CN106222101B - 高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用 - Google Patents

高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用 Download PDF

Info

Publication number
CN106222101B
CN106222101B CN201610601105.1A CN201610601105A CN106222101B CN 106222101 B CN106222101 B CN 106222101B CN 201610601105 A CN201610601105 A CN 201610601105A CN 106222101 B CN106222101 B CN 106222101B
Authority
CN
China
Prior art keywords
fructose
strain
glucose
jerusalem artichoke
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610601105.1A
Other languages
English (en)
Other versions
CN106222101A (zh
Inventor
洪泂
张国荣
卢敏
王冬梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201610601105.1A priority Critical patent/CN106222101B/zh
Publication of CN106222101A publication Critical patent/CN106222101A/zh
Application granted granted Critical
Publication of CN106222101B publication Critical patent/CN106222101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01001Hexokinase (2.7.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01002Glucokinase (2.7.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用,通过基因工程改造的方法将耐高温的马克思克鲁维酵母中预测的己糖激酶基因(KmHXK)敲除,抑制该酵母对包括葡萄糖和果糖的己糖的利用能力,在此基础上过表达预测的马克思克鲁维酵母的葡萄糖激酶(KmGLK)恢复该酵母对葡萄糖的利用能力。证明了KmHXK和KmGLK的功能,以此为基础构建的酵母菌株YGR003在较高温度(42℃)下,高效利用葡萄糖快速生长,但利用果糖的能力很弱。因此该酵母能够特异性利用和消耗葡萄糖果糖混合糖中的葡萄糖,又由于该菌株天然表达菊糖酶,可直接水解和利用菊糖和菊芋。在42℃条件下,YGR003能够同时利用350g/l菊芋粉,24h内生产232.6g/l纯果糖糖浆(检测不到葡萄糖),其生产速率高达9.7g/l/h。

