CN106218715B - Kinds of four-wheel independent steering control method for a vehicle - Google Patents

Kinds of four-wheel independent steering control method for a vehicle Download PDF

Info

Publication number
CN106218715B
CN106218715B CN201610575032.3A CN201610575032A CN106218715B CN 106218715 B CN106218715 B CN 106218715B CN 201610575032 A CN201610575032 A CN 201610575032A CN 106218715 B CN106218715 B CN 106218715B
Authority
CN
China
Prior art keywords
angle
vehicle
control
time
real
Prior art date
Application number
CN201610575032.3A
Other languages
Chinese (zh)
Other versions
CN106218715A (en
Inventor
高远
赵宁
王振刚
文家燕
潘盛辉
袁海英
Original Assignee
广西科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西科技大学 filed Critical 广西科技大学
Priority to CN201610575032.3A priority Critical patent/CN106218715B/en
Publication of CN106218715A publication Critical patent/CN106218715A/en
Application granted granted Critical
Publication of CN106218715B publication Critical patent/CN106218715B/en

Links

Abstract

本发明提供种四轮独立转向车辆控制方法,包括以下步骤:A、预设理想车辆转向模型、前轮转角观测器、干扰边界估计环节、后轮转角滑模控制器和横摆力矩滑模控制器;B、实时测量车辆的质心侧偏角及横摆角速度,计算得到对应时刻的前轮转角估计值;C、实时计算前轮转角估计值,实时的质心侧偏角、横摆角速度,计算得到实时的质心侧偏角与横摆角速度的控制误差;D、通过干扰边界估计环节计算得到实时的干扰边界参数;E、结合实时的前轮转角估计值、实时的干扰边界参数和控制误差计算得到实时的后轮转角及横摆力矩,并对车辆进行控制。 The present invention provides a method of controlling vehicle steering wheel independent species, comprising the steps of: sliding mode control torque A, over a preset vehicle steering model, front wheel angle observer, the estimated interference boundary segment, the rear sliding mode controller and a yaw angle device; B, real-time measurement of the vehicle centroid slip angle and yaw rate, the front wheel angle corresponding to the calculated timing estimate; C, front wheel steering angle estimation value calculated in real time, real-time sideslip angle, yaw rate, is calculated get real-time control of the sideslip angle and yaw rate error; D, by estimating the interference part calculated in real-time the boundary of the interference boundary parameters; E, the front wheels in conjunction with real-time estimate of the corner, and the boundary parameters in real time interference calculation control error get real-time rear-wheel angle and yaw moment, and controls the vehicle. 该方法不仅能克服传感器故障降低车辆稳定性的缺陷,而且具有控制效果好、稳定性高的特点。 The method not only overcome the defects of the vehicle sensor failure reduced stability, but also has good control effect, high stability characteristics.

Description

一种四轮独立转向车辆的控制方法 One kind of four-wheel independent steering control method for a vehicle

技术领域 FIELD

[0001] 本发明涉及车辆转向控制领域,具体涉及一种四轮独立转向车辆的控制方法。 [0001] The present invention relates to a vehicle steering control, and in particular relates to a control method for a four-wheel independent steering of the vehicle.

背景技术 Background technique

[0002] 车辆的操纵稳定性是关系车辆安全行驶的一项重要性能。 Handling and stability [0002] the relationship between the vehicle is traveling is an important vehicle safety performance. 四轮转向(4WS)技术是主动底盘控制系统的重要组成,是现代车辆提高操纵稳定性和主动安全性的发展趋势。 Four-wheel steering (4WS) technology is an important active chassis control system, is a modern vehicle steering stability and active safety trends. 控制策略是4WS技术的重要研究方面,通过调节后轮转角控制车辆质心侧偏角和横摆角速度, 可有效改善车辆高速行驶的操纵稳定性和低速状态的机动灵活性。 Control strategy is an important research technique 4WS, by adjusting the rear-wheel-angle control of the vehicle sideslip angle and yaw rate, which can effectively improve the steering stability of the vehicle maneuverability at high speeds and low-speed condition. 迄今,人们针对主动后轮转向的4WS控制问题,提出了前后轮转角成比例的前馈控制、横摆角速度反馈控制、神经网络控制等方法。 Hitherto, for the 4WS active rear wheel steering control problem is proposed feedforward control angle is proportional to the front and rear wheels, the yaw rate feedback control, neural network control method. 直接横摆力矩控制(DYC)也是当前车辆动力学系统稳定控制中一种较为有效的车辆底盘控制技术,它通过对轮胎纵向力的分配产生横摆力矩以调节车辆的横摆运动,从而确保车辆行驶稳定性。 Direct yaw moment control (the DYC) is also the current vehicle dynamics control system is stable in a more effective control of the vehicle chassis, which produces a yaw moment by allocating tire longitudinal force to adjust the yaw motion of the vehicle, so as to ensure the vehicle driving stability. 目前,有关采用横摆力矩控制车辆稳定性的报道也较多,其中包括最优控制、鲁棒控制、模糊控制等。 At present, the reported use of yaw moment control vehicle stability is greater, including optimal control, robust control, fuzzy control.

[0003] 由于实际车辆轮胎与地面接触作用具有非线性特性,同时车辆参数(如整车质量、 车辆转动惯量等)的变化会对车辆车身状态的控制性能产生干扰作用影响。 [0003] Since the tire having the nonlinear characteristics of the actual vehicle contact with the ground effect, while controlling the performance parameters of the vehicle (e.g., vehicle mass, inertia of the vehicle, etc.) of the vehicle body change will affect the interference condition. 因此,无论是4WS车辆的后轮转向控制还是DYC手段,单一的控制策略对改善车辆行驶的操纵稳定性有限,特别是在车辆高速、急转弯等极限工况下,无法获得满意的车辆行驶操纵稳定性。 Therefore, both the rear wheels 4WS vehicle steering control or DYC means, limited to a single control strategy to improve the handling and stability of vehicle travel, especially in vehicle speed, sharp turns and other extreme conditions, not satisfied with the vehicle traveling manipulation stability.

[0004] 车辆前轮转角传感器是车辆车身电子稳定系统(ESP)的重要测量器件,为系统中的控制器提供前轮转角测量电信号,其测量的精确度和可靠性直接关系控制器的控制效果,进而影响行车的操纵稳定性和安全性。 [0004] The vehicle wheel angle sensor is a vehicle electronic stability system (ESP) is an important measuring element, provides an electrical signal to the front wheel angle measurement system controller, which controls the measurement accuracy and reliability of the controller is directly related effect, thereby affecting steering stability and driving safety. 然而,路面的不平度引起的车辆振动,或者车身内部问题引起的部件装置不协调及损坏,从而会造成传感器出现故障现象,使得控制器无法获取正确的前轮转角输入信号,这将造成车辆稳定性控制系统无法正常工作,甚至会导致降低车身稳定性,出现行车安全隐患的严重后果。 However, the components of the device uncoordinated vehicle road surface unevenness due to vibration or the vehicle body and damage caused by internal problems, which will result in sensor failure phenomenon, so that the controller can not get the correct angle of the front input signal, which will cause the vehicle stability control system does not work, and even lead to lower body stability, the serious consequences of traffic safety problems arise.

发明内容 SUMMARY

[0005] 本发明旨在提供一种四轮独立转向车辆控制方法,该控制方法克服现有技术当车辆前轮转角传感器故障时车辆稳定性降低影响行车安全的缺陷,具有控制效果好、稳定性高的特点。 [0005] The present invention aims to provide a four-wheel independent steering control method for a vehicle, which overcomes the prior art control method when the vehicle wheel angle sensor failure vehicle stability decreases defects affect traffic safety has good control effect, stability high features.

[0006] 本发明的技术方案如下:一种四轮独立转向车辆的控制方法,包括以下步骤: [0006] aspect of the present invention is as follows: A method of controlling four-wheel independent steering vehicle, comprising the steps of:

[0007] A、预设理想车辆转向模型、前轮转角估计初始值、前轮转角观测器、干扰边界估计环节、后轮转角滑模控制器和横摆力矩滑模控制器; [0007] A, steering the vehicle over a predetermined model, estimating an initial value of a front wheel angle, wheel angle observer, the estimated interference boundary segment, the rear wheel angle and the yaw moment sliding mode controller sliding mode controller;

[0008] B、以车辆直行状态作为初始时刻,实时测量车辆的质心侧偏角及横摆角速度,同时将前轮转角估计初始值输入理想车辆转向模型,得到初始期望质心侧偏角与初始期望横摆角速度;将初始期望质心侧偏角与初始期望横摆角速度分别与对应时刻的实时质心侧偏角与横摆角速度进行比较,分别得到对应时刻的质心侧偏角控制误差以及横摆角速度控制误差;将质心侧偏角控制误差、横摆角速度控制误差输入至前轮转角观测器得到对应时刻的前轮转角估计值; [0008] B, straight to the vehicle as an initial state time, real-time measurement of sideslip angle and yaw rate of the vehicle while the front wheel steering angle estimation value input over the initial vehicle steering model to obtain an initial desired sideslip angle with the initial desired yaw rate; the initial desired sideslip angle with the initial desired yaw rate, respectively corresponding to the time of the real-time sideslip angle is compared with the yaw rate, respectively sideslip angle control error corresponding to the time and the yaw rate control error; the control error sideslip angle, yaw rate error control the input to the front wheel angle observer angle to obtain an estimated value corresponding to the time;

[0009] C、实时地进行前轮转角估计值的计算,将实时的前轮转角估计值输入理想车辆转向模型,得到实时的期望质心侧偏角与期望横摆角速度,将实时的期望质心侧偏角与期望横摆角速度与实时的质心侧偏角、横摆角速度进行比较,从而得到实时的质心侧偏角控制误差、横摆角速度控制误差; [0009] C, in real time to calculate the estimated value of the front wheel angle, the real-time front wheel angle estimation value over the steering of the vehicle model, to give a desired real time with the desired sideslip angle, yaw rate, the real-time the desired sideslip angle with a desired yaw rate in real time with the sideslip angle, yaw rate are compared to obtain real-time control error sideslip angle, yaw rate error control;

[0010] D、将实时的质心侧偏角控制误差、横摆角速度控制误差输入干扰边界估计环节, 得到实时的干扰边界参数; [0010] D, the real-time control error sideslip angle, yaw rate error control the input link interference boundary estimation, interference boundary parameters obtained in real time;

[0011] E、将实时的前轮转角估计值、质心侧偏角控制误差、横摆角速度控制误差以及干扰边界参数共同输入到后轮转角滑模控制器和横摆力矩滑模控制器,分别输出得到实时的后轮转角和横摆力矩,并采用实时的后轮转角和横摆力矩对车辆进行实时控制。 [0011] E, the real-time estimate of the front wheel angle, the sideslip angle control error, yaw rate error control the input common parameter and an interference boundary sliding mode controller to the rear wheel angle and yaw moment sliding mode controller, respectively, outputs the resulting real-time rear wheel angle and yaw moment, and real-time rear wheel angle and vehicle yaw moment of real-time control.

