方法
CN110032946A (zh) * 2019-03-21 2019-07-19 西安交通大学 一种基于机器视觉的铝/铝泡罩包装药片识别与定位方法
CN110032946B (zh) * 2019-03-21 2021-02-12 西安交通大学 一种基于机器视觉的铝/铝泡罩包装药片识别与定位方法
CN112345534A (zh) * 2020-10-30 2021-02-09 上海电机学院 一种基于视觉的泡罩板中颗粒的缺陷检测方法及系统

Similar Documents

Publication Publication Date Title
CN106290382A (zh) 泡罩药片包装缺陷视觉检测装置及方法
CN102495069B (zh) 一种基于数字图像处理的拉链链带缺陷检测方法
CN102218406B (zh) 一种基于机器视觉的手机外壳缺陷智能检测装置
CN206981462U (zh) 基于三维视觉的冲压件表面缺陷检测装置
CN101303316B (zh) 一种大输液生产线上的自动检测方法及装置
CN103983190B (zh) 群体产地鸭蛋外形尺寸的视觉检测分级装置及其方法
CN100547394C (zh) 基于图像信息融合技术的水果品质检测系统
CN107643295A (zh) 一种基于机器视觉的布匹缺陷在线检测的方法和系统
CN107052086A (zh) 基于三维视觉的冲压件表面缺陷检测装置及检测方法
CN107138431A (zh) 一种基于机器视觉的零部件识别分选方法及系统
CN106824816B (zh) 一种基于机器视觉的pe瓶检测与分拣方法
CN105651782A (zh) 一种发动机缸盖表面缺陷机器视觉自动检测设备
CN106546173A (zh) 用于检测元器件的设备及其检测方法
CN206818154U (zh) 一种齿环内外径外观检测装置
CN106353336A (zh) 一种镜片镀膜自动检测系统
CN106964556A (zh) 一种连杆锻件视觉检测系统
CN106018422A (zh) 基于匹配的异形冲压件轮廓缺陷视觉检测系统及方法
CN107244461A (zh) 全自动视觉检测包装线
CN108344743A (zh) 一种基于机器视觉药品泡罩包装缺陷检测方法及系统
CN208155258U (zh) 一种手机外壳在线尺寸测量与表面缺陷检测系统
CN207036727U (zh) 药瓶外观缺陷在线检测系统
CN108204987A (zh) 基于机器视觉的泡罩药片包装缺陷自动检测装置
CN210071686U (zh) 基于正交双目机器视觉的水果分级装置
CN206631957U (zh) 一种连杆锻件视觉检测系统
CN111239142A (zh) 膏体外观缺陷检测设备及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170104