Description

高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用
技术领域
本发明涉及生物技术领域,具体地说,涉及能够在较高温度下同时降解菊芋块根中菊糖,并去除其中葡萄糖,生产高纯果糖糖浆,果糖生产速率大幅度提高的耐热工程酵母。该菌株可以利用未灭菌菊芋块根粉,不补充额外营养物质的条件下快速高效生产高纯果糖糖浆。即,本发明通过工程菌改造构建高温下利用菊芋一步高纯果糖糖浆生产法。
背景技术
从上世纪80年代开始,随着对天然的,更健康的低能量食品需求的不断增加,大量的替代糖出现了(Lima et al.,2011)。有营养的甜味剂(例如蔗糖,果糖)被美国食品与药物管理局认为是安全的(generally recognized as safe(GRAS))(Duffy&Sigman-Grant,2004)。果糖是自然界中最甜的单糖,其甜度是蔗糖的1.7倍、葡萄糖的2倍,具有甜味纯正、热值低、冷甜性、高溶解度、渗透压高、保湿性好、发酵性能好等特点,广泛应用于食品和医药工业领域(Hanover&White,1993)。果糖由于甜度比蔗糖高,富含果糖的高果糖浆作为天然甜味剂用以替代和补充蔗糖供应量的不足,而且高果糖浆还具有优越的代谢特性和营养保健功能,如可被直接吸收,毋须依靠胰岛素参与代谢、减缓体内蛋白质消耗、不会引起龋齿等等,因此高果糖浆得到越来越多的青睐和应用。果糖可在在药品,药用糖浆和溶液中作为赋形剂。由于它的高甜度和在食品中的安全性,它可以用于让药物更加易于服用(Barclay et al.,2012;Bowe,2000)。它抑制水结晶的能力使其可以用于抗冻剂(Date etal.,2010)。果糖的高溶解性使它可以用于促进药物溶解以及调整溶液渗透压使药物更适合肠胃外服用(Barclay et al.,2012)。果糖还可以作为冻干保护剂在冷冻和脱水过程中保护药物活性(Crowe et al.,1990)
而目前果糖通常与其他糖(主要是葡萄糖)混在一起组成高果玉米糖浆或转化糖糖浆(Lima et al.,2011),其中的果糖含量通常为42%,55%或90%,果糖含量越高其价值越高。以玉米淀粉为材料工业规模的生产果糖大幅度提高了果糖的消费。高果糖浆,一种葡萄糖和果糖的混合溶液,由于它比蔗糖有功能和技术上的便利性,成为例如糖果,面包,果酱等多种加工食品以及饮料中主要的甜味剂和食品添加剂。通过葡萄糖异构酶,以淀粉水解物为材料很容易生产42%的高果糖浆。55%的高果糖浆则通过高温下的葡萄糖异构酶生产(Lima et al.,2011;Liu et al.,2015)或者添加纯果糖来制备(Lima et al.,2011)。含有更高浓度果糖的高果糖浆,例如90%果糖,这需要通过大规模层析技术从42%的高果糖浆中纯化获得。另外,这种高果糖浆也可以通过菊糖的水解获得。(Mutanda et al.,2009;Singh et al.,2007)。虽然有限研究显示高果糖浆可能提高肥胖和糖尿病的风险。然而这有个过量食用的前提。果糖是否是唯一原因也是未知的,更可能的原因是能量的过量摄取(Administration,2014;Forshee et al.,2007;Kmietowicz,2015;Kuzma et al.,2015;Sievenpiper et al.,2012)。
由于果糖在未来的消费仍会增长,需要更多的更廉价的商业生产和加工方法。要降低制造成本,采用含有高比例果糖的原材料,比如菊糖是个很好的选择。它可以大幅度降低加工的步骤(Barclay et al.,2012)。
菊芋能够在贫瘠的土地上生长,能够耐受干旱和盐碱(Zhang et al.,2011)。它的块根中包含的糖为菊糖。菊糖是由果糖糖链与末端的一个葡萄糖残基相连而成的多糖(Pandey et al.,1999),能够很容易被菊糖酶水解成果糖和普通糖。但是这个过程需要制备较纯的菊糖酶。这是一个成本较高且过程繁琐的过程,而且还不能去除其中混合的葡萄糖。虽然有在酿酒酵母中构建能够利用菊糖生产果糖的报道,但是速度较慢,产量也比较低,而且需要重组表达外来聚糖酶(Yu,et al.,2011)。
马克思克鲁维酵母能够直接利用菊糖而不需要额外添加菊糖酶,它被用于利用菊芋生产乙醇(Hu et al.,2012;Yuan et al.,2012;Yuan et al.,2008)。这个过程将菊糖酶的生产、菊糖的水解和乙醇发酵结合在一起(Yuan et al.,2012)。由于产菊糖酶的马克思克鲁维酵母能够在40℃–50℃生长(Chi et al.,2009)可以在高温下直接利用菊芋使之可能成为生产果糖的重要候选菌。
发明内容
本发明中构建了一种能够在高温下一步法利用菊芋高效生产高纯果糖的菌株,及其用于生产果糖,尤其是高纯果糖糖浆的用途。
具体而言,本发明涉及以下方面:
在本发明的一个方面,涉及一种耐热酵母菌株,其通过在马克思克鲁维酵母YHJ010菌株中敲除或基本上敲除己糖激酶基因KmHXK,并过表达葡萄糖激酶基因KmGLK获得。
在一个优选的实施方案中,向所述耐热酵母菌株中回补亮氨酸的营养缺陷性。
在一个优选的实施方案中,所述回补优选通过转入马克思克鲁维酵母的β-丙基苹果酸脱氢酶基因KmLEU2实现。
在一个优选的实施方案中,所述耐热酵母菌株为马克思克鲁维酵母(Kluyveromyces marxianus)YGR003,其已经于2016年6月20日保存在中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区北辰西路1号院3号中国科学院微生物研究所),保藏号为CGMCC No.12643。
本发明的另一个方面涉及一种构建耐热酵母菌株的方法,所述方法包括以下步骤:1)在马克思克鲁维酵母YHJ010菌株中敲除或基本上敲除己糖激酶基因KmHXK;2)在其中过表达葡萄糖激酶基因KmGLK。
在一个优选的实施方案中,所述方法还包括向所述菌株回补亮氨酸的营养缺陷性。
在一个优选的实施方案中,所述回补优选通过转入马克思克鲁维酵母的β-丙基苹果酸脱氢酶基因KmLEU2实现。
本发明的另一个方面涉及所述耐热酵母菌株用于消化葡萄糖果糖混合糖中的葡萄糖而不或基本上不消化果糖的用途。
本发明的另一个方面涉及所述耐热酵母菌株用于一步水解菊糖,并消耗葡萄糖获得纯果糖糖浆的用途。
在一个优选的实施方案中,所述菊糖来自菊芋。
在一个优选的实施方案中,,所述菊芋优选未灭菌的。
在一个优选的实施方案中,所述用途在较高温度进行。
在一个优选的实施方案中,所述较高温度在37至45℃的范围内,优选在37至42℃的范围内,最优选为42℃。
发明详述
本发明通过基因工程的方法(如图1所示),首先将马克思克鲁维酵母YHJ010菌株中己糖激酶基因(KmHXK)进行了敲除,使得该敲除菌株的己糖利用能力大幅度下降。获得的菌株对葡萄糖及果糖的利用能力都非常弱。然后,过表达葡萄糖激酶基因(KmGLK),恢复该酵母利用葡萄糖的能力,同时保持很低的果糖利用能力。最终获得了在较高温度(42℃)下能够一步利用葡萄糖果糖混合物中葡萄糖,能够水解菊芋中菊糖,并消耗葡萄糖获得纯果糖糖浆的耐热酵母K.marxianus菌株,特别是本申请中所述的菌株YLM005,再通过回补亮氨酸的营养缺陷性获得利用菊糖生长更好的菌株,特别是本申请中所述的菌株YGR003。并基于此提供使用菊芋为原材料一步法生产高纯果糖的方法。
本发明中的最终构建的耐热酵母K.marxianus菌株,特别是YGR003菌株在42℃条件下,以350g/l未经灭菌的菊芋为材料,生产了232.6g/l的果糖,生产速率为9.7g/l/h。在45℃虽然生产果糖能力下降,但是仍可以生产果糖。
具体地,本发明提供一种在较高温度(>42℃)下能够一步水解菊芋中菊糖去除葡萄糖获得纯果糖糖浆的耐热酵母菌株,特别是YGR003,其保藏号为CGMCC No.12643。所述耐热酵母菌株通过在马克思克鲁维酵母YHJ010菌株中敲除了己糖激酶基因,过表达了葡萄糖激酶基因获得,这使得该酵母能快速利用葡萄糖却不能利用果糖。
其中,所述己糖激酶基因(KmHXK)的敲除框在pGEMT-easy(Promega)中构建。此敲除框的构建过程为:⑴以马克思克鲁维酵母的基因组DNA为模板,进行PCR扩增,得到的产物即为KmHXK,并将基因加“A"后连接进入pGEMT-easy载体中,从而构建得到质粒pKmHXK-T。⑵以pKmHXK-T质粒为出发质粒,利用HindIII酶切去除KmHXK基因中部1.4kb长的片段并进行平端化处理(破坏KmHXK的开放阅读框)。同时提取酿酒酵母(Saccharomyces cerevisiaeW303)基因组,根据NCBI提供的ScURA3基因序列设计引物进行PCR扩增,得到的ScURA3片段,长度为2.2kb,对片段进行磷酸化处理后,连入pKmHXK-T载体酶切片段中,形成pKmHXK-ScURA3-T载体。再通过PCR扩增将其中的KmHXK-ScURA3扩增出来作为KmHXK基因的敲除框。
其中,所述葡萄糖激酶基因的过表达质粒构建过程如下:⑴以马克思克鲁维酵母的基因组DNA为模板,进行PCR扩增,得到的产物即为KmGLK,并将基因加“A"后连接进入pGEMT-easy载体中,从而构建得到质粒pKmGLK-T。⑵以pKmGLK-T质粒为出发质粒,通过PCR扩增获得1.4Kb的开发阅读框。然后将KmGLK的开放阅读框插入到酵母表达载体yEGAP得到表达质粒yEGAP-KmGLK。将yEGAP-KmGLK转入马克思克鲁维酵母中即可过表达KmGLK。