[0012] 优选地,所述的步骤A中理想车辆转向模型的构造过程如下: [0012] Preferably, the configuration process step A over the steering of the vehicle model are as follows:

[0013] 建立如下的车辆转向运动学模型: [0013] establish the following vehicle steering kinematics model:

Figure CN106218715BD00071

[0015] 式中:m是整车质量;vx、vy分别表示汽车质心速度V在X和y轴上的速度分量; [0015] wherein: m is the mass of the vehicle; vx, vy denote the centroid car velocity and velocity component V y in X-axis;

Figure CN106218715BD00072

分别表示汽车质心速度V在X和y轴上的加速度分量;γ是汽车横摆角速度, Represent car acceleration component in the centroid speed V X and the y-axis; gamma] is for vehicle yaw rate,

Figure CN106218715BD00073

则表示横摆角加速度;a和b分别是汽车质心至前轴和后轴的距离,汽车轴距L = a+b;Fxl、Fyl分别代表汽车轮胎的纵向力和横向力,其中下标i = 1,2,3,4分别对应左前轮、右前轮、左后轮和右后轮; Sf人分别是前、后轮转向角;12为汽车绕z轴的转动惯量;Jwi和ω汾别为各轮胎的转动惯量及转动角速度,表示各轮胎的转动角加速度;Mdi是差速器半轴上的输出扭矩;R表示轮胎 Said yaw angular acceleration; a and b are the distances to the center of mass automobile front and rear axles, automotive wheelbase L = a + b; Fxl, Fyl representing the longitudinal and lateral forces of the vehicle tires, where the subscript i = 1,2,3,4 respectively correspond to the left front wheel, right front wheel, left and right rear wheels; Sf of people are front, rear wheel steering angle; automobile 12 around the z axis moment of inertia; JWI and ω do Fen moment of inertia and the rotational angular velocity of each tire, the angular acceleration of rotation of each tire is represented; Mdi output torque on the differential side; represents R & lt tire

Figure CN106218715BD00074

半径;Mbl为轮胎所受的制动力矩;W为轮距,即前轮距Bf和后轮距Br均等于W;M表示车轮所受纵向力所产生附加控制的横摆力矩: Radius; of Mbl suffered a tire braking torque; W is wheel base, i.e. front track and the rear track Br Bf both equal to W; M represents a wheel longitudinal force generated suffered additional control yaw moment:

[0016] M=a (Fxi+Fx2) sin5f-b (Fx3+FX4) sin5r+〇.5W[ (Fx2_Fxi) cos5f+ (FX4_Fx3) cos5r] (2); [0016] M = a (Fxi + Fx2) sin5f-b (Fx3 + FX4) sin5r + 〇.5W [(Fx2_Fxi) cos5f + (FX4_Fx3) cos5r] (2);

[0017] 车辆质心侧偏角:0 = arctan(vx/Vy); [0017] The vehicle slip angle: 0 = arctan (vx / Vy);

[0018] 前后轮的侧偏角Cti: [0018] The front and rear wheel side slip angle Cti:

[0019] [0019]

Figure CN106218715BD00075

(3); (3);

[0020] 其中下标i = 1,2,3,4分别对应左前轮、右前轮、左后轮和右后轮; [0020] where the subscript i = 1,2,3,4 respectively correspond to the left front wheel, right front wheel, left and right rear wheels;

[0021] 假定汽车处于正常时速范围的非紧急状态和小角度转向的行驶工况下,有 [0021] Suppose the car in the normal speed range of the steering angle and a small non-emergency driving conditions, there is

Figure CN106218715BD00076

, 并只考虑车辆侧滑和横摆运动,即选择质心侧偏角和横摆角速度作为操纵稳定性的衡量主要指标,结合式(1)和(3)可以获得车辆2自由度线性单轨模型的动力学方程: And consider only the vehicle side slip and yaw motion, i.e. select the sideslip angle and the yaw angular velocity, a key measure as steering stability, binding of formula (1) and (3) the vehicle 2 degrees of freedom can be obtained in the linear single-track model Kinetic equations:

[0022] [0022]

Figure CN106218715BD00077

(4); (4);

[0023] 式中:Fyl+Fy2、Fy3+Fy4分别表示前、后轴轮胎的侧偏力 [0023] wherein: Fyl + Fy2, Fy3 + Fy4 respectively front, side biasing force of the rear axle tires

[0024] [0024]

Figure CN106218715BD00078

(5); (5);

[0025] 其中kf和kr分别为前轴两侧轮胎的综合侧偏刚度、后轴两侧轮胎的综合侧偏刚度, 其数值是前、后轮侧偏刚度的2倍; [0025] wherein kf and kr respectively integrated cornering stiffness of the front axle on both sides of the tire side, on both sides of the rear axle side integrated cornering stiffness of the tire, which value is a front, 2x rear wheel cornering stiffness;

[0026] 定义系统状态矢量X= [β,γ ]WP控制输入矢量U= [Sr,M]T,根据式(4)和(5)建立如下的模型状态空间方程为: [0026] The definition of the system state vector X = [β, γ] WP control input vector U = [Sr, M] T, according to the formula (4) to establish and (5) as a model for the state space equation:

[0027] [0027]

Figure CN106218715BD00081

(6); (6);

[0028] 式中: [0028] wherein:

Figure CN106218715BD00082

:为 :for

Figure CN106218715BD00083

;系统矩阵 ; Matrix system

Figure CN106218715BD00084

[0029] 控制输入矩阵d [0029] Control input matrix d

Figure CN106218715BD00085

:前轮转角输入矩阵 : Front wheel angle input matrix

Figure CN106218715BD00086

[0030] 采用前轮转角观测器输出估计值 [0030] The front-wheel angle estimation value output observer

Figure CN106218715BD00087

,来逼近实际前轮转角信息Sf,同时考虑车辆转向系统参数的变化因素对系统的作用影响,则式⑹则变为 To approximate the actual angle information Sf of the front wheels, while steering the vehicle into consideration changes in system parameters on the role of the system, then the formula becomes ⑹

[0031] [0031]

Figure CN106218715BD00088

(7), (7),

[0032] 式中: [0032] wherein:

Figure CN106218715BD00089

with

Figure CN106218715BD000810

分别表示系统参数变化时系统矩阵、控制输入矩阵和前轮转角输入矩阵分别对应的变化值; When system parameters represent the system matrix, input matrix, and control the front wheel angle input change values ​​respectively corresponding to the matrix;

[0033] 式⑺可进一步整理为: [0033] ⑺ formula can be further organized into:

[0034] [0034]

Figure CN106218715BD000811

(8) (8)

[0035] 式中, [0035] In the formula,

Figure CN106218715BD000812

,山⑴、d2(t)分别表示车辆参数变化时, 质心侧偏角和横摆角速度对应的变化值; , Hill ⑴, d2 (t) represent the change in the vehicle parameter changes value, sideslip angle and the yaw rate corresponding to;

[0036] .采用如下的理想车辆模型: [0036] The ideal vehicle model as follows:

[0037] [0037]

Figure CN106218715BD000813

〇)); Billion));

[0038] 式中:理想模型的状态矢量 [0038] wherein: ideal model state vector

Figure CN106218715BD000814

,其中说、Yd分别为期望质心侧偏角与期望横摆角速度;理想模型的系统矩阵 Wherein said, respectively, Yd of the desired sideslip angle and a desired yaw rate; ideal model system matrix

Figure CN106218715BD000815

;输入矩阵 ; Enter the Matrix

Figure CN106218715BD000816

其中系数1^和4分别是一阶滞后环节的比例增益和滞后时间常数,表达式如下: Wherein coefficients a ^ and 4 is a first order lag element of a proportional gain and lag time constant, the following expression:

[0039] [0039]

Figure CN106218715BD000817

[0040] 式⑼即为理想车辆转向模型的表达式。 [0040] formula is the ideal vehicle steering ⑼ expression model.

[0041] 优选地,所述的步骤A中前轮转角观测器的具体构造过程如下: [0041] Preferably, the step A specific configuration of the front-wheel angle of the observer as follows:

[0042] 设定前轮转角估计初始值<),(D)= (),前轮转角观测器表达式如下: [0042] estimating an initial value setting wheel angle <), (D) = (), a front wheel angle observer following expression:

[0043] [0043]

Figure CN106218715BD000818

(1〇): (1〇):

[0044] 式中:e为汽车实际质心侧偏角和横摆角速度与理想模型状态间的误差矢量,表达式如下: [0044] where: E is the actual car sideslip angle and yaw angular velocity error vector between the model and the ideal state, the following expression:

[0045] [0045]

Figure CN106218715BD00091

(II); (II);

[0046] ee、eY分别为质心侧偏角控制误差和横摆角速度控制误差; [0046] ee, eY, respectively, the sideslip angle and yaw rate error control error control;

[0047] 根据式(10)可知前轮转角的自适应估计律为 [0047] The formula (10) shows adaptive estimation law angle of the front wheels

[0048] [0048]

Figure CN106218715BD00092

) (12); ) (12);

[0049] 根据式⑻和式⑼推导出控制误差方程: [0049] derived control error equation according to Formula and Formula ⑻ ⑼:

[0050] [0050]

Figure CN106218715BD00093

(13) (13)

[0051] 优选地,所述的步骤A中干扰边界估计环节的具体构造过程如下: [0051] Preferably, the step of estimating interference boundary A of part of the specific configuration is as follows:

[0052] 定义干扰边界的自适应估计律如下: [0052] The adaptive estimation of the interference boundary defined law as follows:

[0053] [0053]

Figure CN106218715BD00094

(14):; (14) :;

[0054] 式中:sgn (.)表示符号开关函数; (.): [0054] wherein the symbol represents a switching function sgn;

Figure CN106218715BD00095

分别表示干扰边界参数如和Φ2的估计值; ^、^2分别称为干扰边界的估计系数,且均大于1; Denote interference and boundary parameters, such as the estimated value Φ2; ^, ^ 2 are called interference boundary estimation coefficient, and greater than 1;

[0055] 假定方向盘转向初始时刻的 [0055] assumed that the steering wheel at the initial time

Figure CN106218715BD00096

,干扰边界估计环节的数学表达式如下: Interference boundary estimation aspects of mathematical expression is as follows:

[0056] [0056]

Figure CN106218715BD00097

(15); (15);

[0057] [0057]

Figure CN106218715BD00098

根据式(15)估计得出。 (15) estimated from the formula derived.

[0058] 优选地,所述的步骤A中后轮转角滑模控制器及横摆力矩滑模控制器的具体构造过程如下: [0058] Preferably, the step of sliding controller A rear wheel angle and the yaw moment of the sliding mode controller configured specifically as follows:

[0059] 定义滑模面函数s = e,滑模控制器< [0059] The sliding surface defined function s = e, sliding mode controller <

Figure CN106218715BD00099

;其中,滑模控制器u同时包含后轮转角滑模控制器和横摆力矩滑模控制器,并以后轮转角Sr和横摆力矩M作为控制量,ueq为滑模等效控制器,^为切换控制器;忽略系统参数所引起的扰动变化d(t),根据S = i = 0,并利用式(15)可推导出滑模等效控制器ueq的表达式如下: ; Wherein the sliding mode controller comprises a wheel angle u while sliding mode controller sliding mode controller and the yaw moment, and after the rotation angle and the yaw moment M is Sr as the control amount, equivalent UEQ of sliding mode controller, ^ for the switching controller; ignoring the system parameters change due to the disturbance d (t), in accordance with S = i = 0, using the formula (15) can be deduced sliding mode controller ueq equivalent expression as follows:

[0060] [0060]

Figure CN106218715BD000910

(lb): (Lb):

[0061] 式中:K为待定的控制增益矩阵, [0061] where: K is the control gain matrix determined,

Figure CN106218715BD000911

A1和k2均大于零,其中diag(.)表示对角矩阵; A1 and k2 are greater than zero, where diag denotes a diagonal matrix (.);

[0062] 切换控制器Us的表达式如下: [0062] Expression Us switching controller as follows:

[0063] [0063]

Figure CN106218715BD000912

(17); (17);

[0064] 式中: [0064] wherein:

Figure CN106218715BD000913

为切换控制器Us中的控制增益; Us as the switching control of the gain controller;

[0065] 根据式(16)和(17)可得到滑模控制器的表达式如下: [0065] The formula (16) and Expression (17) sliding mode controller can be obtained as follows:

[0066] [0066]

Figure CN106218715BD00101

[0067] 优选地,所述的步骤E具体为: [0067] Preferably, said step E is specifically:

[0068] 将矩阵A、Ad、B、C、Cd和K的元素代入式(18),通过整理得到后轮转角滑模控制器的具体形式如下: [0068] The matrix A, Ad, B, C, Cd, and K elements, obtained by sorting into (18) sliding controller rear corner specific forms as follows:

[0069] [0069]

Figure CN106218715BD00102

[0070] 横摆力矩滑模控制器的具体形式为: [0070] The yaw moment of the particular form of sliding controller:

[0071] [0071]

Figure CN106218715BD00103

[0072] 采用上述得到的后轮转角和横摆力矩对车辆进行实时控制。 [0072] The angle of the rear wheel and the yaw moment obtained real-time control of the vehicle.

[0073] 本发明四轮独立转向车辆控制方法通过自主创新设计的前轮转角观测器、干扰边界估计环节、后轮转角滑模控制器及横摆力矩控制器的组合控制,一方面通过前轮转角观测器实现对实际前轮转角较为精确的估计,另一方面使得汽车质心侧偏角和横摆角速度与理想模型对应输出量之间的误差尽可能小,让车辆获得良好的跟踪控制特性,以满足行驶状态的稳定性要求,避免了由于车辆前轮转角传感器故障而使得控制力丧失,降低车辆的稳定性;同时,优选方案还包括横摆力矩滑模控制器,后轮转角控制与横摆力矩控制的结合,这使得本发明方案在控制效果上优于单一方式的控制方法,复合控制一方面能保证较好的转角观测精度,另一方面可以在车辆高速、急弯等极限工况下能获得较好的控制效果; 并且,本发明方案中的切换控制器设计可以抑制 [0073] The present invention four independent vehicle steering control method designed innovation wheel angle observer estimates the interference boundary segment, the rear wheel angle and the yaw moment control sliding mode controller combination controls, on the one hand by the front wheel observer angle to achieve a more accurate estimate of the actual wheel angle, on the other hand so that the car sideslip angle and the yaw rate corresponding to an error between the ideal model output as small as possible for a vehicle to obtain the good tracking characteristics, to meet stability requirements in the traveling state, the rotation angle sensor failure is avoided since the front wheel of the vehicle such that the loss of control, reducing the stability of the vehicle; the same time, preferred embodiment further includes a sliding mode controller yaw moment, the cross angle control wheel binding swing torque control, which makes the method of the present invention is superior to single mode control of the control effect, on the one hand to ensure better control of the composite angle of observation accuracy, high-speed vehicle conditions other hand, sharp bends and other extreme better control effect can be obtained; and, the switching controller design embodiment of the present invention can be suppressed 减少小系统参数变化带来的扰动对控制性能的影响,提高汽车转向操纵稳定性的控制鲁棒性。 Reduce the impact on the performance of the control system parameter changes brought about by small disturbances and improve the robustness of the control car steering stability.

附图说明 BRIEF DESCRIPTION

[0074] 图1为本发明提供的四轮独立转向车辆的控制方法的流程图 A flowchart of a control method of [0074] FIG 1 the present invention provides four independent steering of the vehicle

[0075] 图2 (a)为本发明提供的四轮独立转向车辆的控制结构示意图 Diagram of the control structure of a vehicle provided four [0075] FIG. 2 (a) of the present invention is independent of the steering

[0076] 图2⑹为本发明实施例1所述的有前轮转角传感器的滑模控制结构示意图 Embodiment [0076] FIG 2⑹ the present invention in Example 1 is a schematic diagram of the structure of sliding mode control wheel angle sensor

[0077] 图3为车辆前轮实际转向的角阶跃波形图 [0077] FIG. 3 is a front wheels of the actual steering angle of a step waveform of FIG.

[0078] 图4为车辆前轮实际转向的角正弦波形图 [0078] FIG. 4 is an actual steering angle of front wheels sinusoidal waveform of FIG.

[0079] 图5 (a)是施加有前轮转角传感器滑模控制(简写为:有传感器SMC)、汽车车速30km/h、前轮按角阶跃波形转向时的质心侧偏角控制波形图。 [0079] FIG. 5 (a) is applied with a sliding mode control wheel angle sensor (abbreviation: sensor SMC), the vehicle speed 30km / h, the front wheel angle by the control waveform step waveform of FIG sideslip angle when steering .

[0080] 图5⑹是施加有前轮转角传感器滑模控制、汽车车速100km/h、前轮按角阶跃波形转向时的质心侧偏角控制波形图。 [0080] FIG 5⑹ is applied to a front wheel angle sensor mode control, the vehicle speed 100km / h, when the sideslip angle of the front wheels according to the steering angle control waveform step waveform of FIG.

[0081] 图5 (c)是施加有前轮转角传感器滑模控制、汽车车速30km/h、前轮按角正弦波形转向时的质心侧偏角控制波形图。 [0081] FIG. 5 (c) is applied to a front wheel angle sensor mode control, the vehicle speed 30km / h, when the sideslip angle of the front wheel steering angle by controlling sinusoidal waveform.

[0082] 图5⑹是施加有前轮转角传感器滑模控制、汽车车速100km/h、前轮按角正弦波形转向时的质心侧偏角控制波形图。 [0082] FIG 5⑹ is applied to a front wheel angle sensor mode control, the vehicle speed 100km / h, according to the front wheel sideslip angle when the steering angle of sinusoidal waveform of FIG.

[0083] 图6 (a)是施加有前轮转角传感器滑模控制、汽车车速30km/h、前轮按角阶跃波形转向时的横摆角速度控制波形图。 [0083] FIG. 6 (a) is applied to a front wheel angle sensor mode control, the vehicle speed 30km / h, the front wheel angle by the yaw rate control step waveform a waveform diagram when turning.

[0084] 图6⑹是施加有前轮转角传感器滑模控制、汽车车速100km/h、前轮按角阶跃波形转向时的横摆角速度控制波形图。 [0084] FIG 6⑹ is applied to a front wheel angle sensor mode control, the vehicle speed 100km / h, the yaw rate control by a waveform chart when the front wheel steering angle step waveform.

[0085] 图6 (c)是施加有前轮转角传感器滑模控制、汽车车速30km/h、前轮按角正弦波形转向时的横摆角速度控制波形图。 [0085] FIG. 6 (c) is applied to a front wheel angle sensor mode control, the vehicle speed 30km / h, the yaw rate control waveform chart when the front wheel steering angle by a sinusoidal waveform.

[0086] 图6⑹是施加有前轮转角传感器滑模控制、汽车车速100km/h、前轮按角正弦波形转向时的横摆角速度控制波形图。 [0086] FIG 6⑹ is applied to a front wheel angle sensor mode control, the vehicle speed 100km / h, the yaw rate control waveform chart when the front wheel steering angle by a sinusoidal waveform.

[0087] 图7 (a)是施加有前轮转角传感器滑模控制、汽车车速30km/h、前轮按角阶跃波形转向时的车速变化曲线图。 [0087] FIG. 7 (a) is applied to a front wheel angle sensor mode control, the vehicle speed 30km / h, the front wheel angle by a step waveform graph when the vehicle speed change of the steering.

[0088] 图7⑹是施加有前轮转角传感器滑模控制、汽车车速100km/h、前轮按角阶跃波形转向时的车速变化曲线图。 [0088] FIG 7⑹ is applied to a front wheel angle sensor mode control, the vehicle speed 100km / h, the vehicle speed change by the graph when the front wheel steering angle step waveform.

[0089] 图7 (c)是施加有前轮转角传感器滑模控制、汽车车速30km/h、前轮按角正弦波形转向时的车速变化曲线图。 [0089] FIG. 7 (c) is a front wheel angle sensor mode control, the vehicle speed 30km / h, the vehicle speed change curve when the front wheel steering angle according to a sinusoidal waveform is applied.