本文中所述的基因KmHXK和KmGLK均来源于马克思克鲁维酵母。
用于构建本发明的耐热工程酵母菌株的原始菌株YHJ010是申请人构建以马克思克鲁维酵母NBRC1777为出发菌株构建的,其构建方法与过程见文献(2007Hong.et al)。
在构建得到所述多个质粒后,构建所述耐热工程酵母菌株,构建过程主要包括以下步骤:
(1)将上述构建完成的质粒pKmHXK-ScURA3-T以KmHXK–F、KmHXK–R为引物扩增后。转化酵母菌株YHJ010,在无尿嘧啶的合成培养基平板上筛选获得KmHXK基因敲除菌株YLM001。
(2)以yEGAP-KmGLK为模板,以amp-200-F和amp-200-R为引物扩增的得到过表达KmGLK片段,将片段转化到YLM001,通过无色氨酸和尿嘧啶的合成培养基平板筛选得到的菌株命名为YLM005。
为了对本发明的耐热工程酵母菌株进行评价,还将空质粒YEUGAP转化YHJ010,获得YWD016,作为YLM001的空白对照。同时,将空质粒YEGAP转化YLM001,获得YGR002,作为YLM005的空白对照。
进一步地,将质粒YKmLEU2(本实验室保存)(Hong.et al 2007)转化YLM005,获得营养缺陷型标签去除的菌株YGR003。
在进一步的验证试验中,将菌株YLM001在使用葡萄糖或果糖为碳源在42℃进行培养时,其利用葡萄糖和果糖的生长能力很弱。而将菌株YLM005在使用葡萄糖与果糖为碳源在42℃进行培养时,该菌株能特异性的利用葡萄糖,最终保留果糖基本不被消耗。将菌株YLM005在使用菊糖为碳源在42℃进行培养时,该菌株可以高效的水解菊糖并能特异性的利用葡萄糖,生产高纯果糖糖浆。
进一步地,YGR003菌株能够在37至45℃,特别是42℃利用菊芋生产高纯果糖糖浆,但是45℃下生产能力比37和42℃弱一些。
利用本发明所述的耐热工程酵母菌株YGR003使用一步法(在42℃),以菊芋(350g)为材料对其中的菊糖进行水解,并去除其中产生的葡萄糖,获得高纯果糖糖浆。本发明的菌株能提高利用菊芋等含菊糖的材料生产高纯果糖的生产速度,减少杂菌污染及降低能耗具有非常重要的意义。
本发明通过基因工程改造,最终获得菌株YGR003在降解菊芋块根中菊糖的同时去除其中葡萄糖生产高纯果糖糖浆,是一株生产速率大幅度提高的耐热工程酵母。该菌株可以单独使用未灭菌菊芋块根粉,并且生产过程中不需外加营养物质;该菌株大幅度提高果糖的生产速率;该菌株生产的果糖浓度比以前的类似方法更高;速度更快;本发明菌株可以在高温下生产,可以大幅度降低冷却费用,并使得生产可以在热带地区已经高温季节进行。在低成本高效生产高纯果糖糖浆的工业上有很巨大的应用前景。
优点和积极效果
本发明获得的菌株,特别是菌株YGR003可以在37至45℃,特别是42℃条件下,在24h内利用(未灭菌未加热处理的)菊芋(例如350g/l)生产含232.6g/l纯果糖,无葡萄糖的糖浆,生产速率为9.7g/l/h。这一结果说明,本发明获得的菌株,特别是菌株YGR003可以在高温下高效利用菊芋生产高纯果糖糖浆的能力,高温下的工业化生产与较低温度下的生产相比,可以带来几个好处:1.降低冷却能耗,由于大型工业发酵中会产生大量的热量需要消耗大量的水及能量降温。2.减少污染。随着培养温度的升高,能够在该温度下生存的微生物急剧减少,因而较少杂菌污染,本发明中的菊芋无需灭菌直接使用;3.提高反应速度,提高产物的生产速率;这是以前构建的其他菌株所不具有的。
需要指出,本发明使用的酵母KmHXK和KmGLK基因的并没有验证过,只是从序列对比上推断,而且与其他酵母不同,本发明的酵母KmHXK的敲除会严重阻碍酵母对己糖的利用,必须通过过表达KmGLK才能恢复,说明本酵母己糖相关激酶的表达与酿酒酵母不同。
本发明生产采用温度高达42℃。工业的冷却以水能为主,但环境温度(水温)超过微生物培养温度时,冷却就不能进行。本发明生产采用温度高达42℃,使得热带地区和夏季高温地区都能够比较方便的使用,由于这些特点,本发明的酵母菌株能够在更大范围更高效的生产高纯果糖糖浆。
本发明的菌株生产速率很高,达9.7g/L,产量也很高,最高达到了232.6g/l。这远超以前的报道,可以大幅度缩短生产时间,节约成本。
附图说明
图1本发明的菌株的构建流程图。
图2.YLM001KmHXK敲除的基因组PCR验证结果。左侧为以YHJ010基因组PCR(对照)
图3构建的菌株利用葡萄糖(A,C)或果糖(B,D)生长情况分析。YLM001(△KmHXK)与对照YWD016相比利用葡萄糖生长的能力大幅度下降,而利用果糖生长能力更差。而YLM005(在YLM001基础上表达KmGLK)利用葡萄糖生长能力恢复,但仍旧不能利用果糖生长,YGR002(YLM001基础上空载体对照)不能利用葡萄糖和果糖生长。
图4菌株YLM005在混合糖培养中利用葡萄糖和果糖情况。可以看出YLM005在混合糖为碳源的培养基中快速生长,消耗葡萄糖,而果糖不消耗。
图5菌株YGR003和YLM005在利用100g/l纯菊糖为碳源时的生长(A)和糖消耗状况(B)。
图6菌株YGR003在不同温度下利用100g/l菊芋粉(A)以及42℃利用350g/l菊芋粉(B)一步法生产纯果糖的结果。
具体实施方式
试剂和菌株:
本发明中的所有试剂均是市场购买的试剂级以上试剂。其中,果糖,葡萄糖、甘油、酵母基本氮源、尿嘧啶、色氨酸、亮氨酸、胶回收试剂盒以及所有的限制性内切酶均来源于上海生工生物工程公司。PrimeSTAR HS DNA聚合酶购自大连宝生物公司,T4DNA连接酶购自于NEB生物公司,pGEMT-easy载体购自于promega生物公司。大肠杆菌Escherichia coliXL10-gold菌株作为DNA操作时使用的宿主菌(美国加利福利亚Stratagene公司),包含100μg/ml氨苄青霉素的Luria-Bertani(LB)培养基用作培养E.coli。葡萄糖合成培养基(葡萄糖20g/l,酵母基本氮源6.7g/l,及依据需要添加尿嘧啶,亮氨酸或色氨酸)主要用于转化。质粒YEGAP,YELGAP,YEUGAP由本实验室提供(Hong et al.,2007a)。YPD培养基(10g/l酵母提取物,20g/l细菌学蛋白胨,20g/l葡萄糖)用于酵母的前培养。混合糖合成培养基(酵母基本氮源6.7g/l,70g/l果糖,80g/l葡萄糖,亮氨酸2mg/ml)用于测试菌株的糖利用情况,菊糖培养基(酵母基本氮源6.7g/l,100g/l菊糖,亮氨酸2mg/ml)用于测试构建菌株水解菊糖及对产物的利用情况。而一定浓度的未灭菌的菊芋粉直接用于测试构建的菌株在不同温度及不同浓度底物时,一步法生产果糖的能力。马克思克鲁维酵母YZJ010菌株为本研究室保存菌株,该菌株由马克思克鲁维酵母NBRC1777构建而来。构建方法及过程见(Hong et al.,2007b)。而NBRC1777可以购自日本生物资源中心(Biological Resource Center,NITE(NBRC),JAPAN).
实施例1菌株的制备:
1.提取酵母基因组的具体操作步骤为:
①.马克思克鲁维酵母NBRC1777菌株,在YPD平板上划线,挑取单克隆,接入5ml液体YPD中,37℃,250rpm,培养24h。
②.常温下12000rpm,5sec离心收菌,弃上清。
③.500μl蒸馏水重悬菌体,12000rpm,5sec离心收菌,弃上清。
④.取200μl实验室自配1x breaking缓冲液(TritonX-100(2%(w/v)),SDS(1%(w/v)),NaCl(100mM),Tris-Cl(10mM,pH8.0),EDTA(1mM))重悬菌体,并将菌液转入到含有0.3g玻璃珠(425-600um,sigma,美国)的EP管内。
⑤.加入200μl酚氯仿溶液后,高速震荡3min,加入200μl 1x TE(10mM Tris-Cl,pH8.0,1mM EDTA)。轻微震荡。
⑥.12000rpm,离心5min,取最上层清液转入新的EP管内,加入1ml预冷的无水乙醇。
⑦.12000rpm,4℃,离心10min,弃上清,室温下干燥沉淀,并用400μl 1x TE重悬沉淀。
⑧.加入2μl RNase(RNA水解酶,中国上海生工生物),2mg/ml)到EP管内,混匀,37℃,酶切1h。
⑨.取40μl 3M醋酸钠(pH 5.2)加入到管内,混匀并加入1ml预冷的无水乙醇。
⑩.12000rpm,4℃,离心30min,弃上清室温下干燥。用100μl无菌水重悬沉淀,此即酵母基因组DNA。
2.KmHXK的克隆
提取马克思克鲁维酵母(K.marxianus yeast NBRC 1777)的基因组,根据NCBI提供的KmHXK基因序列(GenBank KX270227)为模板设计引物,利用PrimeSTAR HS DNA聚合酶,以KmHXK-F(SEQ ID No:1),KmHXK-R(SEQ ID No:2)为引物进行扩增,得到的片段即为KmHXK,长度为3.2kb,将基因片段加A后连接插入pGEM-T Easy(美国Promega公司)载体中形成pKmHXK-T质粒。具体如下:
(1)以K.marxianus yeast NBRC 1777基因组作模板扩增得KmHXK片段。
KmHXKPCR体系:
Figure BDA0001061231630000091
PCR程序:
Figure BDA0001061231630000092