[0090] 图7⑹是施加有前轮转角传感器滑模控制、汽车车速100km/h、前轮按角正弦波形转向时的车速变化曲线图。 [0090] FIG 7⑹ is applied to a front wheel angle sensor mode control, the vehicle speed 100km / h, the vehicle speed change curve when the front wheel steering angle according to a sinusoidal waveform.

[0091] 图8 (a)是施加本实施例的无前轮转角传感器滑模控制(简写为:无传感器SMC)、汽车车速30km/h、前轮按角阶跃波形转向时的质心侧偏角控制波形图。 [0091] FIG. 8 (a) is applied to the present embodiment without sliding mode control wheel angle sensor (abbreviation: sensorless SMC) when the centroid side, vehicle speed 30km / h, the steering wheel by a step waveform bias angle angle control waveform.

[0092] 图8⑹是施加本实施例的无前轮转角传感器滑模控制、汽车车速100km/h、前轮按角阶跃波形转向时的质心侧偏角控制波形图。 No sliding mode control wheel angle sensor, the vehicle speed 100km / h, when the sideslip angle of the steering wheel by the angular step waveform [0092] FIG 8⑹ embodiment of the present embodiment is applied is a waveform diagram of the control.

[0093] 图8 (c)是施加本实施例的无前轮转角传感器滑模控制、汽车车速30km/h、前轮按角正弦波形转向时的质心侧偏角控制波形图。 [0093] FIG. 8 (c) are applied to the present embodiment without sliding mode control wheel angle sensor, the vehicle speed 30km / h, according to the front wheel sideslip angle when the steering angle of sinusoidal waveform of FIG.

[0094] 图8 (d)是施加本实施例的无前轮转角传感器滑模控制、汽车车速100km/h、前轮按角正弦波形转向时的质心侧偏角控制波形图。 [0094] FIG. 8 (d) is applied to the present embodiment without sliding mode control wheel angle sensor, the vehicle speed 100km / h, according to the front wheel sideslip angle when the steering angle of sinusoidal waveform of FIG.

[0095] 图9 (a)是施加本实施例的无前轮转角传感器滑模控制、汽车车速30km/h、前轮按角阶跃波形转向时的横摆角速度控制波形图。 Yaw rate control waveform chart of [0095] FIG. 9 (a) is applied to the present embodiment without sliding mode control wheel angle sensor, the vehicle speed 30km / h, the steering wheel by the angular step waveform.

[0096] 图9⑹是施加本实施例的无前轮转角传感器滑模控制、汽车车速90km/h、前轮按角阶跃波形转向时的横摆角速度控制波形图。 [0096] FIG 9⑹ embodiment of the present embodiment is applied is a front wheel angle sensor without sliding mode control, the vehicle speed 90km / h, the yaw rate when the steering wheel by the angular step waveform control waveform in FIG.

[0097] 图9 (c)是施加本实施例的无前轮转角传感器滑模控制、汽车车速30km/h、前轮按角正弦波形转向时的横摆角速度控制波形图。 [0097] FIG. 9 (c) are applied to the present embodiment without sliding mode control wheel angle sensor, the vehicle speed 30km / h, the yaw rate control waveform chart when the front wheel steering angle by a sinusoidal waveform.

[0098] 图9 (d)是施加本实施例的无前轮转角传感器滑模控制、汽车车速90km/h、前轮按角正弦波形转向时的横摆角速度控制波形图。 [0098] FIG. 9 (d) is applied to the present embodiment without sliding mode control wheel angle sensor, the vehicle speed 90km / h, the yaw rate control waveform chart when the front wheel steering angle by a sinusoidal waveform.

[0099] 图10 (a)是施加无前轮转角传感器的滑模控制、汽车车速30km/h、前轮按角阶跃波形转向时的车速变化曲线图。 [0099] FIG. 10 (a) is a front wheel angle sensor without sliding mode control is applied, the vehicle speed 30km / h, the front wheel angle by a step waveform graph when the vehicle speed change of the steering.

[0100] 图10⑹是施加本实施例的无前轮转角传感器滑模控制、汽车车速100km/h、前轮按角阶跃波形转向时的前轮转角曲线图。 Front angle graph when the wheel angle sensor without sliding mode control, the vehicle speed 100km / h, according to a front wheel steering angle step waveform [0100] FIG 10⑹ embodiment of the present embodiment is applied.

[0101] 图10 (c)是施加本实施例的无前轮转角传感器滑模控制、汽车车速30km/h、前轮按角正弦波形转向时的车速变化曲线图。 [0101] FIG. 10 (c) are applied to the present embodiment without sliding mode control wheel angle sensor, the vehicle speed 30km / h, the vehicle speed change curve when the front wheel steering angle according to a sinusoidal waveform.

[0102] 图10⑹是施加本实施例的无前轮转角传感器滑模控制、汽车车速100km/h、前轮按角正弦波形转向时的车速变化曲线图。 No sliding mode control wheel angle sensor, the vehicle speed 100km / h, the vehicle speed change curve when the front wheel steering angle according to a sinusoidal waveform [0102] FIG 10⑹ embodiment of the present embodiment is applied.

[0103] 图11 (a)是施加无前轮转角传感器滑模控制、汽车车速30km/h、前轮按角阶跃波形转向时的前轮转角观测器输出前轮转角估计曲线图。 [0103] FIG. 11 (a) is applied to a front wheel angle when the observer without sliding mode control wheel angle sensor, the vehicle speed 30km / h, the steering wheel by the output wheel angle step waveform graph illustrating angle estimation.

[0104] 图11⑹是施加无前轮转角传感器滑模控制、汽车车速100km/h、前轮按角阶跃波形转向时的前轮转角观测器输出前轮转角估计曲线图。 [0104] FIG 11⑹ is applied to the front wheel angle sensor without sliding mode control, the vehicle speed 100km / h, when the front wheel angle by the observer angle step waveform output from the steering wheel angle estimation curve.

[0105] 图11 (C)是施加无前轮转角传感器滑模控制、汽车车速30km/h、前轮按角正弦波形转向时的前轮转角观测器输出前轮转角估计曲线图。 [0105] FIG. 11 (C) is applied to the front wheel angle sensor without sliding mode control, the vehicle speed 30km / h, when the wheel angle observer angle by the steering wheel angle estimation sinusoidal waveform graph showing the output wheel.

[0106] 图11⑹是施加无前轮转角传感器滑模控制、汽车车速100km/h、前轮按角正弦波形转向时的前轮转角观测器输出前轮转角估计曲线图。 [0106] FIG 11⑹ is applied to the front wheel angle sensor without sliding mode control, the vehicle speed 100km / h, the front corner of the observer when the steering wheel angle by a front wheel steering angle estimation output sinusoidal waveform graph.

具体实施方式 Detailed ways

[0107] 下面结合附图和实施例具体说明本发明。 [0107] The following detailed description of the present invention in conjunction with the accompanying drawings and embodiments.

[0108] 实施例1 [0108] Example 1

[0109] 如图1所示,本实施例提供的四轮独立转向车辆的控制方法包括以下步骤: [0109] As shown in FIG 1, four cases of the present embodiment provides a control method for a vehicle steering comprising the steps of independently:

[0110] A、预设理想车辆转向模型、前轮转角估计初始值、前轮转角观测器、干扰边界估计环节、后轮转角滑模控制器和横摆力矩滑模控制器; [0110] A, steering the vehicle over a predetermined model, estimating an initial value of a front wheel angle, wheel angle observer, the estimated interference boundary segment, the rear wheel angle and the yaw moment sliding mode controller sliding mode controller;

[0111] 所述的理想车辆转向模型的构造过程如下: [0111] The construction process of turning over the vehicle model are as follows:

[0112] 建立如下的车辆转向运动学模型: [0112] establish the following vehicle steering kinematics model:

[0113] [0113]

Figure CN106218715BD00121

[0114] 式中:m是整车质量;vx、vy分别表示汽车质心速度V在X和y轴上的速度分量 [0114] wherein: m is the mass of the vehicle; vx, vy, respectively centroid car speed V and the speed in the X-axis component y

Figure CN106218715BD00122

分别表示汽车质心速度V在X和y轴上的加速度分量;γ是汽车横摆角速度,彳则表示横摆角加速度;a和b分别是汽车质心至前轴和后轴的距离,汽车轴距L = a+b;Fxl、Fyl分别代表汽车轮胎的纵向力和横向力,其中下标i = 1,2,3,4分别对应左前轮、右前轮、左后轮和右后轮; Sf人分别是前、后轮转向角;12为汽车绕z轴的转动惯量;Jwi和ω汾别为各轮胎的转动惯量及转动角速度,兩表示各轮胎的转动角加速度;Mdi是差速器半轴上的输出扭矩;R表示轮胎半径;Mbl为轮胎所受的制动力矩;W为轮距,即前轮距Bf和后轮距Br均等于W;M表示车轮所受纵向力所产生附加控制的横摆力矩: Represent car acceleration component in the centroid speed V X and the y-axis; gamma] is for vehicle yaw rate, the yaw angular acceleration, it said left foot; a and b are the distances to the center of mass automobile front and rear axles, automotive wheelbase L = a + b; Fxl, Fyl representing the longitudinal and lateral forces of the vehicle tires, where the subscript i = 1,2,3,4 respectively correspond to the left front wheel, right front wheel, left and right rear wheels; Sf people are front, rear wheel steering angle; automobile 12 around the z axis of inertia; JWI respectively, and the rotation angular velocity ω Fen moment of inertia and each tire, showing two angular rotation of each tire; is a differential Mdi output torque on the axle; represents a radius of the tire R & lt; Mbl braking torque tire suffered; W is wheel base, i.e. front track and the rear track Br Bf both equal to W; M represents a wheel longitudinal force generated suffered additional control yaw moment:

[0115] M=a (Fxi+Fx2) sin5f-b (Fx3+FX4) sin5r+〇.5W[ (Fx2-Fxi) cos5f+(FX4_Fx3) cos5r] (2); [0115] M = a (Fxi + Fx2) sin5f-b (Fx3 + FX4) sin5r + 〇.5W [(Fx2-Fxi) cos5f + (FX4_Fx3) cos5r] (2);

[0116] 车辆质心侧偏角:P = arctan (vx/Vy); [0116] the vehicle sideslip angle: P = arctan (vx / Vy);