Figure BDA0001061231630000101
(2)得到KmHXK后,通过凝胶回收后得到基因片段,之后在DNA末端加“A”后,通过TA克隆将KmHXK插入pGEM-T Easy载体中。
加A体系:
Figure BDA0001061231630000102
72℃温育1h
之后对DNA进行纯化处理后进行TA连接,载体:片段(浓度比)=1:10。
TA克连接体系:
Figure BDA0001061231630000103
16℃温育18h
(3)将连接产物转化大肠杆菌,待菌落形成后利用菌落PCR检测阳性克隆
(4)提取阳性克隆中包含的质粒,通过EcoRI酶切检测正确后进行测序
(5)序列比对完全正确的KmHXK基因,将质粒标记为pKmHXK-T并保存
3.KmHXK基因敲除框的构建
以pKmHXK-T质粒为出发质粒,利用HindIII酶切去除KmHXK基因中部1.4kb长的片段,对片段进行去磷酸化处理后胶回收剩余4.8kb片段,之后对片段进行平端化处理。同时提取酿酒酵母(Saccharomyces cerevisiae W303)基因组,根据NCBI提供的ScURA3基因序列,利用PrimeSTAR HS DNA聚合酶,以ScURA3-SMAI-FULL-F(SEQ ID No:3),ScURA3-SMAI-FULL-R(SEQ ID No:4)为引物进行扩增,得到的ScURA3片段,长度为2.2kb,对片段进行磷酸化处理,将ScURA3片段连入pKmHXK-T载体酶切片段中,形成pKmHXK-ScURA3-T载体。具体如下:
(1)以S.cerevisiaeW303基因组作模板扩增得ScURA3片段。
ScURA3PCR体系:
Figure BDA0001061231630000111
PCR程序:
Figure BDA0001061231630000112
Figure BDA0001061231630000121
(2)通过凝胶回收后得到ScURA3基因片段,对片段进行磷酸化处理。
磷酸化体系:
Figure BDA0001061231630000122
37℃温育30min,之后对片段进行纯化处理。
(3)从大肠杆菌中抽取pKmHXK-T质粒,以HindIII酶切处理载体。
载体酶切体系:
Figure BDA0001061231630000123
37℃温育过夜
酶切过后向体系中加入10μl FastAP去磷酸化酶进行载体去磷酸化,37℃温育1h。然后通过凝胶回收回收4.8kb片段
(4)对回收的载体片段进行平端化补齐
平端化体系:
Figure BDA0001061231630000124
Figure BDA0001061231630000131
68℃温育30min并对片段进行纯化处理
(5)最后进行载体与片段的连接,载体:片段(浓度比)=1:3。
连接体系:
Figure BDA0001061231630000132
16℃温育18h
(6)将连接产物转化大肠杆菌,待菌落形成后利用菌落PCR检测阳性克隆
(7)提取阳性克隆中包含的质粒,通过SmaI检测正确后进行测序
(8)序列比对完全正确,将质粒标记为pKmHXK-ScURA3-T并保存
4.KmGLK的克隆
提取马克思克鲁维酵母(K.marxianus NBRC 1777)的基因组,根据NCBI提供的KmGLK基因序列(GenBank KX270228)为模板设计引物,利用PrimeSTAR HS DNA聚合酶,以KmGLK-F(SEQ ID No:5),KmGLK-R(SEQ ID No:6)为引物进行扩增,得到的片段即为KmGLK,长度为2.9kb,将基因加A后连接插入pGEM-T Easy(美国Promega公司)载体中形成pKmGLK-T质粒。具体如下:
(1)以K.marxianus yeast NBRC 1777基因组作模板扩增得KmGLK片段。
KmGLKPCR体系:
Figure BDA0001061231630000133
Figure BDA0001061231630000141
PCR程序:
Figure BDA0001061231630000142
(2)得到KmGLK后,通过凝胶回收后得到基因片段,之后在DNA末端加“A”后,通过TA克隆将KmGLK插入pGEM-T Easy载体中。
加A体系:
Figure BDA0001061231630000143
72℃温育1h
之后对DNA进行纯化处理后进行TA连接,载体:片段(浓度比)=1:10。
TA克连接体系:
Figure BDA0001061231630000144
Figure BDA0001061231630000151
16℃温育18h
(3)将连接产物转化大肠杆菌,待菌落形成后利用菌落PCR检测阳性克隆
(4)提取阳性克隆中包含的质粒,通过EcoRI酶切检测正确后进行测序
(5)序列比对完全正确KmGLK基因,将质粒标记为pKmGLK-T并保
5.KmGLK基因过表达质粒的构建
以pKmGLK-T质粒为模板,根据NCBI提供的KmGLK基因序列为模板设计引物,利用PrimeSTAR HS DNA聚合酶,以KmGLK-F-EcoRI(SEQ ID No:7),KmGLK-R-NotI(SEQ ID No:8)为引物进行扩增,得到KmGLK的开放阅读框(ORF),长度为1.4kb,利用EcoRI和NotI酶切片段以及质粒载体yEGAP(穿梭质粒,有氨苄抗性可在原核生物中扩增。同时有酿酒酵母GAPDH的启动子和终止子,两者之间有多克隆位点),回收纯化后进行连接构建yEGAP-KmGLK质粒。具体如下。
(1)以pKmGLK-T作模板扩增得KmGLK的表达框片段。
KmGLK的表达框PCR体系:
Figure BDA0001061231630000152
PCR程序:
Figure BDA0001061231630000161
(2)通过凝胶回收1.4kb片段后得到KmGLK的表达框片段,对片段进行酶切。
片段酶切体系:
Figure BDA0001061231630000162
37℃温育过夜后对片段进行纯化处理
(3)从大肠杆菌中抽取yEGAP质粒,以NotI、EcoRI酶切处理质粒。
载体酶切体系:
Figure BDA0001061231630000163
37℃温育过夜后对片段进行凝胶回收7kb片段
(4)最后进行载体与片段的连接,载体:片段(浓度比)=1:3
连接体系:
Figure BDA0001061231630000164
Figure BDA0001061231630000171
16℃温育18h
(5)将连接产物转化大肠杆菌,待菌落形成后利用菌落PCR检测阳性克隆
(6)提取阳性克隆中包含的质粒,通过NotI、EcoRI酶切检测正确后进行测序
(7)序列比对完全正确,将质粒标记为yEGAP-KmGLK并保存
6.将构建的载体转化进行基因工程改造马克思克鲁维酵母工程菌株
1)酵母化学转化步骤:
①.各种改造菌株在YPD平板上划线,37℃培养24h。
②.取5ml液体YPD,并分别在YPD平板上挑取单克隆,37℃,250rpm,培养18h。
③.取1ml培养物转接与装入9ml液体YPD的50ml三角瓶内,37℃,250rpm,摇床培养5h。
④.取出培养物,常温下离心5000rpm,3min,弃上清液,保留菌体。
⑤.配制1ml转化缓冲液:800μl 50%PEG4000;50μl 4M醋酸锂;50μl ddH2O;100μl1M DTT(溶于10mM醋酸钠,pH 5.2)。
⑥.使用200μl转化缓冲液重悬菌体,5000rpm,离心3min,去上清。
⑦.用100μl转化缓冲液重悬浮菌体,加入5μl(1-10μg)线性化的质粒,轻微震荡30sec。
⑧.在47℃条件下水浴15min。
⑨.将菌体涂布于含有亮氨酸(Leu)或色氨酸(Trp)的合成培养基,37℃培养2天。
⑩.挑取板上克隆在液体YPD中培养,提取基因组,并通过PCR鉴定转化结果。
2)本专利中构建各种耐热酵母表达菌株的具体过程:
(1)YLM001菌株的构建:上述构建完成的质粒pKmHXK-ScURA3-T以KmHXK–F、KmHXK–R为引物PCR扩增包含破坏了的KmHXK及ScURA3表达框的敲除片段。利用上述的酵母转化方法转化酵母菌株YHJ010,同源重组后,使菌株YHJ010内的KmHXK基因被敲除,同时获得尿嘧啶的合成的能力。在无尿嘧啶的合成培养基(配方:葡萄糖20g/L,酵母基本氮源6.7g/L,色氨酸和亮氨酸各2mg/ml,琼脂15g/L)平板上筛选KmHXK敲除菌株,获得的菌株命名为YLM001。
鉴定YLM001酵母KmHXK基因敲除的阳性菌株的PCR体系:
Figure BDA0001061231630000181
对应PCR程序:
Figure BDA0001061231630000182
通过PCR检测结果鉴定,YHJ010菌株的扩增产物为3.2kb,而YLM001由于插入了ScURA3基因,扩增产物为4Kb(图2)。如图2所示为基因组PCR结果,表明YLM001菌株中KmHXK基因被敲除成功。
(2)YLM005的构建:以YEGAP-KmGLK为模板,以amp-200-F和amp-200-R(SEQ ID No:9和10)为引物扩增的得到过表达KmGLK片段,将片段转化到YLM001,通过无色氨酸的合成培养基平板(配方:葡萄糖20g/l,酵母基本氮源6.7g/l,亮氨酸2mg/ml,琼脂15g/l)筛选得到的菌株命名为YLM005
PCR扩增体系:
Figure BDA0001061231630000191
对应PCR程序:
Figure BDA0001061231630000192
(3)对照菌株YWD016的构建:将空质粒YEUGAP用EcoRI酶切以后转化YHJ010,通过无尿嘧啶的合成培养基平板(配方:葡萄糖20g/l,酵母基本氮源6.7g/l,亮氨酸和色氨酸2mg/ml,琼脂15g/l)筛选得到的菌株命名为YWD016,作为YLM001的空白对照。
(4)对照菌株YGR002的构建:将空质粒YEGAP EcoRI酶切以后转化YLM001,通过无尿嘧啶和色氨酸的合成培养基平板(配方:葡萄糖20g/l,酵母基本氮源6.7g/l,亮氨酸2mg/ml,琼脂15g/l)筛选得到的菌株命名为YGR002,作为YLM005的空白对照。
(5)无营养缺陷性菌株YGR003的构建:质粒YKmLEU2(本实验室保存)(Hong.etal.,2007)EcoRI酶切以后转化YLM005,通过在没有补充氨基酸的合成培养基平板(配方:葡萄糖20g/l,酵母基本氮源6.7g/l,琼脂15g/l)筛选获得营养缺陷型标签去除的菌株YGR003。
实施例2构建的各种菌株YLM001,LM005及对照菌株YWD016和YGR002的葡萄糖及果糖利用情况
该实施例用于比较构建的各种过程菌株利用葡萄糖及果糖的能力。结果表明YLM001丧失了果糖利用能力,但是葡萄糖利用能力很差,YLM005的葡萄糖利用能力得到了恢复,并保持了不利于果糖的特性(图3)。
1.在YPD培养基平板上复苏菌株。对照株:YWD016,YGR002。实验株:YLM001和YLM005。37℃培养1天。
2.分别挑取单克隆,接于5ml液体YPD培养基。37℃,250rpm,过夜。
3.配制6瓶50ml葡萄糖或果糖的培养基分装于250ml锥形瓶中。配方:20g/l果糖或葡萄糖,酵母基本氮源6.7g/L,色氨酸和亮氨酸各2mg/ml。灭菌待用。
4.取适量过夜培养物接入50ml葡萄糖或果糖培养基中,使他们的初始OD600达到0.2,42℃,250rpm培养。
5.在0h,3h,7h,11h,14h,22h,25h取样,测定OD600(图3)。
6.从图3可知YLM001(△KmHXK)与对照YWD016相比利用葡萄糖生长的能力大幅度下降,而利用果糖生长能力更差。而YLM005(在YLM001基础上表达KmGLK)利用葡萄糖生长能力恢复,并保持了不利用果糖的特性。YGR002(YLM001基础上空载体对照)不能利用葡萄糖和果糖生长。
实施例3构建的YLM005利用葡萄糖果糖的混合糖情况
该实施例用于分析在葡萄糖和果糖都存在时,YLM005是否只利用葡萄糖。结果表明在混合糖中YLM005的保持利用葡萄糖,不利用果糖的特性(图4)。
1.在YPD培养基平板上复苏菌株YLM005,37℃培养1天。
2.分别挑取单克隆,接于5ml液体YPD培养基。37℃,250rpm,过夜。
3.配制3瓶10g/l葡萄糖和70g/l果糖的培养基分装于250ml锥形瓶中。配方:10g/l葡萄糖和70g/l果糖,酵母基本氮源6.7g/L,亮氨酸2mg/ml。灭菌待用。
4.取适量过夜培养物接入50ml葡萄糖和果糖培养基中,使他们的初始OD600达到0.2,42℃,250rpm培养。
5.在0h,5h,10h,15h,22h,27h,32h,37h,45h,50h,60h,70h取样,测定OD600(图4)。
6.从图4可知:YLM005在混合糖为碳源的培养基中快速生长,消耗葡萄糖,而果糖不消耗。
实施例4构建的菌株YLM005、YGR003对菊糖的利用情况
该实施例用于比较构建菌株YLM005、YGR003对菊糖的利用情况。结果表明YGR003和YLM005都具有利用菊糖生长,消耗葡萄糖积累果糖的能力,但是YGR003利用菊糖生长的更好,水解和利用菊糖中葡萄糖的速度也更快。
1.在YPD培养基平板上复苏菌株YLM005、YGR003。37℃培养1天。
2.分别挑取单克隆,接于5ml液体YPD培养基。37℃,250rpm,过夜。
3.配制6瓶分装于250ml锥形瓶中50ml含菊糖的培养基。配方:100g/l菊糖,酵母基本氮源6.7g/L,色氨酸和亮氨酸各2mg/ml。灭菌待用。
4.取适量过夜培养物接入50ml菊糖培养基中(每种菌3瓶),使他们的初始OD600达到0.5,42℃,250rpm培养。
6.在0h,3h,5h,8h,10h,13h,15h,20h,25h,28h,32h,43h,48h取样,测定OD600(图5)并测地培养上清中的葡萄糖和果糖含量。
7.从图5A可知YGR003在培养8h后OD600就达到了12,而YLM005在8h后OD600仅达到了5。说明YGR003的利用菊糖生长的能力比YLM005高很多。同时从图5B可以看出,YGR003的培养中,13h后葡萄糖的含量已经接近0,而YLM005的培养需要28h才能达到同样水平。虽然最终上清中果糖的积累达到相似水平,但是YGR003只需要15小时就达到了80g/l的水平,而YLM005至少需要20h。这说明YGR003利用菊糖,水解菊糖积累果糖的能力比YLM005强。因此,本发明最终是用YGR003菌株进行利用菊芋一步生产纯果糖的应用。
实施例5构建的菌株YGR003在不同温度下利用菊芋一步生产纯果糖的情况
该实施例中YGR003在37,42,45℃利用100g/l菊芋一步生产纯果糖的情况进行了研究,结果显示在37和42℃下,生产果糖能力差别不大,而45℃生产果糖能力下降。
1.YGR003按实施例4中复苏和前培养。
3.配制9瓶50ml菊芋粉于250ml锥形瓶中。配方:称取5g菊芋粉加入到250ml锥形瓶中,加水至50ml,不用灭菌。
4.取适量过夜培养物接入50ml菊芋粉中,使他们的初始OD600达到1.0,在37,42,45℃,250rpm培养。
6.在0h,5h,10h,15h,23h,28h,32h,37h,44h取样,并取上清通过HPLC检测分析(图6A)。
7.从图6A可知,在37和42℃,第10h,葡萄糖完全消耗完毕,产生了70g/l的果糖,而在45℃,虽然5h即没有了葡萄糖,但是最终果糖浓度没有超过50g/l。
说明,37和42℃,YGR003能够快速生产果糖,而在45℃虽然有生产果糖的能力,但是能力下降。
实施例6构建的菌株YGR003利用菊芋一步生产纯果糖的情况
该实施例中YGR003利用350g/l菊芋一步生产纯果糖的情况进行了研究,结果显示在42℃下,生产了232.6g/l的果糖,生产速率为9.7g/l/h.
1.按实施例4中复苏YGR003并进行前培养。
3.配制3瓶50ml菊芋粉于250ml锥形瓶中。配方:称取17.5g菊芋粉加入到250ml锥形瓶中,加水至50ml,不用灭菌。
4.取适量过夜培养物接入50ml菊芋粉中,使他们的初始OD600达到1.0,42℃,250rpm培养。
6.在0h,4h,8h,10h,14h,20h,24h,28h,32h取样,并取上清通过HPLC检测分析(图6)。
7.从图6可知,在第24h,葡萄糖完全消耗完毕,产生了232.6g/l的果糖,生产速率为9.7g/l/h。
最终,本发明中的YGR003菌株,在42℃条件下,能在24h利用350g/l菊芋粉生产232.6g/l的纯果糖,生产速率为9.7g/l/h,无论是生产果糖的浓度还是生产速率,这个结果是已报道的高温下利用菊芋直接生产纯果糖的的最佳结果。并且由于本发明是在高温下生产,原材料菊芋无需灭菌,这可以节省大量的能源上花费,同时大规模生产时提高生产温度可以大幅度降低冷却的花费,因而本发明构建的菌株与以前的研究相比具有很大的优势。
参考文献
Administration,U.S.F.a.D.2014.High Fructose Corn Syrup:Questions andAnswers.
Barclay,T.,Ginic-Markovic,M.,Cooper,P.,Petrovsky,N.2012.The chemistryand sources of fructose and their effect on functionality and healthimplications.Journal of Excipients and Food Chemicals,3(2),67-82.
Bowe,M.K.2000.Placebo evaluation of selected sugar-based excipients:in pharmaceutical and nutraceutical tableting.Pharmaceutical Technology 24,34-44.
Chi,Z.M.,Chi,Z.,Zhang,T.,Liu,G.L.,Yue,L.X.2009.lnulinase-expressingmicroorganisms and applications of inulinases.Appl Microbiol Biot,82(2),211-220.
Crowe,J.H.,Carpenter,J.F.,Crowe,L.M.,Anchordoguy,T.J.1990.AreFreezing and Dehydration Similar Stress Vectors-a Comparison of Modes ofInteraction of Stabilizing Solutes with Biomolecules.Cryobiology,27(3),219-231.