[0117] 前后轮的侧偏角Cti: [0117] The front and rear wheels slip angle Cti:

[0118] [01]

Figure CN106218715BD00123

(3), (3),

[0119] 其中下标i = I,2,3,4分别对应左前轮、右前轮、左后轮和右后轮; [0119] where the subscript i = I, 2,3,4 are respectively corresponding to the left front wheel, right front wheel, left and right rear wheels;

[0120] 假定汽车处于正常时速范围的非紧急状态和小角度转向的行驶工况下,有vx〜V, 并只考虑车辆侧滑和横摆运动,即选择质心侧偏角和横摆角速度作为操纵稳定性的衡量主要指标,结合式(1)和(3)可以获得车辆2自由度线性单轨模型的动力学方程: [0120] Suppose the car in the normal speed range of the steering angle and a small non-emergency driving conditions, there vx~V, and consider only the vehicle side slip and yaw motion, i.e. select the sideslip angle and the yaw angular velocity as actuating the main indicators to measure the stability of the kinetic equation of formula (1) and (3) 2 DOF linear single-track model vehicle can be obtained:

[0121] [0121]

Figure CN106218715BD00131

(4), (4),

[0122] 式中:Fyl+Fy2、Fy3+Fy4分别表示前、后轴轮胎的侧偏力 [0122] wherein: Fyl + Fy2, Fy3 + Fy4 respectively front, side biasing force of the rear axle tires

[0123] [0123]

Figure CN106218715BD00132

(5):; (5) :;

[0124] 其中kf和kr分别为前轴两侧轮胎的综合侧偏刚度、后轴两侧轮胎的综合侧偏刚度, 其数值是前、后轮侧偏刚度的2倍; [0124] wherein kf and kr respectively integrated cornering stiffness of the front axle on both sides of the tire side, on both sides of the rear axle side integrated cornering stiffness of the tire, which value is a front, 2x rear wheel cornering stiffness;

[0125] 定义系统状态矢量X= [β,γ 控制输入矢量U= [Sr,M]T,根据式(4)和(5)建立如下的模型状态空间方程为: [0125] defines the system state vector X = [β, γ controls the input vector U = [Sr, M] T, according to the formula (4) to establish and (5) as a model for the state space equation:

[0126] [0126]

Figure CN106218715BD00133

(6);. (6) ;.

[0127] 式中: [0127] wherein:

Figure CN106218715BD00134

.为 .for

Figure CN106218715BD00135

系统矩阵. System matrix.

Figure CN106218715BD00136

[0128] 控制输入矩阵: [0128] Control input matrix:

Figure CN106218715BD00137

;前轮转角输入矩阵 ; Wheel angle input matrix

Figure CN106218715BD00138

[0129] 采用前轮转角观测器输出估计值来逼近实际前轮转角信息3£,同时考虑车辆转 [0129] The front-wheel angle observer output estimation value approximating the actual wheel angle information 3 £, taking into account the vehicle turns

Figure CN106218715BD00139

向系统参数的变化因素对系统的作用影响,则式⑹则变为 Factors affecting the change of system parameters on a system, it becomes the type ⑹

[0130] [0130]

Figure CN106218715BD001310

⑺; ⑺;

[0131] 式中: [0131] wherein:

Figure CN106218715BD001311

with

Figure CN106218715BD001312

分别表示系统参数变化时系统矩阵、控制输入矩阵和前轮转角输入矩阵分别对应的变化值; When system parameters represent the system matrix, input matrix, and control the front wheel angle input change values ​​respectively corresponding to the matrix;

[0132] 式⑺可进一步整理为: [0132] ⑺ formula can be further organized into:

[0133] [0133]

Figure CN106218715BD001313

[0134] 式中 [0134] wherein

Figure CN106218715BD001314

,表示车辆参数变化时质心侧偏角和横摆角速度对应的变化值; Variation value of the sideslip angle and yaw rate corresponding to the time, indicating that the vehicle parameters;

[0135] 采用如下的理想车辆模型: [0135] The ideal vehicle model as follows:

[0136] [0136]

Figure CN106218715BD001315

(9); (9);

[0137] 式中:理想模型的状态矢量 [0137] wherein: ideal model state vector

Figure CN106218715BD001316

,其中说、Yd分别为期望质心侧偏角与期望横摆角速度;理想模型的系统矩阵 Wherein said, respectively, Yd of the desired sideslip angle and a desired yaw rate; ideal model system matrix

Figure CN106218715BD001317

;输入矩阵 ; Enter the Matrix

Figure CN106218715BD001318

;其中系数1^和”分别是一阶滞后环节的比例增益和滞后时间常数,表达式如下: ; And wherein the coefficients a ^ "are first-order lag element of a proportional gain and lag time constant, the following expression:

Figure CN106218715BD001319

[0139] 式⑼即为理想车辆转向模型的表达式; [0139] Formula ⑼ is the over expression vehicle steering model;

[0140] 所述的步骤A中前轮转角观测器的具体构造过程如下: [0140] Step A according to the specific configuration of the front corner of the observer as follows:

[0141] 设定前轮转角估计初始值, [0141] estimating an initial value setting wheel angle,

Figure CN106218715BD00141

:,前轮转角观测器表达式如下: : Front wheel angle observer expressed as follows:

[0142] [0142]

Figure CN106218715BD00142

(10); (10);

[0143] 式中:e为汽车实际质心侧偏角和横摆角速度与理想模型状态间的误差矢量,表达式如下: [0143] where: E is the actual car sideslip angle and yaw angular velocity error vector between the model and the ideal state, the following expression:

[0144] [0144]

Figure CN106218715BD00143

(N). (N).

[0145] ee、eY分别为质心侧偏角控制误差和横摆角速度控制误差; [0145] ee, eY, respectively, the sideslip angle and yaw rate error control error control;

[0146] 根据式(10)可知前轮转角的自适应估计律为 [0146] The formula (10) shows adaptive estimation law angle of the front wheels

[0147] [0147]

Figure CN106218715BD00144

(12), (12),

[0148] 根据式⑻和式⑼推导出控制误差方程: [0148] derived control error equation according to Formula and Formula ⑻ ⑼:

[0149] [0149]

Figure CN106218715BD00145

(13); (13);

[0150] 所述的干扰边界估计环节的具体构造过程如下: [0150] The estimation of the interference boundary part of the specific configuration is as follows:

[0151] 定义干扰边界的自适应估计律如下: [0151] Adaptive Estimation interference boundary defined law as follows:

[0152] [0152]

Figure CN106218715BD00146

(14); (14);

[0153] 式中:sgn (.)表示符号开关函数; (.): [0153] wherein the symbol represents a switching function sgn;

Figure CN106218715BD00147

分别表示干扰边界参数如和Φ2的估计值; ^、^2分别称为干扰边界的估计系数,且均大于1; Denote interference and boundary parameters, such as the estimated value Φ2; ^, ^ 2 are called interference boundary estimation coefficient, and greater than 1;

[0154] 假定方向盘转向初始时刻的 [0154] assumed that the steering wheel at the initial time

Figure CN106218715BD00148

.,干扰边界估计环节的数学表达式如下: ., Estimated interference boundary part of the mathematical expression is as follows:

[0155] [0155]

Figure CN106218715BD00149

(丨5); (Shu 5);

[0156] [0156]

Figure CN106218715BD001410

:裉据式(15)估计得出; : It is estimated that Ken formula (15) obtained;

[0157] 所述的后轮转角滑模控制器及横摆力矩滑模控制器的具体构造过程如下: [0157] The rear-wheel angle and the yaw moment sliding mode controller sliding controller is configured specifically as follows:

[0158] 定义滑模面函数s = e,滑模控制器 [0158] Sliding surface defined function s = e, sliding mode controller

Figure CN106218715BD001411

s;其中,滑模控制器u同时包含后轮转角滑模控制器和横摆力矩滑模控制器,并以后轮转角Sr和横摆力矩M作为控制量,Ueq为滑模等效控制器,^为切换控制器;忽略系统参数所引起的扰动变化d(t),根据 S; wherein u sliding mode controller comprises a wheel angle while sliding mode controller sliding mode controller and the yaw moment, and after the rotation angle and the yaw moment M is Sr as the control amount, Ueq is equivalent sliding mode controller, ^ is the switching controller; ignoring the system parameters change due to the disturbance d (t), in accordance with

Figure CN106218715BD001412

,并利用式(15)可推导出滑模等效控制器Ueq的表达式如下: , Using Equation (15) can be deduced sliding mode controller Ueq equivalent expression as follows:

[0159] [0159]

Figure CN106218715BD001413

(16); (16);

[0160] 式中:K为待定的控制增益矩阵, [0160] where: K is the control gain matrix determined,

Figure CN106218715BD001414

A1和k2均大于零,其中diag(.)表示对角矩阵; A1 and k2 are greater than zero, where diag denotes a diagonal matrix (.);

[0161] 切换控制器Us的表达式如下: [0161] Expression Us switching controller as follows:

[0162] , [0162],

Figure CN106218715BD00151

_ (17); _ (17);

[0163] 式中: [0163] wherein:

Figure CN106218715BD00152

为切换控制器〜中的控制增益; For the switching control of the gain controller ~;

[0164] 根据式(16)和(17)可得到滑模控制器的表达式如下: [0164] The formula (16) and Expression (17) sliding mode controller can be obtained as follows:

[0165] [0165]

Figure CN106218715BD00153

[0166] B、以车辆直行状态作为初始时刻,实时测量车辆的质心侧偏角及横摆角速度,同时将前轮转角估计初始值输入理想车辆转向模型,得到初始期望质心侧偏角与初始期望横摆角速度;将初始期望质心侧偏角与初始期望横摆角速度分别与对应时刻的实时质心侧偏角与横摆角速度进行比较,分别得到对应时刻的质心侧偏角控制误差以及横摆角速度控制误差;将质心侧偏角控制误差、横摆角速度控制误差输入至前轮转角观测器得到对应时刻的前轮转角估计值; [0166] B, straight to the vehicle as an initial state time, real-time measurement of sideslip angle and yaw rate of the vehicle while the front wheel steering angle estimation value input over the initial vehicle steering model to obtain an initial desired sideslip angle with the initial desired yaw rate; the initial desired sideslip angle with the initial desired yaw rate, respectively corresponding to the time of the real-time sideslip angle is compared with the yaw rate, respectively sideslip angle control error corresponding to the time and the yaw rate control error; the control error sideslip angle, yaw rate error control the input to the front wheel angle observer angle to obtain an estimated value corresponding to the time;

[0167] C、实时地进行前轮转角估计值的计算,将实时的前轮转角估计值输入理想车辆转向模型,得到实时的期望质心侧偏角与期望横摆角速度,将实时的期望质心侧偏角与期望横摆角速度与实时的质心侧偏角、横摆角速度进行比较,从而得到实时的质心侧偏角控制误差、横摆角速度控制误差; [0167] C, in real time to calculate the estimated value of the front wheel angle, the real-time front wheel angle estimation value over the steering of the vehicle model, to give a desired real time with the desired sideslip angle, yaw rate, the real-time the desired sideslip angle with a desired yaw rate in real time with the sideslip angle, yaw rate are compared to obtain real-time control error sideslip angle, yaw rate error control;

[0168] D、将实时的质心侧偏角控制误差、横摆角速度控制误差输入干扰边界估计环节, 得到实时的干扰边界参数; [0168] D, the real-time control error sideslip angle, yaw rate error control the input link interference boundary estimation, interference boundary parameters obtained in real time;

[0169] E、将实时的前轮转角估计值、质心侧偏角控制误差、横摆角速度控制误差以及干扰边界参数分别输入到后轮转角滑模控制器和横摆力矩滑模控制器,分别输出得到实时的后轮转角和横摆力矩,并采用实时的后轮转角和横摆力矩对车辆进行实时控制; [0169] E, the real-time estimate of the front wheel angle, the sideslip angle control error, and the yaw rate error control parameters are input to the interference boundary sliding mode controller wheel angle and the yaw moment sliding mode controller, respectively, It outputs the resulting real-time rear wheel angle and yaw moment, and real-time rear wheel angle and vehicle yaw moment of real-time control;

[0170] 具体为: [0170] Specifically:

[0171] 将矩阵A、Ad、B、C、Cd和K的元素代入式(18),通过整理得到后轮转角滑模控制器的具体形式如下: [0171] The matrix A, Ad, B, C, Cd, and K elements, obtained by sorting into (18) sliding controller rear corner specific forms as follows:

[0172] [0172]

Figure CN106218715BD00154

[0173] 横摆力矩滑模控制器的具体形式为: [0173] In particular in the form of a yaw moment sliding controller is:

[0174] [0174]

Figure CN106218715BD00155

[0175] 采用上述得到的后轮转角和横摆力矩对车辆进行实时控制。 [0175] The angle of the rear wheel and the yaw moment obtained real-time control of the vehicle.

[0176] 图2 (a)为本发明提供的四轮独立转向车辆的控制结构示意图;本实施例采用表1 中的参数进行模拟,将本实施例的无前轮转角传感器的滑模控制方法(简称为无传感器滑模控制方法)与有前轮转角传感器的滑模控制方法(简称为有传感器滑模控制方法)以及无滑模控制的车辆(简称为FWS车辆)3种情况进行对比实验; Sliding mode control method is not a front wheel angle sensor according to the present embodiment employs the parameters in Table 1 for simulation, the embodiment of the present embodiment; [0176] FIG. 2 (a) is a schematic diagram of the present control structure provides four independent steering of the vehicle to the invention (referred to as sensorless sliding mode control method) and the front wheel angle sensor sliding mode control process (simply referred to as sliding mode control sensor) and a vehicle without a sliding mode control (simply referred to as vehicle FWS) three cases comparative tests ;

[0177] 表1车辆及控制参数 [0177] Table 1 and the vehicle control parameters

Figure CN106218715BD00156

Figure CN106218715BD00161

[0179] ~考虑车辆在不同车速和不同波形转向的汽车行驶工况,其中,车速工况为:30km/h (8.333m/s)、100km/h (27.778m/s);波形转向的波形工况为:非理想角阶跃波形、角正弦波形(S形);将车速工况与波形工况两两组合,形成4种组合工况;其中设定非理想角阶跃波形第Os开始跳跃,跳跃上升时间和幅值分别为0.5s和0.07rad;设置角正弦波形起始时刻2s, 周期、角幅值分别为4s和0.07rad,图3、图4分别示出了角阶跃波形和角正弦波形; [0179] - regardless of the vehicle speed and different waveforms at different steering driving conditions of automobiles, wherein the condition is a vehicle speed: 30km / h (8.333m / s), 100km / h (27.778m / s); waveform steering waveform conditions are: non-ideal angle step waveform, sinusoidal waveform angle (S-shaped); and the vehicle speed condition condition waveform combinations of two, four combinations formed condition; wherein the set of non-ideal angle Os start step waveform jump, the jump-up time and amplitude and 0.5s are 0.07rad; sine waveform starting time setting angle 2s, period, amplitude angle and 4s are 0.07rad, FIG. 3, FIG. 4 respectively show a step waveform angle angle and sine waveform;

[0180] 鉴于车辆参数中的质量和转动惯量易发生变化,因此对比试验中假定表1中的整车质量和转动惯量均增加+15% ; [0180] In view of the quality parameters of the vehicle and the moment of inertia is easy to change, so it is assumed that the table comparison test vehicle mass and moment of inertia of a + 15% increase in volume;

[0181] 图5 (a)-图7 (d)分别示出了有传感器滑模控制条件下,不同组合工况下的质心侧偏角、横摆角速度和车速的时域响应曲线,分别将有传感器滑模控制的输出与实际期望及无控制情况进行对比;图8 (a)-图10 (d)则分别给出了本实施例无传感器滑模控制条件下, 各行驶工况条件下的质心侧偏角、横摆角速度和车速的时域响应曲线;图11 (a)_图IUd)反映出无传感器滑模控制情况下,车辆不同行驶工况、观测器输出的前轮转角估计波形。 [0181] FIG. 5 (a) - FIG. 7 (d) show a condition with a sensor sliding mode control, sideslip angle different combinations of conditions, when the yaw rate and the vehicle speed domain response curves, respectively, there sliding mode control compared with the actual output of the sensor and without control of the desired; FIG. 8 (a) - FIG. 10 (d) respectively shows the sensor without sliding mode control conditions of the present embodiment, in each driving cycle conditions the sideslip angle, yaw rate and vehicle speed time-domain response curve; FIG. 11 (a) _ FIG IUD) reflects the sensor without sliding mode control, the different driving conditions of the vehicle, a front wheel angle estimation observer outputs waveform.

[0182] 通过对比图5 (a)-图5⑹和图8 (a)-图8 (d)可见,对于无控制的FWS车辆,质心侧偏角稳态响应非零,且高速时的数值较大并与前轮转角输入方向相反,这增大了车辆的甩尾和侧滑趋势;4WS车辆在有传感器或无传感器的后轮转角与横摆力矩滑模控制条件下,即使车辆不同车速和不同波形转向,均能实现车辆质心侧偏角为零,达到理想的期望稳定状态, 使得4WS车辆能很好地维持车身姿态,具有良好的路径跟踪能力,极大地改善了车辆的操纵性。 [0182] (a) by comparing FIG. 5 - FIG 5⑹ and FIG. 8 (a) - FIG. 8 (d) can be seen, for FWS uncontrolled vehicle, the sideslip angle in response to a non-zero steady state, and the value at high speed than large front wheel angle input and the opposite direction, which increases the tendency of the vehicle sideslip and the flick; 4WS vehicle wheel angle sensor, or the cross-sensorless torque placed under conditions of sliding mode control, even if the vehicle speed and different different waveforms steering, the vehicle can achieve zero sideslip angle, desired to achieve the desired steady state, so that the 4WS vehicle body posture can be maintained well, has a good ability to follow the path, greatly improves the maneuverability of the vehicle.

[0183] 比较图6 (a)-图6⑹和图9 (a)-图9⑹看出,低速时,4WS车辆在有传感器或无传感器的滑模控制条件下,横摆角速度均能获得稳定控制,其数值大于无控制的FWS车辆,这表明通过控制,使得4WS车辆要比FWS车辆少打方向盘,可有效减少转弯半径,提高了车辆转弯的机动灵活性。 [0183] Comparison of FIG. 6 (a) - FIG 6⑹ and FIG. 9 (a) - FIG 9⑹ seen, at low speed, under the sliding mode control 4WS vehicle condition sensor or sensors without a yaw rate control can be stable , which value is greater than the vehicle FWS uncontrolled, indicating that by controlling the 4WS vehicle such that less than FWS vehicle steering wheel, the turning radius can be effectively reduced, to improve the flexibility of motor vehicle is turning. 高速运行时,FWS车辆横摆角速度存在很大超调,且产生较大幅值的振荡波动现象,这反映出车辆行驶的不稳定性。 High-speed operation, FWS vehicle yaw rate there is a big overshoot, and generate a larger oscillation amplitude dynamic phenomenon, reflecting the instability of the vehicle is traveling. 在两种控制方法作用情况下,4WS车辆的横摆角速度都小于FWS车辆,且振荡现象明显得到抑制,特别是在阶跃波形转向时,横摆角速度无超调和振动现象,这不仅表明的4WS车辆的稳定性得到了提高,避免和降低高速行驶状态下驾驶员猛打方向盘造成的危险。 In both cases the role of the control method, the 4WS vehicle yaw rate is less than FWS vehicle, and the oscillation phenomenon is suppressed significantly, especially when step waveform steering, yaw rate overshoot without vibration phenomena, which not only shows the 4WS stability of the vehicle is improved, avoiding the driver's steering wheel too hard, and reduce the risk of high-speed traveling state.

[0184] 比较图7 (a)-图7⑹和图10 (a)-图10⑹可见,车速为30km/h (8.333m/s)的低速转向时,有传感器或无传感器的滑模控制情况下的车速均比无控制时有所下降,但下降程度均较少;车速为l〇〇km/h (27.778m/s)的高速转向时,受控的4WS车辆车速保持效果要优于无控制的FWS车辆。 [0184] Comparison of FIG. 7 (a) - FIG 7⑹ and FIG. 10 (a) - FIG 10⑹ be seen, when the vehicle speed is 30km / h (8.333m / s) of the low-speed steering, there is the sliding mode control without sensors or sensor declined, but the decline was less extent than when no control vehicle; vehicle speed l〇〇km / h (27.778m / s) high-speed steering, controlled 4WS vehicle speed maintaining control is better than no the FWS vehicle. 这表明,滑模控制策略在保证车辆获得较好转弯路径跟踪能力和车身稳定性的同时,车速降低程度并不大,这可使得4WS车辆保持较大速度安全地按照目标轨迹进行转弯行驶。 This suggests that, to ensure that the vehicle control strategy can get better cornering path tracking ability and stability of the vehicle while the vehicle speed is not large degree of reduction, which may cause the 4WS vehicle safely kept large cornering speed according to the target locus.

[0185] 综合对比有前轮转角传感器或无前轮转角传感器条件下的滑模控制效果,在不同车速行驶工况下,即使车辆参数发生变化,本实施例无传感器滑模控制也能较好地对理想控制模型产生的估计期望进行稳定跟踪控制,能获得与有传感器滑模控制几乎相同的控制性能效果。 [0185] Comparative synthesis without front wheel or front-wheel angle sensor sliding mode control effect under conditions of angle sensor, a vehicle speed in different driving situations, even if the vehicle parameter is changed, sensorless sliding mode control according to the present embodiment can also be preferred embodiments perform stable tracking control of the control over the desired estimation model generated by the sensor can be obtained with a sliding mode control control performance substantially the same effect. 同时,根据图11 (a)-图11⑻看出,在不同车速和不同转向情况下,前轮转角观测器输出能较好地逼近实际前轮转角形状和幅度,这也表明无前轮转角传感器条件下,本实施例的前轮转角观测器的滑模控制方法有效可行。 Meanwhile, according to FIG. 11 (a) - FIG 11⑻ seen, at different speeds and in different turning, the wheel angle observer outputs can better approximate the actual shape of the front wheel angle and amplitude, which indicates that no wheel angle sensor under the conditions, the front sliding mode control method according to the present embodiment observer angle of effective and feasible embodiment.

Claims (6)

1. 一种四轮独立转向车辆的控制方法,其特征在于包括以下步骤: A、 预设理想车辆转向模型、前轮转角估计初始值、前轮转角观测器、干扰边界估计环节、后轮转角滑模控制器和横摆力矩滑模控制器; B、 以车辆直行状态作为初始时刻,实时测量车辆的质心侧偏角及横摆角速度,同时将前轮转角估计初始值输入理想车辆转向模型,得到初始期望质心侧偏角与初始期望横摆角速度;将初始期望质心侧偏角与初始期望横摆角速度分别与对应时刻的实时质心侧偏角与横摆角速度进行比较,分别得到对应时刻的质心侧偏角控制误差以及横摆角速度控制误差;将质心侧偏角控制误差、横摆角速度控制误差输入至前轮转角观测器得到对应时刻的前轮转角估计值; C、 实时地进行前轮转角估计值的计算,将实时的前轮转角估计值输入理想车辆转向模型,得到实时 A four-wheel independent steering control method for a vehicle, comprising the steps of: A, over a preset vehicle steering model front wheel steering angle estimation initial value, the front wheel angle observer, the estimated interference boundary links, a rear wheel angle sliding mode controller and the yaw moment sliding mode controller; B, straight to the vehicle as an initial state time, real-time measurement of the vehicle centroid slip angle and the yaw rate, the front wheel while estimating an initial value of the input angle over the vehicle steering model, to obtain the initial desired sideslip angle with the initial desired yaw rate; the initial desired sideslip angle with the initial desired yaw rate, respectively corresponding to the time of the real-time sideslip angle is compared with the yaw rate, to obtain the centroid corresponding to the time, respectively sideslip angle and yaw rate error control error control; the control error sideslip angle, yaw rate error control the input to the front wheel angle observer angle to obtain the corresponding time estimate; C, real time wheel angle calculate an estimate of the real value of the input front wheel steering angle estimation model over the steering of the vehicle, in real time 期望质心侧偏角与期望横摆角速度,将实时的期望质心侧偏角与期望横摆角速度与实时的质心侧偏角、横摆角速度进行比较,从而得到实时的质心侧偏角控制误差、 横摆角速度控制误差; D、 将实时的质心侧偏角控制误差、横摆角速度控制误差输入干扰边界估计环节,得到实时的干扰边界参数; E、 将实时的前轮转角估计值、质心侧偏角控制误差、横摆角速度控制误差以及干扰边界参数共同输入到后轮转角滑模控制器和横摆力矩滑模控制器,分别输出得到实时的后轮转角和横摆力矩,并采用实时的后轮转角和横摆力矩对车辆进行实时控制。 Desired sideslip angle and the desired yaw rate, the real-time the desired sideslip angle and the desired yaw rate and the real-time sideslip angle, yaw rate are compared to obtain real-time sideslip angle control error, horizontal yaw rate error control; D, the real-time control error sideslip angle, yaw rate error control the input disturbance estimation boundary links in real time interference boundary parameters; E, real-time estimate of the front wheel angle, the sideslip angle control error, yaw rate error control the input common parameter and an interference boundary sliding mode controller to the rear wheel angle and yaw moment sliding mode controller outputs in real time the wheel angle and the yaw moment, and the rear wheel of real-time angle and yaw moment of the vehicle real-time control.
2. 如权利要求1所述的四轮独立转向车辆的控制方法,其特征在于: 所述的步骤A中理想车辆转向模型的构造过程如下: 建立如下的车辆转向运动学模型: 2. The four control method of claim 1, independent steering vehicle, wherein: said step A steering structure of the vehicle over the process model is as follows: establishing a vehicular steering kinematics model:
Figure CN106218715BC00021
式中:m是整车质量;vx、vy分别表示汽车质心速度V在X和y轴上的速度分量;%分别表示汽车质心速度V在X和y轴上的加速度分量;γ是汽车横摆角速度汐则表示横摆角加速度;a和b分别是汽车质心至前轴和后轴的距离,汽车轴距L = a+b;Fxl、Fyl分别代表汽车轮胎的纵向力和横向力,其中下标1 = 1,2,3,4分别对应左前轮、右前轮、左后轮和右后轮;6^61 分别是前、后轮转向角;Iz为汽车绕z轴的转动惯量;Jwi和ω 1分别为各轮胎的转动惯量及转动角速度,4表示各轮胎的转动角加速度;Mdi是差速器半轴上的输出扭矩;R表示轮胎半径; Mbl为轮胎所受的制动力矩;W为轮距,即前轮距Bf和后轮距Br均等于W;M表示车轮所受纵向力所产生附加控制的横摆力矩: Where: m is the mass of the vehicle; vx, vy denote the centroid car speed V X and the velocity component in the y-axis;% respectively centroid acceleration component car speed V and the y-axis in X; gamma] automotive yaw Xi represents the angular velocity of the yaw angular acceleration; a and b are the distances to the center of mass automobile front and rear axles, automotive wheelbase L = a + b; Fxl, Fyl representing the longitudinal and lateral forces of the vehicle tires, wherein the subscript 1 = 1,2,3,4 respectively correspond to the left front wheel, right front wheel, left and right rear wheels; 61 ^ 6 are front, rear wheel steering angle; Iz is the automotive inertia about the z-axis; Jwi ω 1, respectively, and moment of inertia and the rotational angular velocity of each tire, 4 denotes a rotation angular acceleration of each tire; Mdi output torque on the differential side; denotes the tire radius R & lt; a tire braking torque of Mbl suffered ; W is wheel base, i.e. front track and the rear track Br Bf both equal to W; M represents a wheel longitudinal force generated suffered additional control yaw moment:
Figure CN106218715BC00022
车辆质心侧偏角:P = arctan (vx/vy); 前后轮的侧偏角ai: Vehicle sideslip angle: P = arctan (vx / vy); front and rear wheel slip angle ai:
Figure CN106218715BC00023
其中下标1 = 1,2,3,4分别对应左前轮、右前轮、左后轮和右后轮; 假定汽车处于正常时速范围的非紧急状态和小角度转向的行驶工况下,有Vx〜v,并只考虑车辆侧滑和横摆运动,即选择质心侧偏角和横摆角速度作为操纵稳定性的衡量主要指标,结合式(1)和(3)可以获得车辆2自由度线性单轨模型的动力学方程: Where the subscript 1 = 1,2,3,4 respectively correspond to the left front wheel, right front wheel, left and right rear wheels; non-emergency and assume a small angle normal speed range of the vehicle is steering driving situations, there Vx~v, and consider only the vehicle side slip and yaw motion, i.e. sideslip angle, and select yaw rate as a primary indicator of the stability and controllability of formula (1) and (3) the vehicle 2 degrees of freedom can be obtained linear single-track model of the dynamic equation:
Figure CN106218715BC00031
式中:Fyl+Fy2、Fy3+Fy4分别表不前、后轴轮胎的侧偏力 Wherein: Fyl + Fy2, Fy3 + Fy4 table were not before, the biasing force of the side of the rear axle tires
Figure CN106218715BC00032
其中kf和kr分别为前轴两侧轮胎的综合侧偏刚度、后轴两侧轮胎的综合侧偏刚度,其数值是前、后轮侧偏刚度的2倍; 定义系统状态矢量X= [β,γ ]WP控制输入矢量U= [Sr,M]T,根据式(4)和(5)建立如下的模型状态空间方程为: Wherein kf and kr respectively integrated cornering stiffness of the front axle on both sides of the tire side, both the cornering stiffness of the rear axle of the tire side integrated, before its value is 2 times the rear wheel cornering stiffness; defines the system state vector X = [β , γ] WP control input vector U = [Sr, M] T, according to the formula (4) and (5) to establish the following equation for the state space model:
Figure CN106218715BC00033
式中:i为[及卢]1 ;系统矩厗 Where: i is [and Lu] 1; Moment - boat system
Figure CN106218715BC00034
控制输入矩阵 Control input matrix
Figure CN106218715BC00035
;前轮转角输入矩阵 ; Wheel angle input matrix
Figure CN106218715BC00036
采用前轮转角观测器输出估计值<来逼近实际前轮转角信息Sf,同时考虑车辆转向系统参数的变化因素对系统的作用影响,则式⑹则变为 Front-wheel angle observer output estimation value <approximating the actual angle information Sf of the front wheels, while steering the vehicle factors account for the effects of system parameters of the system action, then the formula becomes ⑹
Figure CN106218715BC00037
式中: Where:
Figure CN106218715BC00038
分别表不系统参数变化时系统矩阵、控制输入矩阵和前轮转角输入矩阵分别对应的变化值; 式⑺可进一步整理为: Respectively, when the table does not change the system parameter system matrix, input matrix and the variation value controlling the front wheel angle corresponding to each of the input matrix; ⑺ formula may be further organized into:
Figure CN106218715BC00039
式M Type M
Figure CN106218715BC000310
分别表示车辆参数变化时,质心侧偏角和横摆角速度对应的变化值; 采用如下的理想车辆模型: Represent vehicle parameter changes, the sideslip angle and the yaw rate corresponding to the change value; ideal vehicle model is as follows:
Figure CN106218715BC000311
式中:理想模型的状态矢量 Wherein: ideal model state vector
Figure CN106218715BC000312
,其中说、Td分别为期望质心侧偏角与期望横摆角速度;理想模型的系统矩阵 Wherein said, Td respectively desired sideslip angle and a desired yaw rate; ideal model system matrix
Figure CN106218715BC000313
;输入矩P ; P input torque
Figure CN106218715BC000314
•,其中系数1^和4分别是一阶滞后环节的比例增益和滞后时间常数,表达式如下: •, where the coefficients a ^ and 4, respectively, is a first order lag element of a proportional gain and lag time constant, the following expression:
Figure CN106218715BC00041
式⑼即为理想车辆转向模型的表达式。 ⑼ is the ideal expression type vehicle steering model.
3. 如权利要求2所述的四轮独立转向车辆的控制方法,其特征在于: 所述的步骤A中前轮转角观测器的具体构造过程如下: 设定前轮转角估计初始值》,(()) = (),前轮转角观测器表达式如下: 3. The four control method of claim 2, independent steering vehicle, wherein: said step A specific configuration of the front-wheel angle of the observer as follows: an initial value setting wheel angle estimation ", ( ()) = (), a front wheel angle observer following expression:
Figure CN106218715BC00042
式中:e为汽车实际质心侧偏角和横摆角速度与理想模型状态间的误差矢量,表达式如下: Where: E is the actual car sideslip angle and yaw angular velocity error vector between the model and the ideal state, the following expression:
Figure CN106218715BC00043
ei!、eY分别为质心侧偏角控制误差和横摆角速度控制误差; 根据式(10)可知前轮转角的自适应估计律为 ! Ei, eY, respectively, the sideslip angle and yaw rate error control error control; adaptive law is estimated according to formula (10) can be seen as a front wheel angle
Figure CN106218715BC00044
根据式⑻和式⑼推导出控制误差方程: Derived control error equation according to Formula and Formula ⑻ ⑼:
Figure CN106218715BC00045
4. 如权利要求3所述的四轮独立转向车辆的控制方法,其特征在于: 所述的步骤A中干扰边界估计环节的具体构造过程如下: 定义干扰边界的自适应估计律如下: 4. The four claimed in claim 3, independent of the vehicle steering control method, wherein: said step of estimating interference boundary A of part of the specific configuration is as follows: Adaptive Estimation interference boundary defined law as follows:
Figure CN106218715BC00046
式中:sgn (.)表示符号开关函数龙、元分别表示干扰边界参数如和如的估计值;ει、ε2 分别称为干扰边界的估计系数,且均大于I; 假定方向盘转向初始时刻的#i(〇) = 〇和A⑼=〇,干扰边界估计环节的数学表达式如下: (.): Wherein the symbol represents a switching function sgn Long, respectively, the interference element and boundary parameters, such as the estimation value; ει, ε2 interference estimation coefficients are called the boundary, and greater than I; steering wheel is assumed initial moment # i (square) and A⑼ = = billion billion, interfere with mathematical expressions boundary estimation part as follows:
Figure CN106218715BC00047
A、A根据式(15)估计得出。 A, A according to formula (15) derived estimate.
5. 如权利要求4所述的四轮独立转向车辆的控制方法,其特征在于: 所述的步骤A中后轮转角滑模控制器及横摆力矩滑模控制器的具体构造过程如下: 定义滑模面函数s = e,滑模控制器 5. The four claimed in claim 4, wherein the separate vehicle steering control method, wherein: said step A rear wheel angle and the yaw moment sliding mode controller sliding controller is configured specifically as follows: Definition sliding surface function s = e, sliding mode controller
Figure CN106218715BC00048
其中,滑模控制器u同时包含后轮转角滑模控制器和横摆力矩滑模控制器,并以后轮转角Sr和横摆力矩M作为控制量,ueq为滑模等效控制器,^为切换控制器;忽略系统参数所引起的扰动变化d(t),根据s = i = 〇,并利用式(15)可推导出滑模等效控制器ueq的表达式如下: Wherein the sliding mode controller comprises a wheel angle u while sliding mode controller sliding mode controller and the yaw moment, and after the rotation angle and the yaw moment M is Sr as the control amount, equivalent UEQ of sliding mode controller, is ^ switching controller; ignoring the system parameters change due to the disturbance d (t), according to s = i = square, using the formula (15) can be deduced sliding mode controller ueq equivalent expression as follows:
Figure CN106218715BC00051
式中:K为待定的控制增益矩阵, Where: K is determined control gain matrix,
Figure CN106218715BC00052
,ki和k2均大于零,其中diag (.) 表示对角矩阵; 切换控制器Us的表达式如下: , Ki and k2 are greater than zero, where diag denotes a diagonal matrix; expression following switching controller Us (.):
Figure CN106218715BC00053
式中: Where:
Figure CN106218715BC00054
I为切换控制器〜中的控制增益; 根据式(16)和(17)可得到滑模控制器的表达式如下: I - for the switching control of the gain controller; according to formula (16) and Expression (17) sliding mode controller can be obtained as follows:
Figure CN106218715BC00055
6.如权利要求5所述的四轮独立转向车辆的控制方法,其特征在于: 所述的步骤E具体为: 将矩阵△^<1、8、(:工(1和1(的元素代入式(18),通过整理得到后轮转角滑模控制器的具体形式如下: 6. claimed in claim 5, wherein four control method for a vehicle steered independently, wherein: said step E is specifically: matrix △ ^ <1,8, (: Engineering (1 and 1 (substituting elements formula (18), the rear wheel angle obtained by sorting sliding controller specific forms as follows:
Figure CN106218715BC00056
横摆力矩滑模控制器的具体形式为: Specific forms of the yaw moment sliding controller is:
Figure CN106218715BC00057
采用上述得到的后轮转角和横摆力矩对车辆进行实时控制。 Real-time control of the vehicle using the rear wheel angle and the yaw moment obtained.
CN201610575032.3A 2016-07-20 2016-07-20 Kinds of four-wheel independent steering control method for a vehicle CN106218715B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610575032.3A CN106218715B (en) 2016-07-20 2016-07-20 Kinds of four-wheel independent steering control method for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610575032.3A CN106218715B (en) 2016-07-20 2016-07-20 Kinds of four-wheel independent steering control method for a vehicle

Publications (2)

Publication Number Publication Date
CN106218715A CN106218715A (en) 2016-12-14
CN106218715B true CN106218715B (en) 2018-06-08

Family

ID=57531776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610575032.3A CN106218715B (en) 2016-07-20 2016-07-20 Kinds of four-wheel independent steering control method for a vehicle

Country Status (1)

Country Link
CN (1) CN106218715B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416021A (en) * 2017-06-19 2017-12-01 北京长城华冠汽车科技股份有限公司 Four-wheel steering control method and device for vehicle and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579245A (en) * 1993-03-17 1996-11-26 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Vehicle slip angle measuring method and a device therefor
EP2119393A1 (en) * 2008-05-14 2009-11-18 The Yokohama Rubber Co., Ltd. Method and system for evaluating driving conditions of a vehicle
CN101618733A (en) * 2009-08-06 2010-01-06 上海交通大学 Front wheel and rear wheel drive steering control system of automobile
CN103303367A (en) * 2013-06-21 2013-09-18 电子科技大学 Vehicle body stability control method for four-wheel drive electric vehicle
CN104843057A (en) * 2015-05-26 2015-08-19 吉林大学 Steering control method for four-wheel-independence-steering automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579245A (en) * 1993-03-17 1996-11-26 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Vehicle slip angle measuring method and a device therefor
EP2119393A1 (en) * 2008-05-14 2009-11-18 The Yokohama Rubber Co., Ltd. Method and system for evaluating driving conditions of a vehicle
CN101618733A (en) * 2009-08-06 2010-01-06 上海交通大学 Front wheel and rear wheel drive steering control system of automobile
CN103303367A (en) * 2013-06-21 2013-09-18 电子科技大学 Vehicle body stability control method for four-wheel drive electric vehicle
CN104843057A (en) * 2015-05-26 2015-08-19 吉林大学 Steering control method for four-wheel-independence-steering automobile

Also Published As

Publication number Publication date
CN106218715A (en) 2016-12-14

Similar Documents

Publication Publication Date Title
CN101657345B (en) Device and method for estimating frictional condition of ground contact surface of wheel
EP1775188B1 (en) Control device for vehicle
US9199639B2 (en) Motion control system of vehicle
KR100903665B1 (en) Motion control device for vehicle using information added acceleration
JP4202872B2 (en) Motor vehicle steering system
EP1873033B1 (en) Vehicle control device
JP2762711B2 (en) Braking behavior compensation device for a vehicle
JP4161923B2 (en) Vehicle stability control system
US6865461B2 (en) Method and device for controlling driving dynamics
JP4019813B2 (en) Physical quantity estimating device, a road surface friction state estimating apparatus, the steering angle neutral point estimating apparatus, and underinflation estimator
US8718872B2 (en) Vehicle attitude controller
JP4143111B2 (en) Control apparatus for a vehicle
JP3546423B2 (en) Vehicle motion control device
US20060276944A1 (en) Vehicle motion stability control apparatus
Corno et al. On optimal motorcycle braking
WO2006007908A1 (en) Method for increasing the driving stability of a motor vehicle
EP1584544A2 (en) Vehicle steering apparatus
JP2006151360A (en) Vehicle steering apparatus
JP2004130965A (en) Road surface condition estimating device, and vehicle motion controller equipped with the same
JPH05170120A (en) Vehicle yaw momentum detecting device, method, and vehicle motion control device using them
US6922617B2 (en) Vehicle control device and vehicle control method
US20040015284A1 (en) Method for controlling yaw and transversal dynamics in a road vehicle
CN101331045A (en) Vehicle control device
CN101801755B (en) Vehicle body speed estimating device
JP5809474B2 (en) Body attitude control device

Legal Events

Date Code Title Description
C06 Publication
SE01
GR01