Date,P.V.,Samad,A.,Devarajan,P.V.2010.Freeze thaw:a simple approachfor prediction of optimal cryoprotectant for freeze drying.AAPS PharmSciTech,11(1),304-13.
Duffy,V.B.,Sigman-Grant,M.2004.Position of the American DieteticAssociation:Use of nutritive and nonnutritive sweeteners.Journal of theAmerican Dietetic Association,104(2),255-275.
Forshee,R.A.,Storey,M.L.,Allison,D.B.,Glinsmann,W.H.,Hein,G.L.,Lineback,D.R.,Miller,S.A.,Nicklas,T.A.,Weaver,G.A.,White,J.S.2007.A criticalexamination of the evidence relating high fructose corn syrup and weightgain.Crit Rev Food Sci Nutr,47(6),561-82.
Hanover,L.M.,White,J.S.1993.Manufacturing,Composition,andApplications of Fructose.American Journal of Clinical Nutrition,58(5),724-732.
Hong,J.,Wang,Y.,Kumagai,H.,Tamaki,H.2007a.Construction ofthermotolerant yeast expressing thermostable cellulase genes.J.Biotechnol.,130(2),114-123.
Hong,J.,Wang,Y.,Kumagai,H.,Tamaki,H.2007b.Construction ofthermotolerant yeast expressing thermostable cellulase genes.J Biotechnol,130(2),114-123.
Hu,N.,Yuan,B.,Sun,J.,Wang,S.A.,Li,F.L.2012.ThermotolerantKluyveromyces marxianus and Saccharomyces cerevisiae strains representingpotentials for bioethanol production from Jerusalem artichoke by consolidatedbioprocessing.Appl Microbiol Biotechnol,95(5),1359-68.
Kmietowicz,Z.2015.Sixty seconds on...high fructose corn syrup.Bmj-British Medical Journal,351.
Kuzma,J.N.,Cromer,G.,Hagman,D.K.,Breymeyer,K.L.,Roth,C.L.,Foster-Schubert,K.E.,Holte,S.E.,Callahan,H.S.,Weigle,D.S.,Kratz,M.2015.No differencein ad libitum energy intake in healthy men and women consuming beveragessweetened with fructose,glucose,or high-fructose corn syrup:a randomizedtrial.American Journal of Clinical Nutrition,102(6),1373-1380.
Lima,D.M.,Fernandes,P.,Nascimento,D.S.,Ribeiro,R.D.L.F.,de Assis,S.A.2011.Fructose Syrup:A Biotechnology Asset.Food Technology andBiotechnology,49(4),424-434.
Liu,Z.Q.,Zheng,W.,Huang,J.F.,Jin,L.Q.,Jia,D.X.,Zhou,H.Y.,Xu,J.M.,Liao,C.J.,Cheng,X.P.,Mao,B.X.,Zheng,Y.G.2015.Improvement and characterizationof a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicusand its application in production of high fructose corn syrup.Journal oflndustrial Microbiology&Biotechnology,42(8),1091-1103.
Mutanda,T.,Wilhelmi,B.,Whiteley,C.G.2009.Controlled Production ofFructose by an Exoinulinase from Aspergillus Ficuum.Applied Biochemistry andBiotechnology,159(1),65-77.
Pandey,A.,Soccol,C.R.,Selvakumar,P.,Soccol,V.T.,Krieger,N.,Fontana,J.D.1999.Recent developments in microbial inulinases-Its production,properties,and industrial applications.Appl Biochem Biotech,81(1),35-52.
Sievenpiper,J.L.,de Souza,R.J.,Mirrahimi,A.,Yu,M.E.,Carleton,A.J.,Beyene,J.,Chiavaroli,L.,Di Buono,M.,Jenkins,A.L.,Leiter,L.A.,Wolever,T.M.S.,Kendall,C.W.C.,Jenkins,D.J.A.2012.Effect of Fructose on Body Weight inControlled Feeding Trials A Systematic Review and Meta-analysis.Annals ofInternal Medicine,156(4),291-U91.
Singh,R.S.,Dhaliwal,R.,Puri,M.2007.Partial purification andcharacterization of exoinulinase from Kluyveromyces marxianus YS-1 forpreparation of high-fructose syrup.Journal of Microbiology and Biotechnology,17(5),733-738.
Yu,J.,Jiang,J.,Ji,W.,Li,Y.,Liu,J.2011.Glucose-free fructoseproduction from Jerusalem artichoke using a recombinant inulinase-secretingSaccharomyces cerevisiae strain.Biotechnol Lett,33(1),147-52.
Yuan,W.J.,Chang,B.L.,Ren,J.G.,Liu,J.P.,Bai,F.W.,Li,Y.Y.2012.Consolidated bioprocessing strategy for ethanol production fromJerusalem artichoke tubers by Kluyveromyces marxianus under high gravityconditions.J Appl Microbiol,112(1),38-44.
Yuan,W.J.,Zhao,X.Q.,Ge,X.M.,Bai,F.W.2008.Ethanol fermentation withKluyveromyces marxianus from Jerusalem artichoke grown in salina andirrigated with a mixture of seawater and freshwater.J Appl Microbiol,105(6),2076-83.
Zhang,M.D.,Chen,Q.A.,Shen,S.H.2011.Physiological responses of twoJerusalem artichoke cultivars to drought stress induced by polyethyleneglycol.Acta Physiol Plant,33(2),313-318.
Figure IDA0001061231740000011
Figure IDA0001061231740000021
Figure IDA0001061231740000031

Claims (10)

1.一种耐热酵母菌株,所述耐热酵母菌株为马克思克鲁维酵母(Kluyveromycesmarxianus)YGR003,其保藏号为CGMCC No.12643。
2.一种构建如权利要求1所述的耐热酵母菌株的方法,所述方法包括以下步骤:
1)在马克思克鲁维酵母YHJ010菌株中敲除己糖激酶基因KmHXK;
2)在其中过表达葡萄糖激酶基因KmGLK,
所述方法还包括向所述菌株中回补亮氨酸的营养缺陷性。
3.根据权利要求2所述的方法,其中所述回补通过转入马克思克鲁维酵母的β-丙基苹果酸脱氢酶基因KmLEU2实现。
4.根据权利要求1所述的耐热酵母菌株用于利用葡萄糖果糖混合糖中的葡萄糖而不利用果糖的用途。
5.根据权利要求1所述的耐热酵母菌株用于一步水解菊糖,消耗葡萄糖并获得纯果糖糖浆的用途。
6.根据权利要求5所述的用途,所述菊糖来自菊芋。
7.根据权利要求6所述的用途,所述菊芋是未灭菌的。
8.根据权利要求4或5所述的用途,所述用途在37至45℃的范围内进行。
9.根据权利要求8所述的用途,所述用途在37至42℃的范围内进行。
10.根据权利要求8所述的用途,所述用途在42℃进行。
CN201610601105.1A 2016-07-27 2016-07-27 高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用 Active CN106222101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610601105.1A CN106222101B (zh) 2016-07-27 2016-07-27 高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610601105.1A CN106222101B (zh) 2016-07-27 2016-07-27 高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用

Publications (2)

Publication Number Publication Date
CN106222101A CN106222101A (zh) 2016-12-14
CN106222101B true CN106222101B (zh) 2020-03-27

Family

ID=57533423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610601105.1A Active CN106222101B (zh) 2016-07-27 2016-07-27 高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用

Country Status (1)

Country Link
CN (1) CN106222101B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090149A1 (en) * 2018-12-21 2022-03-24 Ptt Global Chemical Public Company Limited Microbial strains engineered for improved fructose utilization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154234A (zh) * 2010-10-13 2013-06-12 帝斯曼知识产权资产管理有限公司 发酵戊糖和葡萄糖的酵母细胞

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154234A (zh) * 2010-10-13 2013-06-12 帝斯曼知识产权资产管理有限公司 发酵戊糖和葡萄糖的酵母细胞

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Construction of thermotolerant yeast expressing thermostable cellulase genes;Jiong Hong等;《Journal of Biotechnology》;20071231;第130卷;114-123 *
Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction;Guorong Zhang等;《Scientific Reports》;20170324;第7卷;45104 *
工程改造马克斯克鲁维酵母进行混合糖共利用;卢敏;《中国优秀硕士学位论文全文数据库 基础科学辑》;20180715(第7期);A006-130 *

Also Published As

Publication number Publication date
CN106222101A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
ES2424240T3 (es) Microorganismo recombinante con capacidad de utilizar sacarosa como fuente de carbono
CN112322565B (zh) 提高重组大肠杆菌中2’-岩藻糖基乳糖产量的方法
CN102272316B (zh) 蔗糖作为底物用于发酵产生1,2-丙二醇的用途
WO2022095591A1 (zh) 复合酶及其在制备麦角硫因中的应用
CN111548979B (zh) 合成乳酰n-新四糖的重组大肠杆菌及其构建方法与应用
CN108949852B (zh) 一种利用全细胞催化制备木糖醇的方法
CN104789539B (zh) 一种海藻糖合酶的突变体及其制备方法和应用
CN102373230A (zh) 某种梭菌d-塔格糖3-差向异构酶的核苷酸序列及其应用
CN113234699A (zh) α-1,2-岩藻糖基转移酶及其应用
CN104046586B (zh) 一株基因工程菌及其在生产(2r,3r)-2,3-丁二醇中的应用
CN103952326B (zh) 一种共表达菊粉外切酶和内切酶的重组毕赤酵母菌株及其构建方法与应用
CN109337932B (zh) 一种提高红曲色素产量的方法
CN111662832B (zh) 一种高温好氧条件下产木糖醇的耐热酵母工程菌株的构建方法和应用
CN111088177B (zh) 高温好氧条件下产甘油的耐热酵母工程菌的构建及其应用
CN106222101B (zh) 高温下高效利用菊芋一步生产高纯果糖的耐高温菌株及应用
CN113249238A (zh) 一株耐酸酿酒酵母及其在有机酸制备中的应用
CN115948314B (zh) 一种高效生产2’-岩藻糖基乳糖的地衣芽孢杆菌工程菌株
CN104561194A (zh) 一种n-乙酰神经氨酸醛缩酶在催化合成n-乙酰神经氨酸中的应用
CN112646797B (zh) 一种异源表达大球盖菇β-葡萄糖苷酶基因的方法
CN107201375B (zh) 生产(r,r)-2,3-丁二醇基因工程菌株的构建方法及其应用
CN105062907A (zh) 木糖醇和乙醇同时高温高产工程菌株的构建及应用
CN113025548B (zh) 基于kosakonia sp.菌株生产2’-岩藻糖基乳糖的重组菌及其方法和应用
CN115838682A (zh) 一种利用甘露聚糖高效生产2′-岩藻糖基乳糖的地衣芽孢杆菌工程菌株
CN110591933B (zh) 一种高效利用木糖发酵生产乙醇和木糖醇的工程菌株
CN110499259B (zh) 一种解酯耶氏酵母yw100-1及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant