CN106208887A - Motor driving system without electrolytic capacitor and control method and device of motor driving system - Google Patents

Motor driving system without electrolytic capacitor and control method and device of motor driving system Download PDF

Info

Publication number
CN106208887A
CN106208887A CN 201610561858 CN201610561858A CN106208887A CN 106208887 A CN106208887 A CN 106208887A CN 201610561858 CN201610561858 CN 201610561858 CN 201610561858 A CN201610561858 A CN 201610561858A CN 106208887 A CN106208887 A CN 106208887A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
voltage
current
compressor motor
motor
axis
Prior art date
Application number
CN 201610561858
Other languages
Chinese (zh)
Inventor
霍军亚
张国柱
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a motor driving system without an electrolytic capacitor and a control method and device of the motor driving system. The method comprises the following steps of detecting an input AC voltage of the motor driving system in real time; calculating a current highest running frequency of a compressor motor according to the input AC voltage; and controlling the compressor motor according to the current highest running frequency. By the method, the current highest running frequency of the compressor motor is calculated according to the input AC voltage, the highest rotational speed of the compressor motor can be timely limited when the input AC voltage abruptly changes, so that the compressor motor is effectively prevented from being out of control or the motor driving system is effectively prevented from being damaged, and the compressor motor and the motor driving system are enabled to stably and reliably run.

Description

无电解电容电机驱动系统及其控制方法、装置 Electrolytic capacitor and a control method for a motor drive system, means

技术领域 FIELD

[0001] 本发明涉及电机技术领域,特别涉及一种无电解电容电机驱动系统及其控制方法、装置。 [0001] The present invention relates to motor technology, and in particular relates to an electrolytic capacitor and a control method for a motor drive system, apparatus.

背景技术 Background technique

[0002] 随着消费者对机电产品节能性要求的提升,效率更高的永磁同步电机得到了越来越广泛的应用。 [0002] As consumers upgrade to energy-saving requirements of mechanical and electrical products, more efficient permanent magnet synchronous motor has been more widely used.

[0003] 常规变频驱动器的直流母线电压处于稳定状态,逆变部分与输入交流电压相对独立,从而使逆变部分的控制无需考虑输入交流电压的瞬时变化,便于控制方法的实现。 [0003] Conventional DC bus voltage variable frequency drive in a stable state, the input AC voltage inverter part independent, so that the inverter control section need not be considered instantaneous variation of the input AC voltage, the control method is easy to realize. 然而,这种设计方法需要配备容值较大的电解电容,使得驱动器体积变大,成本提升,而且电解电容的寿命有限,其有效工作时间往往是变频驱动器寿命的瓶颈。 However, this design requires relatively large capacitance with the electrolytic capacitor, so that the volume of the driver becomes large, the cost of upgrading, and the limited life of electrolytic capacitors, the effective working time is often a bottleneck in the life of a variable frequency drive.

[0004] 针对上述问题,相关技术中提出了以小容值的薄膜电容或陶瓷电容取代电解电容的策略,与常规变频驱动器相比,省去了功率因数校正部分,而且小型化的电容既能降低成本,又能消除电解电容引起的使用寿命瓶颈问题。 [0004] In response to these problems, the related art proposes a film or ceramic capacitor of small capacitance of the electrolytic capacitor substituted strategy, as compared with a conventional variable frequency drive, eliminating the need for power factor correction part, and the capacitance of both miniaturization reduce costs, but also to eliminate bottlenecks in the life of electrolytic capacitors caused.

[0005] 但是,由于薄膜电容或陶瓷电容容值很小,通常只有常规高压电解电容容值的1%-2%,因此当输入交流电压发生骤变时,直流母线电压也会随之变化,如果此时不能及时控制电机,则将发生电机失控或电控损坏。 [0005] However, since the film or ceramic capacitor capacitance is very small, usually only 1 to 2% solution of a conventional high voltage value of the capacitor, so that when a sudden change the input AC voltage, DC bus voltage will also change, At this time, if the motor is not controlled in time, it will occur or electric motor runaway damage. 例如,当空调器的压缩机处于高速运转状态, 如果输入交流电压发生跌落,则会因直流母线电压过低而无法输出足够的力矩,导致压缩机失步,甚至损坏逆变部分,如IPM(Intelligent Power Module,智能功率模块)。 For example, when the air conditioner compressor is in high-speed operation state, if the input AC voltage drop occurs, because the DC bus voltage will be too low and sufficient torque can not be output, leading to compressor stall, or even damage the inverter part, as the IPM ( intelligent power module, intelligent power module).

发明内容 SUMMARY

[0006] 本发明旨在至少在一定程度上解决相关技术中的技术问题之一。 [0006] The present invention to solve at least to some extent, one of the technical issues related to technology.

[0007]为此,本发明的第一个目的在于提出一种无电解电容电机驱动系统的控制方法, 该方法根据输入交流电压计算压缩机电机的当前最高运行频率,以在输入交流电压骤变时能够及时限制压缩机电机的最高转速,从而有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和电机驱动系统稳定、可靠运行。 [0007] For this purpose, a first object of the present invention is to provide a control method of a non-electrolytic capacitor motor drive system, the method calculates the current maximum operating frequency of the compressor motor according to the input AC voltage to the sudden change in the input AC voltage when timely limit the maximum speed of the compressor motor, so as to effectively prevent the compressor motor runaway or damage the motor drive system, the motor and the motor driving the compressor to ensure that the system is stable, reliable operation.

[0008] 本发明的第二个目的在于提出一种无电解电容电机驱动系统的控制装置。 [0008] A second object of the present invention to provide a control device for non-electrolytic capacitors motor drive system.

[0009] 本发明的第三个目的在于提出一种无电解电容电机驱动系统。 [0009] A third object of the present invention is to provide a non-electrolytic capacitor motor drive system.

[0010] 为实现上述目的,本发明第一方面实施例提出了一种无电解电容电机驱动系统的控制方法,包括以下步骤:实时检测电机驱动系统的输入交流电压;根据所述输入交流电压计算压缩机电机的当前最高运行频率;以及根据所述当前最高运行频率对所述压缩机电机进行控制。 [0010] To achieve the above object, a first aspect of the embodiment of the present invention proposed a method for controlling non-electrolytic capacitors motor drive system, comprising the steps of: detecting an input AC voltage of the motor drive system in real time; the AC input voltage is calculated the current maximum operating frequency of the compressor motor; and the control of the compressor motor according to the current maximum operating frequency.

[0011] 根据本发明实施例的无电解电容电机驱动系统的控制方法,实时检测电机驱动系统的输入交流电压,并根据输入交流电压计算压缩机电机的当前最高运行频率,以及根据当前最高运行频率对压缩机电机进行控制,以在输入交流电压骤变时能够及时限制压缩机电机的最高转速,从而有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和电机驱动系统稳定、可靠运行。 [0011] The input AC voltage control method is not electrolytic capacitor motor driving system according to an embodiment of the present invention, real-time detection of the motor drive system, and according to the highest operating frequency of the alternating current input voltage of the motor of the compressor is calculated, and the maximum operating frequency of the current compressor motor control, in order to timely limit the maximum speed of the compressor motor when the sudden change in the input AC voltage, so as to effectively prevent the compressor motor runaway or damage the motor drive system, ensure that the compressor motor and the motor drive system stable and reliable operation .

[0012]根据本发明的一个实施例,当所述输入交流电压上升时,通过以下公式计算所述压缩机电机的当如最尚运tx频率: [0012] According to an embodiment of the present invention, when the AC input voltage increases, the compressor motor is calculated by the following equation when such transport is still the most tx frequency:

Figure CN106208887AD00061

[0014] 其中,Fmax为所述压缩机电机的当前最高运行频率,Vrms为所述输入交流电压的有效值,V 2为第二预设电压,V3为第三预设电压,V5为第五预设电压,Fmaxl为所述V 2对应的所述压缩机电机的最高运行频率,Fmax2为所述V3对应的所述压缩机电机的最高运行频率,且V 2〈 V3〈V5〇 [0014] where, Fmax is the maximum operating frequency of the current compressor motor, Vrms is the rms input AC voltage, V 2 is a second predetermined voltage, V3 of a third predetermined voltage, V5 for the fifth predetermined voltage, Fmaxl is the highest operating frequency of the V 2 corresponding to the compressor motor, the highest operating frequency of the Fmax2 V3 corresponding to the compressor motor, and V 2 <V3 <V5〇

[0015] 根据本发明的一个实施例,当所述输入交流电压下降时,通过以下公式计算所述压缩机电机的当iu最尚运行频率: [0015] According to an embodiment of the present invention, when the AC input voltage drops, the compressor motor is calculated by the following equation when the operating frequency is still the most iu:

Figure CN106208887AD00062

[0017] 其中,Fmax为所述压缩机电机的当前最高运行频率,Vrms为所述输入交流电压的有效值,^为第一预设电压,V 2为第二预设电压,V3为第三预设电压,V4为第四预设电压,Fmaxl* 所述V 2对应的所述压缩机电机的最高运行频率,Fmax2为所述V3对应的所述压缩机电机的最尚运行频率,且Vl〈V2〈V3〈V4。 [0017] where, Fmax is the maximum operating frequency of the compressor motor current, the effective value Vrms of the input AC voltage, a first ^ predetermined voltage, V 2 is a second predetermined voltage, V3 for the third predetermined voltage, V4 is a fourth predetermined voltage, the maximum operating frequency of Fmaxl * V 2 corresponding to the compressor motor, Fmax2 still most of the operating frequency of the compressor motor V3 corresponding to, and Vl <V2 <V3 <V4.

[0018] 根据本发明的一个实施例,所述根据所述当前最高运行频率对所述压缩机电机进行控制,包括:根据所述当前最高运行频率计算所述压缩机电机的最高运行转速;获取所述最高运行转速与预设的给定转速之间的较小值,并根据所述较小值对所述压缩机电机进行控制。 [0018] According to an embodiment of the present invention, the controlled current of the compressor motor according to the maximum operating frequency, comprising: calculating the maximum operating speed of the compressor motor according to the current maximum operating frequency; Get the maximum operating speed and a preset given a smaller value between the rotational speed, and controls the compressor motor according to the smaller value.

[0019] 根据本发明的一个实施例,所述根据所述当前最高运行频率对所述压缩机电机进行控制,还包括:获取所述输入交流电压的电压瞬时值,并根据所述电压瞬时值计算所述输入交流电压的相位估计值;对所述压缩机电机的转子位置进行估计以获得所述压缩机电机的转子角度估计值和转子速度估计值;根据所述较小值、所述转子速度估计值、所述输入交流电压的形状和所述相位估计值计算所述压缩机电机的q轴给定电流;根据逆变电路的最大输出电压和所述逆变电路的输出电压幅值计算所述压缩机电机的d轴给定电流;根据所述q轴给定电流、所述d轴给定电流、q轴实际电流和d轴实际电流获取所述压缩机电机的q轴给定电压和d轴给定电压,并根据所述q轴给定电压、所述d轴给定电压、所述转子角度估计值生成控制信号,以及根据所述控制信号通过所述逆变电路 [0019] According to an embodiment of the present invention, the controlled current of the compressor motor according to the maximum operating frequency, further comprising: obtaining a voltage instantaneous value of the AC input voltage and the instantaneous voltage value in accordance with calculating a phase estimation value of the input AC voltage; estimates the rotor position to obtain the compressor motor of the compressor motor and the rotor angle estimation value estimated rotor speed value; the smaller the value, the rotor velocity estimates, q axis of the input AC voltage and the phase of the shape of the estimated value calculating compressor motor for a given current; calculated according to the maximum output voltage amplitude of the output voltage of the inverter circuit and the inverter circuit the d-axis current given compressor motor; q-axis according to the given q-axis current, the d-axis current is given, the actual d-axis actual current and a q-axis current of the compressor motor acquiring a given voltage and given the d-axis voltage and q-axis according to the given voltage, the given d-axis voltage, the rotor angle estimation value to generate a control signal, and a signal by the inverter control circuit according to the 对所述压缩机电机进行控制。 Controlling the compressor motor.

[0020] 为实现上述目的,本发明第二方面实施例提出的一种无电解电容电机驱动系统的控制装置,包括:电压检测模块,用于实时检测电机驱动系统的输入交流电压;第一计算模块,用于根据所述输入交流电压计算压缩机电机的当前最高运行频率;以及控制模块,用于根据所述当前最高运行频率对所述压缩机电机进行控制。 [0020] To achieve the above object, a control apparatus for electrolytic capacitors without the motor drive system according to a second aspect of the forth embodiment of the present invention, comprising: a voltage detection module, an input voltage for AC motor drive system of the real-time detection; calculating a first means for calculating according to the input AC voltage to the compressor motor current highest operating frequency; and a control module, for controlling the compressor motor according to the current maximum operating frequency.

[0021] 根据本发明实施例的无电解电容电机驱动系统的控制装置,通过电压检测模块实时检测电机驱动系统的输入交流电压,第一计算模块根据输入交流电压计算压缩机电机的当前最高运行频率,控制模块根据当前最高运行频率对压缩机电机进行控制,以在输入交流电压骤变时能够及时限制压缩机电机的最高转速,从而有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和电机驱动系统稳定、可靠运行。 [0021] The control device non-electrolytic capacitors motor drive system according to an embodiment of the present invention, the input AC voltage detection module detects in real time motor drive system, a first calculation module calculates the compressor motor according to the input voltage at the current maximum operating frequency of the AC , the control module controls the compressor motor according to a current maximum operating frequency, when the input AC voltage to a sudden change to timely limit the maximum speed of the compressor motor, so as to effectively prevent the compressor motor runaway or damage the motor drive system, ensure that the compressor motor and a motor drive system stable and reliable operation.

[0022]根据本发明的一个实施例,当所述输入交流电压上升时,所述第一计算模块通过以下公式计算所述压缩机电机的当前最高运行频率: [0022] The maximum operating frequency of a current embodiment of the present invention, when the AC input voltage is raised, the first calculation module calculates the compressor motor by the following equation:

Figure CN106208887AD00071

[0024] 其中,Fmax为所述压缩机电机的当前最高运行频率,Vrms为所述输入交流电压的有效值,V 2为第二预设电压,V3为第三预设电压,V5为第五预设电压,Fmaxl为所述V 2对应的所述压缩机电机的最高运行频率,Fmax2为所述V3对应的所述压缩机电机的最高运行频率,且V 2〈 V3〈V5〇 [0024] where, Fmax is the maximum operating frequency of the current compressor motor, Vrms is the rms input AC voltage, V 2 is a second predetermined voltage, V3 of a third predetermined voltage, V5 for the fifth predetermined voltage, Fmaxl is the highest operating frequency of the V 2 corresponding to the compressor motor, the highest operating frequency of the Fmax2 V3 corresponding to the compressor motor, and V 2 <V3 <V5〇

[0025] 根据本发明的一个实施例,当所述输入交流电压下降时,所述第一计算模块通过以下公式计算所述压缩机电机的当前最高运行频率: [0025] The maximum operating frequency of a current embodiment of the present invention, when the AC input voltage drops, the first calculation module calculates the compressor motor by the following equation:

Figure CN106208887AD00072

[0027] 其中,Fmax为所述压缩机电机的当前最高运行频率,Vrms为所述输入交流电压的有效值,^为第一预设电压,V 2为第二预设电压,V3为第三预设电压,V4为第四预设电压,Fmaxl* 所述V 2对应的所述压缩机电机的最高运行频率,Fmax2为所述V3对应的所述压缩机电机的最尚运行频率,且Vl〈V2〈V3〈V4。 [0027] where, Fmax is the maximum operating frequency of the compressor motor current, the effective value Vrms of the input AC voltage, a first ^ predetermined voltage, V 2 is a second predetermined voltage, V3 for the third predetermined voltage, V4 is a fourth predetermined voltage, the maximum operating frequency of Fmaxl * V 2 corresponding to the compressor motor, Fmax2 still most of the operating frequency of the compressor motor V3 corresponding to, and Vl <V2 <V3 <V4.

[0028] 根据本发明的一个实施例,所述控制模块包括:第二计算模块,用于根据所述当前最高运行频率计算所述压缩机电机的最高运行转速;比较模块,用于获取所述最高运行转速与预设的给定转速之间的较小值,以根据所述较小值对所述压缩机电机进行控制。 [0028] According to an embodiment of the present invention, the control module comprises: a second calculating module, for calculating the maximum operating speed of the compressor motor according to the current maximum operating frequency; comparison module, configured to obtain the with a preset maximum operating speed to a smaller value between the reference rotational speed for the compressor motor control according to the smaller value.

[0029] 根据本发明的一个实施例,所述控制模块还包括:相位检测锁相环模块,用于获取所述输入交流电压的电压瞬时值,并根据所述电压瞬时值计算所述输入交流电压的相位估计值;位置速度估计器,用于对所述压缩机电机的转子位置进行估计以获得所述压缩机电机的转子角度估计值和转子速度估计值;q轴给定电流计算模块,用于根据所述较小值、所述转子速度估计值、所述输入交流电压的形状和所述相位估计值计算所述压缩机电机的q 轴给定电流;d轴给定电流计算模块,用于根据逆变电路的最大输出电压和所述逆变电路的输出电压幅值计算所述压缩机电机的d轴给定电流;电流控制器,用于根据所述q轴给定电流、所述d轴给定电流、q轴实际电流和d轴实际电流获取所述压缩机电机的q轴给定电压和d 轴给定电压,并根据所述q轴给定电压、所述d轴给定电压 [0029] According to one embodiment of the present invention, the control module further comprises: a phase locked loop detection module is configured to obtain an instantaneous value of the voltage of the input AC voltage, and calculating the instantaneous input AC voltage according to the value voltage phase estimate; position, velocity estimator for estimating the rotor position to obtain the compressor motor compressor motor rotor angle estimates and estimated rotor speed value; the q-axis current calculation block given, the smaller the value for the rotor speed estimate, the q-axis and the shape of the alternating voltage of the phase estimation value calculating compressor motor for a given current; D-axis current calculation module to set, the d-axis output voltage is used to calculate the amplitude of the compressor motor maximum output voltage of the inverter circuit and the inverter circuit given current; a current controller for the given q-axis current, the said d-axis current is given, the actual d-axis actual current and the q-axis current obtaining the q-axis motor of the compressor and a given voltage a given d-axis voltage and q-axis according to the given voltage, to the d-axis constant voltage 、所述转子角度估计值生成控制信号,以及根据所述控制信号通过所述逆变电路对所述压缩机电机进行控制。 The rotor angle estimate to generate a control signal, and controls the compressor motor through the inverter circuit according to the control signal.

[0030] 此外,本发明的实施例还提出了一种无电解电容电机驱动系统,其包括上述的无电解电容电机驱动系统的控制装置。 [0030] Further, embodiments of the present invention also proposes a non-electrolytic capacitor motor driving system, including a control device of the non-electrolytic capacitors motor drive system.

[0031] 本发明实施例的无电解电容电机驱动系统,通过上述的控制装置,能够根据输入交流电压计算压缩机电机的当前最高运行频率,以在输入交流电压骤变时能够及时限制压缩机电机的最高转速,从而有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和电机驱动系统稳定、可靠运行。 [0031] The present invention is not electrolytic capacitor motor driving system of this embodiment, by the above control apparatus, the compressor can be calculated according to the input AC voltage to motor current maximum operating frequency to the compressor motor can be limited in time when the sudden change in the input AC voltage maximum speed, so as to effectively prevent the compressor motor runaway or damage the motor drive system, the motor and the motor driving the compressor to ensure that the system is stable, reliable operation.

附图说明 BRIEF DESCRIPTION

[0032] 图1是根据本发明一个实施例的无电解电容电机驱动系统的结构示意图; [0032] FIG. 1 is a diagram showing the structure of a non-electrolytic capacitor motor driving system according to an embodiment of the present invention;

[0033] 图2是根据本发明实施例的无电解电容电机驱动系统的控制方法的流程图; [0033] FIG 2 is a flowchart of a control method for a motor drive system non-electrolytic capacitors to an embodiment of the present invention;

[0034] 图3是根据本发明一个实施例的输入交流电压上升时压缩机电机的当前最高运行频率的不意图; [0034] FIG. 3 is not intended maximum operating frequency of the current when the input AC voltage according to an embodiment of the present invention, the rise of the compressor motor;

[0035] 图4是根据本发明一个实施例的输入交流电压下降时压缩机电机的当前最高运行频率的不意图; [0035] FIG. 4 is not intended maximum operating frequency of the current when the input AC voltage according to an embodiment of the present invention decrease the compressor motor;

[0036] 图5是根据本发明一个实施例的无电解电容电机驱动系统的控制方法的流程图; [0036] FIG. 5 is a flowchart of a control method for a motor drive system without electrolytic capacitor according to one embodiment of the present invention;

[0037] 图6是根据本发明一个实施例的无电解电容电机驱动系统的控制装置的结构示意图; [0037] FIG. 6 is a diagram showing the configuration of a control device without electrolytic capacitors motor drive system according to one embodiment of the present invention;

[0038] 图7是根据本发明一个实施例的相位检测锁相环模块的结构示意图;以及 [0038] FIG. 7 is a schematic structural diagram of a phase locked loop detection module according to embodiments of the present invention; and

[0039] 图8是根据本发明实施例的无电解电容电机驱动系统的控制装置的结构示意图。 [0039] FIG. 8 is a block diagram of the control device without electrolytic capacitor motor drive system embodiment of the present invention according to embodiment.

具体实施方式 detailed description

[0040] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 [0040] Example embodiments of the present invention is described in detail below, exemplary embodiments of the embodiment shown in the accompanying drawings, wherein same or similar reference numerals designate the same or similar elements or elements having the same or similar functions. 下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。 By following with reference to the embodiments described are exemplary, and are intended for explaining the present invention and should not be construed as limiting the present invention.

[0041] 下面参考附图来描述本发明实施例提出的无电解电容电机驱动系统及其控制方法、装置。 [0041] Next, with reference to the non-electrolytic capacitors motor drive system and a control method proposed in this embodiment, the present invention is described with reference means.

[0042] 图1是根据本发明一个实施例的无电解电容电机驱动系统的结构示意图。 [0042] FIG. 1 is a block schematic diagram of a non-electrolytic capacitor motor driving system according to one embodiment of the present invention. 如图1所示,该无电解电容电机驱动系统包括:输入电感1、整流电路2、直流链部3、逆变电路4以及控制部5,其中,整流电路2对输入交流电源AC进行全波整流;直流链部3包括与整流电路2的输出侧并联的薄膜电容EC,经薄膜电容EC后,输出脉动的直流电压V dc(即直流母线电压);逆变电路4利用开关管S1-S6将直流链部3输出的脉动的直流电压Vd。 As shown, the electric motor drive system without an electrolytic capacitor comprising: an input inductor, a rectifier circuit 2, a DC link section 3, an inverter circuit 4 and a control unit 5, wherein the rectifier circuit 2 to the input AC power source AC is full-wave rectifier; DC link section 3 comprises a film capacitor in parallel with the EC output side of the rectifier circuit 2, after the film capacitor EC, outputs a pulsating DC voltage V dc (i.e. DC bus voltage); the use of the inverter circuit 4 switch S1-S6 the pulsating DC link section 3 outputs a DC voltage Vd. 转换为交流电后,供给压缩机电机6(可以为永磁同步电机);控制部5对逆变电路4中的开关管S1-S6进行控制以使压缩机电机6正常运行。 After conversion to AC power supplied to the compressor motor 6 (may be a permanent magnet synchronous motor); the control unit 5 switch S1-S6 of the inverter circuit 4 controls the motor 6 so that the normal operation of the compressor.

[0043]图2是根据本发明实施例的无电解电容电机驱动系统的控制方法的流程图。 [0043] FIG 2 is a flowchart of a control method for a motor drive system non-electrolytic capacitors to an embodiment of the present invention. 如图2 所示,该无电解电容电机驱动系统的控制方法包括以下步骤: 2, the control method of the motor drive system without electrolytic capacitor comprising the steps of:

[0044] S1,实时检测电机驱动系统的输入交流电压Va。 [0044] S1, the input voltage Va is detected in real time AC motor drive system. .

[0045] S2,根据输入交流电压Va。 [0045] S2, according to the AC voltage Va. 计算压缩机电机的当前最高运行频率Fmax。 The current maximum operating frequency of the compressor motor calculated Fmax.

[0046] 根据本发明的一个实施例,当输入交流电压Va。 [0046] According to one embodiment of the present invention, when the AC input voltage Va. 上升时,通过下述公式(1)计算压缩机电机的当如最尚运行频率Fmax: When rising, the motor of the compressor is calculated by the following equation (1) When, as most are still operating frequency Fmax:

Figure CN106208887AD00091

(1) (1)

[0048] 其中,Fmax为压缩机电机的当前最高运行频率,Vrms为输入交流电压的有效值,乂2为第二预设电压,V 3为第三预设电压,V5为第五预设电压,Fmaxl*V2对应的压缩机电机的最高运行频率,F max2为V3对应的压缩机电机的最高运行频率,且V2〈V3〈V 5。 [0048] where, Fmax is the maximum operating current frequency of the compressor motor, Vrms is the rms input AC voltage, a second predetermined voltage qe 2, V 3 of the third predetermined voltage, V5 for the fifth predetermined voltage , the maximum operating frequency Fmaxl * V2 corresponding compressor motor, F max2 V3 is the maximum operating frequency corresponding to the compressor motor, and V2 <V3 <V 5.

[0049] 具体而言,如图3所示,当输入交流电压Va。 [0049] Specifically, as shown in FIG 3, when the input AC voltage Va. 上升时,如果输入交流电压的有效值Vrms <V2,则表明输入交流电压Va。 Rising, if the input AC voltage effective value Vrms <V2, it indicates that the input AC voltage Va. 比较小,此时禁止压缩机电机启动,即当前最高运行频率F max = 0;如果V2<Vrms〈V3,则允许压缩机电机启动运行,此时可以根据输入交流电压的有效值V rms 计算当前最尚运tx频率Fmax,即Fmax= (Fmax2_Fmaxl)*(Vrms_V2)/(V3_V2)+Fmaxl ;如果V3<Vrms< Vs,则允许压缩机电机一直处于高速运转状态,即Fmax = Fmax2;如果Vrms>V5,则表明当前输入交流电SVa。 Is relatively small, the compressor is disabled and the motor starts, i.e. the current maximum operating frequency F max = 0; if V2 <Vrms <V3, the motor starts running to allow the compressor, this time may be calculated according to the current value V rms input AC voltage most still transported tx frequency Fmax, i.e. Fmax = (Fmax2_Fmaxl) * (Vrms_V2) / (V3_V2) + Fmaxl; if V3 <Vrms <Vs, allows the compressor motor has been in a high speed state, i.e. Fmax = Fmax2; if Vrms> V5, it indicates that the current input AC SVa. 过高,此时需控制压缩机电机停止工作。 Too high, then the need to control the compressor motor to stop working. 从而根据实时检测的输入交流电压来对压缩机电机的当前最高运行频率进行动态调整,以在输入交流电压上升时,能够及时限制压缩机电机的最高转速,有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和驱动电机系统稳定、可靠运行。 Thereby dynamically adjust the maximum operating frequency of the compressor motor current in accordance with real-time detection of the input AC voltage to the AC input voltage rises, the ability to limit the maximum speed of the compressor motor, compressor motor control or avoid the motor drive system damage, ensure that the compressor motor and the motor drive system is stable, reliable operation.

[0050] 根据本发明的一个实施例,当输入交流电压Va。 [0050] According to one embodiment of the present invention, when the AC input voltage Va. 下降时,通过下述公式(2)计算压缩机电机的当如最尚运行频率Fmax: When lowered, the motor of the compressor is calculated by the following equation (2) when the operating frequency is still the most as Fmax:

Figure CN106208887AD00092

[0052]其中,h为第一预设电压,V2为第二预设电压,V3为第三预设电压,V4为第四预设电压,且Vl〈V2〈V3〈V4。 [0052] wherein, h is a first predetermined voltage, V2 is the second predetermined voltage, V3 of a third predetermined voltage, V4 for the fourth predetermined voltage, and Vl <V2 <V3 <V4.

[0053] 具体而言,如图4所示,当输入交流电压Va。 [0053] Specifically, as shown in FIG. 4, when the input AC voltage Va. 下降时,如果输入交流电压的有效值Vrms >V4,则控制压缩机电机停止工作,即当前最高运行频率Fmax = 0;如果V3<Vrms<V4,则允许压缩机电机一直处于高速运转状态,即F max=Fmax2;如果V2<Vrms〈V 3,则根据输入交流电压的有效值Vrms来计算当前最尚运彳丁频率Fmax,即Fmax= (Fmax2_Fmaxl)*(Vrms_V2)/(V3_V2)+Fmaxl ;如果,则允许压缩机电机一直处于低速运转状态,即Fmax = Fmaxl ;如果,则控制压缩机电机停止工作,即当前最高运行频率Fmax = 0。 When lowered, if the effective value of the input AC voltage Vrms> V4, the control of the compressor motor to stop working, i.e., the current maximum operating frequency Fmax = 0; if V3 <Vrms <V4, allows the compressor motor has been in a high speed state, i.e., F max = Fmax2; if V2 <Vrms <V 3, is calculated according to the effective value Vrms of the input AC voltage is still the most left foot butoxy operation frequency Fmax, i.e. Fmax = (Fmax2_Fmaxl) * (Vrms_V2) / (V3_V2) + Fmaxl; If the compressor motor has been allowed to run at low speed state, i.e. Fmax = Fmaxl; if, then controls the compressor motor to stop working, i.e., the current maximum operating frequency Fmax = 0. 从而可以根据实时检测的输入交流电压来对压缩机电机的当前最高运行频率进行动态调整,以在输入交流电压跌落时,能够及时限制压缩机电机的最高转速,有效避免压缩机电机失控或电机驱动系统损坏,例如,可以有效避免空调器的压缩机处于高速运转时,因直流母线电压过低导致的力矩不足而使压缩机电机失步的问题,从而保证压缩机电机和电机驱动系统稳定、可靠运行。 Which can be dynamically adjusted maximum operating frequency of the compressor motor current in accordance with real-time detection of the input AC voltage to the input AC voltage when dropped, to timely limit the maximum speed of the compressor motor, control or avoid the motor driving the compressor motor system damage, e.g., can effectively avoid the air conditioner compressor is less than the torque of the compressor motor stall problems at high speeds, because the DC bus voltage too low leads, thus ensuring the compressor motor and the motor drive system stable and reliable run.

[0054] S3,根据当前最高运行频率Fmax对压缩机电机进行控制。 [0054] S3, controls the compressor motor according to a current maximum operating frequency Fmax.

[0055] 根据本发明的一个实施例,根据当前最高运行频率Fmax对压缩机电机进行控制,包括:根据当如最尚运彳丁频率Fmax计算压缩机电机的最尚运彳丁转速ω max;获取最尚运彳丁转速ω·与预设的给定转速4之间的较小值minC%ax,式),并根据较小值min(«4ax,<)(记为ω raf)对压缩机电机进行控制。 [0055] According to one embodiment of the present invention, the compressor motor is controlled according to a current maximum operating frequency Fmax, comprising: the left foot when such transport is still the most butoxy frequency Fmax calculated compressor motor is still the most left foot butoxy transport speed ω max; obtain the most left foot is still operational speed ω · D with a preset small value minC% ax, formula) 4 between the given rotational speed, and according to the smaller value min ( «4ax, <) (referred to as ω raf) compression electromechanical machine control.

[0056] 进一步地,如图5所示,根据当前最高运行频率Fmax对压缩机电机进行控制,还包括: [0056] Further, as shown in FIG 5 for the current maximum operating frequency of the compressor motor control Fmax, further comprising:

[0057] S101,获取输入交流电压的电压瞬时值Vge,并根据电压瞬时值Vge计算输入交流电压的相位估计值Θ#。 [0057] S101, acquires the input AC voltage Vge voltage instantaneous value, and estimated values ​​Θ # accordance with the phase voltage instantaneous value of the input AC voltage Vge calculated.

[0058]具体地,如图7所示,根据电压瞬时值Vge计算输入交流电压的相位估计值0ge,包括:对上一计算周期的输入交流电压的相位估计值进行余弦计算以获得第一计算值;将电压瞬时值Vge与第一计算值相乘以获得第二计算值;对第二计算值进行低通滤波处理以获得第三计算值,其中,低通滤波处理的带宽小于输入交流电压频率ω 8的1/5;对第三计算值进行PI (Proportional Integral,比例积分)调节以获得第四计算值;对第四计算值和输入交流电压的频率Wg之和进行积分计算以获得当前计算周期的输入交流电压的相位估计值Qge 〇 [0058] Specifically, as shown in FIG. 7, the phase estimation value calculated 0ge Vge input AC voltage according to the voltage instantaneous value, comprising: a phase estimate of the input AC voltage of a cosine calculation cycle is calculated to obtain a first calculated value; instantaneous value of the voltage Vge multiplying the first calculation value to obtain a second calculation value; calc second low-pass filtering processing to obtain a third calculated value, wherein the bandwidth of the low pass filter process is less than the input AC voltage frequency ω 1/5 8; a third calculating value PI (proportional integral, proportional integral) regulator to obtain a fourth calculated value; and a fourth frequency Wg of the calculated value and the input AC voltage to obtain a current calculated by integrating Qge phase estimate input AC voltage square calculation period

[0059] S102,对压缩机电机的转子位置进行估计以获得压缩机电机的转子角度估计值0est和转子速度估计值ω est。 Rotor angle [0059] S102, the compressor motor rotor position estimate to obtain an estimated value 0est compressor motor and rotor speed estimate ω est.

[0060] 具体地,可以通过磁链观测法获得压缩机电机的转子角度估计值0(^和转子速度估计值《est。具体而言,首先可根据两相静止坐标系上的电压VhVii和电流Ι α、Ιί!计算压缩机电机在两相静止坐标系α和β轴方向上有效磁通的估计值,具体计算公式如下: [0060] Specifically, the compressor motor may be obtained through the observation method rotor flux angle estimation value 0 (^ and estimated rotor speed value "est. Specifically, according to the voltage and current VhVii on two-phase stationary coordinate system Ι α, Ιί calculate an estimate of the effective magnetic flux in the two-phase compressor motor and the β-axis direction [alpha] stationary coordinate system, the following specific formula!:

Figure CN106208887AD00101

(3) (3)

[0062] 其中,4和冬分别为压缩机电机在α和β轴方向上有效磁通的估计值,V。 Estimate [0062] wherein, winter 4 and compressor motor are the α and β in the axial direction of the effective magnetic flux, V. 和Ve分别为α和β轴方向上的电压,L·和If!分别为α和β轴方向上的电流,R为定子电阻,Lq为压缩机电机的q轴磁链。 And Ve is the voltage across each of α and β-axis direction, L · and If! Respectively α and β on the current axis, R is the stator resistance, Lq is the q-axis flux compressor motor.

[0063] 然后,根据下述公式(4)计算压缩机电机的转子角度估计值和转子速度估计值^ est : [0063] Then, the angle of the rotor according to the formula (4) calculates an estimated value of the compressor motor and the rotor speed estimation value ^ est:

Figure CN106208887AD00102

(4) (4)

[0065] 其中,Κρ ρίι和Ki』ii分别为比例积分参数,9err为偏差角度估计值,ω f为速度低通滤波器的带宽。 [0065] wherein, Κρ ρίι Ki and "ii respectively proportional integral parameter, 9err as the deviation angle estimated value, ω f is the speed of the low pass bandwidth of the filter.

[0066] S103,根据较小值ω ref、转子速度估计值ω est、输入交流电压的形状和相位估计值十算压缩机电机的q轴给定电流Iqrrf。 [0066] S103, according to a smaller value ω ref, the rotor speed estimate ω est, and the shape of the input AC voltage phase estimate ten compressor motor operator q-axis current given Iqrrf.

[0067] 具体地,如图6所示,根据较小值ω rrf、转子速度估计值ω est、输入交流电压的形状和相位估计值Qge计算压缩机电机的q轴给定电流Iqrrf,包括:对最小值与转子速度估计值《^之间的差值进行PI调节以获得转矩幅值给定To;根据输入交流电压的形状和相位估计值生成输出变量Wf;将输出变量W f和转矩幅值给定To相乘后除以压缩机电机转矩系数Kt以获得q轴给定电流初始值IqQ;根据相位估计值生成补偿电流Iq_;将补偿电流I q_· 加至Ijq轴给定电流初始值IqQ以获得q轴给定电流I qrrf。 [0067] Specifically, as shown in FIG. 6, according to a smaller value ω rrf, rotor speed estimate ω est, the shape of the input AC voltage and the phase estimation value calculated compressor motor Qge given q-axis current Iqrrf, comprising: and the minimum value of the rotor speed estimation, "a difference between the PI ^ adjusted to achieve a given magnitude of torque the to; Wf value generation output variable according to the shape and the estimated phase of the input AC voltage; the transfer and output variables W f divided by the magnitude of a moment given by multiplying the torque coefficient Kt to compressor motor to obtain a given q-axis current initial value IQQ; Iq_ generating a compensation current according to the phase estimation value; I q_ · the compensation current is added to a given axis Ijq IqQ current initial value to obtain a given q-axis current I qrrf.

[0068]其中,输出变量可通过下述公式(5)生成: [0068] wherein the output variable may be generated by the following equation (5):

Figure CN106208887AD00111

(5) (5)

[0070] 其中,Wf ()为输出变量,Ved为输入交流电压半周期内相位为0d时的电压,Vm为输入交流电压的电压幅值,9d为电流死区所对应的相位。 [0070] wherein, Wf () as output variable, Ved phase of the AC input voltage half-cycle when the voltage 0d, Vm is the voltage amplitude of the input AC voltage, 9d current phase corresponding to the dead zone.

[0071] 补偿电流可通过下述公式(6)生成: [0071] The compensation current may be generated by the following equation (6):

Figure CN106208887AD00112

(6) (6)

[0073] 其中,Iq。 [0073] wherein, Iq. ™为补偿电流,C为并联在逆变电路的输入端之间的电容容值,0dl为预设的相位参数,其值可以为电流死区所对应的相位9d,具体可取0.1~0.2rad。 ™ is a compensation current, C is the value of the capacitor connected in parallel between the input terminal of the inverter circuit, as the preset phase 9d 0dl phase parameter, which may be a current value corresponding to the dead zone, particularly preferably 0.1 ~ 0.2rad.

[0074] S104,根据逆变电路的最大输出电压Vmax和逆变电路的输出电压幅值算压缩机电机的d轴给定电流Idrrf。 [0074] S104, the output voltage amplitude of the maximum output voltage Vmax of the inverter circuit and the inverter circuit is calculated the d-axis current of the compressor motor for a given Idrrf.

[0075] 具体地,如图6所示,根据逆变电路的最大输出电压Vmax和逆变电路的输出电压幅值乂:计算压缩机电机的d轴给定电流Idrrf,包括:对逆变电路的最大输出电压V max与逆变电路的输出电压幅值乂:之差进行弱磁控制以获得d轴给定电流初始值Ido;对d轴给定电流初始值Ido进行限幅处理以获得d轴给定电流Idref。 [0075] Specifically, as shown in Figure 6, the output voltage amplitude of the maximum output voltage Vmax and the inverter circuit of the inverter circuit qe: D-axis is calculated for a given compressor motor current Idrrf, comprising: an inverter circuit qe output voltage amplitude V max and the maximum output voltage of the inverter circuit: the difference between the flux weakening control in order to obtain the d-axis current initial value Ido given; the d-axis current initial value given Ido clipping process to obtain d given axis current Idref.

[0076] 其中,可通过下述公式(7)计算d轴给定电流初始值Id0: [0076] wherein, the d-axis can be calculated by the following equation (7) given current initial value Id0:

Figure CN106208887AD00113

(7): (7):

[0078] 其中,L为积分控制系数, [0078] wherein, L is an integral control coefficient,

Figure CN106208887AD00114

Vd和Vq分别为压缩机电机的d 7 , 轴实际电压和q轴实际电压,Vd。 Vd and Vq are the motor of the compressor d 7, the real voltage axis and the q-axis actual voltage, Vd. 为压缩机电机的直流母线电压。 DC link voltage for the compressor motor.

[0079] 然后,根据电流给定初始值Id〇,并通过下述公式(8)计算d轴给定电流Idrrf: [0079] Then, a given initial value according to a current Id〇, and calculates the d-axis current Idrrf given by the following equation (8):

Figure CN106208887AD00115

(8) (8)

[0081 ]其中,Id_g为压缩机电机退磁电流限制值。 [0081] wherein, Id_g demagnetization compressor motor current limit value.

[0082] S105,根据q轴给定电流Iqrrf、d轴给定电流Idrrf、q轴实际电流idPd轴实际电流Id 获取压缩机电机的q轴给定电压Vqrrf和d轴给定电压Vdrrf,并根据q轴给定电压Vqrrf、d轴给定电压Vdrrf、转子角度估计值0est生成控制信号,以及根据控制信号通过逆变电路对压缩机电机进行控制。 [0082] S105, the q-axis in accordance with a given current Iqrrf, d-axis current given Idrrf, q axis actual current idPd q-axis actual current Id acquired shaft of the compressor motor Vqrrf given voltage and a given d-axis voltage Vdrrf, and in accordance with given q-axis voltage Vqrrf, d-axis voltage given Vdrrf, the rotor angle estimation value 0est generating a control signal, and the control of the compressor motor by an inverter circuit in accordance with a control signal.

[0083] 具体地,可以通过下述公式(9)计算q轴给定电压Vqref和d轴给定电压Vdref : [0083] Specifically, the q-axis can be calculated by the following equation (9) given Vqref and the d-axis voltage given voltage Vdref:

Figure CN106208887AD00121

(9) (9)

[0085] 其中,Idq轴实际电流,Id为d轴实际电流,KPd和Kid分别为d轴电流控制比例增益与积分增益,KM和Kiq分别为q轴电流控制比例增益与积分增益,ω为压缩机电机的转速, 为压缩机电机的反电势系数,Ld和Lq分别为d轴电感和q轴电感,£[* ( τ 表示χ(τ)在时间上的积分。 [0085] wherein, Idq axis actual current, Id is a d axis actual current, KPd and Kid were d-axis current control proportional gain and integral gain, KM and Kiq are the q-axis current control proportional gain and integral gain, ω compression machine motor rotation speed, back EMF coefficient for the compressor motor, Ld and Lq are the d-axis inductance and the q-axis inductance, £ [* (τ indicates χ (τ) integrated over time.

[0086] 在获取到q轴给定电压Vqrrf和d轴给定电压Vdrrf后,可根据转子角度估计值Θμι;对q 轴给定电压Vqrrf和d轴给定电压Vdref进行Park逆变换,得到两相静止坐标系上的电压Va、Vf!, 具体变换公式如下: [0086] After obtaining the q-axis given voltage Vqrrf and the d-axis given voltage Vdrrf, it may be estimated in accordance with the rotor angle value Θμι; q-axis given voltage Vqrrf and the d-axis given voltage Vdref for Inverse Park, to give two the phase voltage Va is a stationary coordinate system, Vf !, specifically transform formula is as follows:

Figure CN106208887AD00122

(10) (10)

[0088] 进一步地,对两相静止坐标系上的电压να、νί!进行Clark逆变换,得到三相电压指令乂^^~具体变换公式如下: [0088] Further, the voltage να on two-phase stationary coordinate system, νί Clark inverse transformation performed to obtain the three-phase voltage command ^^ ~ qe DETAILED following conversion formula!:

Figure CN106208887AD00123

(11) (11)

[0090] 然后,可根据直流母线电压Vdc和三相电压指令Vu、V v、Vw进行占空比计算,得到占空比控制信号,即三相占空比011、0 ¥、0,,具体计算公式如下: Du=(Fu+0.5V,)/FJc [0090] Then, according to the DC link voltage Vdc and the three-phase voltage command Vu, V v, Vw for duty ratio calculation to obtain the duty ratio control signal, i.e., the duty ratio of the three-phase 011,0 ¥, 0 ,, particularly is calculated as follows: Du = (Fu + 0.5V,) / FJc

[0091] A.=(^.+〇-5F;t)/^, (12) A,=(^,+0.5Ft)/^ [0091] A =. (^ + Square-5F;. T) / ^, (12) A, = (^, + 0.5Ft) / ^

[0092] 最后,根据三相占空比DU、DV、DW对逆变电路的开关管进行控制,以实现对压缩机电机的控制。 [0092] Finally, a three-phase duty ratio DU, DV, DW of the switch of the inverter circuit is controlled to achieve control of the compressor motor.

[0093] 综上所述,根据本发明实施例的无电解电容电机驱动系统的控制方法,实时检测电机驱动系统的输入交流电压,并根据输入交流电压计算压缩机电机的当前最高运行频率,以及根据当前最高运行频率对压缩机电机进行控制,以在输入交流电压骤变时能够及时限制压缩机电机的最高转速,从而有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和电机驱动系统稳定、可靠运行。 [0093] As described above, according to the AC voltage controlling method is not electrolytic capacitor motor driving system according to an embodiment of the present invention, real-time detection of the motor drive system, and according to the highest operating frequency of the alternating current input voltage calculating compressor motor, and the current maximum operating frequency of the compressor motor control, in order to timely limit the maximum speed of the compressor motor when the sudden change in the input AC voltage, so as to effectively prevent the compressor motor runaway or damage the motor drive system, ensure that the compressor motor and a motor driver system stable and reliable operation.

[0094] 图8是根据本发明一个实施例的无电解电容电机驱动系统的控制装置的结构示意图。 [0094] FIG. 8 is a block diagram of the control apparatus of a motor drive system without electrolytic capacitor according to one embodiment of the present invention. 如图8所示,该控制装置包括:电压检测模块10、第一计算模块20和控制模块30。 8, the control apparatus comprising: a 10, a first calculation module 20 and control module 30 a voltage detection module.

[0095] 具体地,电压检测模块10用于实时检测电机驱动系统的输入交流电SVa。 [0095] Specifically, the AC input voltage detection module 10 SVa for real-time detection of the motor drive system. . 第一计算模块20用于根据输入交流电SV a。 A first calculation module 20 based on the input AC SV a. 计算压缩机电机的当前最高运行频率Fmax。 The current maximum operating frequency of the compressor motor calculated Fmax.

[0096] 根据本发明的一个实施例,当输入交流电压Vac上升时,第一计算模块20通过上述公式(1)计算压缩机电机的当前最高运行频率F max。 [0096] According to one embodiment of the present invention, when the AC input voltage Vac increases, a first calculation module 20 calculates the compressor motor by the above formula (1) the current maximum operating frequency F max.

[0097] 具体而言,如图3所示,当输入交流电压Va。 [0097] Specifically, as shown in FIG 3, when the input AC voltage Va. 上升时,如果输入交流电压的有效值Vrms <V2,则表明输入交流电压Va。 Rising, if the input AC voltage effective value Vrms <V2, it indicates that the input AC voltage Va. 比较小,此时禁止压缩机电机启动,即当前最高运行频率F max = 0;如果V2<Vrms〈V3,则允许压缩机电机启动运行,此时可以根据输入交流电压的有效值V rms 计算当前最尚运tx频率Fmax,即Fmax= (Fmax2_Fmaxl)*(Vrms_V2)/(V3_V2)+Fmaxl ;如果V3<Vrms< Vs,则允许压缩机电机一直处于高速运转状态,即Fmax = Fmax2;如果Vrms>V5,则表明当前输入交流电SVa。 Is relatively small, the compressor is disabled and the motor starts, i.e. the current maximum operating frequency F max = 0; if V2 <Vrms <V3, the motor starts running to allow the compressor, this time may be calculated according to the current value V rms input AC voltage most still transported tx frequency Fmax, i.e. Fmax = (Fmax2_Fmaxl) * (Vrms_V2) / (V3_V2) + Fmaxl; if V3 <Vrms <Vs, allows the compressor motor has been in a high speed state, i.e. Fmax = Fmax2; if Vrms> V5, it indicates that the current input AC SVa. 过高,此时需控制压缩机电机停止工作。 Too high, then the need to control the compressor motor to stop working. 从而根据实时检测的输入交流电压来对压缩机电机的当前最高运行频率进行动态调整,以在输入交流电压上升时,能够及时限制压缩机电机的最高转速,有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和驱动电机系统稳定、可靠运行。 Thereby dynamically adjust the maximum operating frequency of the compressor motor current in accordance with real-time detection of the input AC voltage to the AC input voltage rises, the ability to limit the maximum speed of the compressor motor, compressor motor control or avoid the motor drive system damage, ensure that the compressor motor and the motor drive system is stable, reliable operation.

[0098]根据本发明的一个实施例,当输入交流电压Vac下降时,第一计算模块20通过上述公式(2)计算压缩机电机的当前最高运行频率Fmax。 [0098] According to one embodiment of the present invention, when the input AC voltage Vac drops, a first calculation module 20 calculates the compressor motor by the above formula (2) the current maximum operating frequency Fmax.

[0099]具体而言,如图4所示,当输入交流电压Va。 [0099] Specifically, as shown in FIG. 4, when the input AC voltage Va. 下降时,如果输入交流电压的有效值Vrms >V4,则控制压缩机电机停止工作,即当前最高运行频率Fmax = 0;如果V3<Vrms<V4,则允许压缩机电机一直处于高速运转状态,即F max=Fmax2;如果V2<Vrms〈V 3,则根据输入交流电压的有效值Vrms来计算当前最尚运彳丁频率Fmax,即Fmax= (Fmax2_Fmaxl)*(Vrms_V2)/(V3_V2)+Fmaxl ;如果,则允许压缩机电机一直处于低速运转状态,即Fmax = Fmaxl ;如果,则控制压缩机电机停止工作,即当前最高运行频率Fmax = 0。 When lowered, if the effective value of the input AC voltage Vrms> V4, the control of the compressor motor to stop working, i.e., the current maximum operating frequency Fmax = 0; if V3 <Vrms <V4, allows the compressor motor has been in a high speed state, i.e., F max = Fmax2; if V2 <Vrms <V 3, is calculated according to the effective value Vrms of the input AC voltage is still the most left foot butoxy operation frequency Fmax, i.e. Fmax = (Fmax2_Fmaxl) * (Vrms_V2) / (V3_V2) + Fmaxl; If the compressor motor has been allowed to run at low speed state, i.e. Fmax = Fmaxl; if, then controls the compressor motor to stop working, i.e., the current maximum operating frequency Fmax = 0. 从而可以根据实时检测的输入交流电压来对压缩机电机的当前最高运行频率进行动态调整,以在输入交流电压跌落时,能够及时限制压缩机电机的最高转速,有效避免压缩机电机失控或电机驱动系统损坏,例如,可以有效避免空调器的压缩机处于高速运转时,因直流母线电压过低导致的力矩不足而使的压缩机电机失步的问题,从而保证压缩机电机和电机驱动系统稳定、可靠运行。 Which can be dynamically adjusted maximum operating frequency of the compressor motor current in accordance with real-time detection of the input AC voltage to the input AC voltage when dropped, to timely limit the maximum speed of the compressor motor, control or avoid the motor driving the compressor motor system damage, e.g., can effectively avoid the air conditioner compressor is in a high-speed operation of the compressor motor step, the torque is insufficient due to the DC link voltage caused by the low, thus ensuring the compressor motor and the motor drive system is stable, reliable operation.

[0100]控制模块30用于根据当前最高运行频率Fmax对压缩机电机进行控制。 [0100] The control module 30 for controlling a compressor motor based on the current maximum operating frequency Fmax.

[0101] 根据本发明的一个实施例,如图8所示,控制模块30包括:第二计算模块31和比较模块32,其中,第二计算模块31用于根据当前最高运行频率F max计算压缩机电机的最高运行转速《max;比较模块32用于获取最高运行转速〇max与预设的给定转速4之间的较小值<\以根据较小值<)(记为c〇ref)对压缩机电机进行控制。 [0101] According to one embodiment of the present invention, as shown in FIG, 8 the control module 30 comprises: a second calculating module 31 and the comparison module 32, wherein the second calculation module 31 for compressing according to the current calculated maximum operating frequency F max the maximum operating speed of the machine motor "max; comparison module 32 is configured to obtain the maximum operating speed 〇max smaller values ​​given preset rotational speed between the 4 <\ smaller value in accordance with <) (referred to as c〇ref) the compressor motor control.

[0102] 进一步地,如图6所示,控制模块30还包括:相位检测锁相环模块33、位置速度估计器34、q轴给定电流计算模块35、d轴给定电流计算模块36和电流控制器37。 [0102] Further, as shown in FIG. 6, the control module 30 further comprises: a phase locked loop detection module 33, the position and speed estimator 34, q-axis current given calculation module 35, d-axis current calculation block 36 given and a current controller 37.

[0103] 其中,相位检测锁相环模块33用于获取输入交流电压的电压瞬时值Vg(3,并根据电压瞬时值Vg4十算输入交流电压的相位估计值Q g(3。 [0103] wherein the phase locked loop detection module 33 is configured to acquire the instantaneous value of the voltage Vg of the AC voltage input (3, and the phase of the AC input voltage is calculated according to the instantaneous value of the voltage Vg4 ten estimation value Q g (3.

[0104] 具体地,如图7所示,相位检测锁相环模块33包括:余弦计算器331、第一乘法器332、低通滤波器333、第一PI调节器334和积分器335。 [0104] Specifically, as shown in FIG. 7, the phase locked loop detection module 33 comprises: a cosine calculator 331, a first multiplier 332, lowpass filter 333, the first PI regulator 334 and integrator 335. 其中,余弦计算器331用于对上一计算周期的输入交流电压的相位估计值进行余弦计算以获得第一计算值;第一乘法器332将电压瞬时值V ge与第一计算值相乘以获得第二计算值;低通滤波器333对第二计算值进行低通滤波处理以获得第三计算值,其中,低通滤波器333的带宽小于输入交流电压频率〇^的1/ 5;第一PI调节器334对第三计算值进行PI调节以获得第四计算值;积分器335对第四计算值和输入交流电压的频率《8之和进行积分计算以获得当前计算周期的输入交流电压的相位估计值9ge。 Wherein a cosine calculator 331 estimates a phase of the input AC voltage of a cosine calculation cycle is calculated to obtain a first calculation value; a first voltage multiplier 332 and the instantaneous value of V ge multiplying the first calculation value obtaining a second calculation value; second low-pass filter 333 calculate the low-pass filtered value to obtain a third calculated value, wherein the bandwidth of the low pass filter 333 is less than the input AC voltage frequency square ^ 1/5; first a PI controller 334 calculates a third value to obtain a fourth PI regulator calcd; integral calculation value 335 and the fourth input AC voltage frequency "8 calculated by integrating the sum of the current calculation cycle to obtain the input AC voltage the phase estimate 9ge.

[0105] 位置速度估计器34用于对压缩机电机的转子位置进行估计以获得压缩机电机的转子角度估计值和转子速度估计值。 [0105] position of the speed estimator 34 for the compressor motor rotor position estimate to obtain the compressor motor rotor angle estimation value and the estimated rotor speed value.

[0106] 具体地,可以通过磁链观测法获得压缩机电机的转子角度估计值0(^和转子速度估计值《est。具体而言,首先可根据两相静止坐标系上的电压VhVii和电流Ι α、Ιί!计算压缩机电机在两相静止坐标系α和β轴方向上有效磁通的估计值,具体如上述公式(3)所示。然后, 根据上述公式(4)计算压缩机电机的转子角度估计值和转子速度估计值ω est。 [0106] Specifically, the compressor motor may be obtained through the observation method rotor flux angle estimation value 0 (^ and estimated rotor speed value "est. Specifically, according to the voltage and current VhVii on two-phase stationary coordinate system Ι α, Ιί! calculate an estimate of the effective magnetic flux in the two-phase compressor motor stationary coordinate system and the β-axis direction [alpha], particularly as the above equation (3). then, (4) of the compressor motor is calculated based on the formula the rotor angle estimation value and the rotor speed estimate ω est.

[01 07] q轴给定电流计算模块35用于根据较小值ω ref、转子速度估计值ω est、输入交流电压的形状和相位估计值Qge计算压缩机电机的q轴给定电流Iqrrf。 [01 07] q-axis current calculation module 35 is given according to a smaller value ω ref, the rotor speed estimate ω est, the shape of the input AC voltage and the q-axis phase estimation value calculated Qge compressor motor current given Iqrrf.

[0108]具体地,如图6所示,q轴给定电流计算模块35包括:第二PI调节器351、波形发生器352、初始电流计算单元353、电容电流补偿单元354和叠加单元355。 [0108] Specifically, as shown in FIG. 6, q-axis current given calculation module 35 comprises: a second PI regulator 351, waveform generator 352, an initial current calculation unit 353, the capacitive current compensation unit 354 and superimposing unit 355. 其中,第二PI调节器351 用于对最小值wre3f与转子速度估计值之间的差值进行PI调节以获得转矩幅值给定To; 波形发生器352用于根据输入交流电压的形状和相位估计值0 ge生成输出变量Wf;初始电流计算单元353将输出变量Wf和转矩幅值给定To相乘后除以压缩机电机转矩系数K t以获得q轴给定电流初始值IqQ;电容电流补偿单元354用于根据相位估计值0g(3生成补偿电流Iq_ ;叠加单元355用于将补偿电流Iq。™叠加到q轴给定电流初始值IqQ以获得q轴给定电流Iqrrf。其中, 波形发生器352可通过上述公式(5)生成输出变量Wf。电容电流补偿单元354可通过上述公式(6)生成补偿电流I q。™。 Wherein the second PI regulator 351 is used to estimate the speed difference between the rotor and the minimum value wre3f PI adjusted to achieve a given magnitude of torque the To; waveform generator 352 according to the shape of the input AC voltage and phase estimate to generate an output variable Wf 0 ge; initial current calculating unit 353 outputs the variable amplitude Wf ​​and torque given by multiplying to by dividing the compressor motor torque coefficient K t to obtain the q-axis current initial value given IqQ ; current compensation unit 354 for the capacitor (3 generates a compensation current based on the phase estimation value Iq_ 0g; superimposing unit 355 for superimposing the compensating current Iq ™ given to the q-axis current initial value IqQ to obtain the q-axis current given Iqrrf.. wherein the waveform generator 352 may be generated by the above equation (5) the output variable Wf. capacitance current compensation unit 354 may generate a compensation current I q by the above equation (6). ™.

[0109 ] d轴给定电流计算模块36用于根据逆变电路4的最大输出电压和逆变电路4的输出电压幅值计算压缩机电机的d轴给定电流。 [0109] Given the d-axis current calculation block 36 for calculating the d-axis motor of the compressor based on the output voltage amplitude of the maximum output voltage of the inverter circuit 4 and the inverter circuit 4 to a constant current.

[0110] 具体地,如图6所示,d轴给定电流计算模块36包括:弱磁控制器361和限幅单元362,其中,弱磁控制器361用于对逆变电路4的最大输出电压V max与逆变电路4的输出电压幅值%之差进行弱磁控制以获得d轴给定电流初始值Ido;限幅单元362用于对d轴给定电流初始值Ido进行限幅处理以获得d轴给定电流Idref。 [0110] Specifically, as shown in FIG. 6, d-axis current calculation block 36 given comprising: weakening controller 361 and a clipping unit 362, wherein the weakening controller 361 for the maximum output of the inverter circuit 4 output voltage amplitude of 4% difference between the voltage V max of the inverter circuit weakening control to obtain the d-axis current initial value given Ido; clipping unit 362 d-axis current initial value for a given clipping process Ido to obtain a given d-axis current Idref. 其中,弱磁控制器361可通过上述公式(7)计算d轴给定电流初始值Ido。 Wherein weakening controller 361 may calculate the d-axis current initial value Ido given by the above equation (7). 然后,限幅单元362通过上述公式(8)计算d轴给定电流Idrrf。 Then, the limiter unit 362 by the above formula (8) calculates the d-axis current given Idrrf.

[0111] 电流控制器37用于根据q轴给定电流Iqrrf、d轴给定电流Idrrf、q轴实际电流idPd轴实际电流Id获取压缩机电机的q轴给定电压Vqrrf和d轴给定电压Vdrrf,并根据q轴给定电压Vqrrf、d轴给定电压Vdrrf、转子角度估计值0^生成控制信号,以及根据控制信号通过逆变电路4对压缩机电机进行控制。 [0111] The current controller 37 for a given q-axis current Iqrrf, d-axis current given Idrrf, compressor motor actual current Id acquired q-axis q-axis actual current idPd given axis and the d-axis voltage Vqrrf given voltage Vdrrf, and the q-axis in accordance with a given voltage Vqrrf, d-axis voltage given Vdrrf, 0 ^ rotor angle estimate to generate a control signal, and controlling the inverter circuit 4 through the compressor motor according to the control signal.

[0112] 具体地,电流控制器37可通过上述公式(9)计算q轴给定电压Vqref和d轴给定电压Vdrrf。 [0112] In particular, the current controller 37 may be given Vqref and the d-axis voltage given q-axis voltage Vdrrf calculated by the above equation (9). 在获取到q轴给定电压Vqrrf和d轴给定电压Vdrrf后,可根据转子角度估计值对q轴给定电压Vqrrf和d轴给定电压Vdref进行Park逆变换,得到两相静止坐标系上的电压Va、Vf!,具体变换公式如上述公式(10)。 After obtaining the q-axis given voltage Vqrrf and the d-axis given voltage Vdrrf, according to the rotor angle estimation value of the q-axis given voltage Vqrrf and the d-axis given voltage Vdref be Park inverse transformation to obtain the two-phase stationary coordinate system the voltage Va, Vf !, particularly transformation formula as the above equation (10). 然后,对两相静止坐标系上的电压ν α、νί!进行Clark逆变换,得到三相电压指令¥11^,,具体变换公式如上述公式(11)。 Then, the voltage on the two-phase stationary coordinate ν α, νί! Clark inverse transformation performed to obtain the three-phase voltage command ¥ 11 ^ ,, particularly transformation formula as the above equation (11). 然后,占空比计算单元38根据直流母线电压Vdc和三相电压指令V u、Vv、Vw进行占空比计算,得到占空比控制信号,即三相占空比Du、Dv、Dw,具体计算公式如上述公式(12)。 Then, duty ratio calculation unit 38 according to the DC link voltage Vdc and the three-phase voltage V u, Vv, Vw duty ratio calculation to obtain the duty ratio control signal, i.e., the three-phase duty ratio Du, Dv, Dw, particularly calculated as described in equation (12). 最后,根据三相占空比DU、DV、DW对逆变电路的开关管进行控制,以实现对压缩机电机的控制。 Finally, three-phase duty ratio DU, DV, DW of the switch of the inverter circuit is controlled to achieve control of the compressor motor.

[0113]可以理解的是,本发明实施例的控制装置中的第一计算模块20和控制模块30可以集成在图1所示的控制部5中。 [0113] It will be appreciated that the embodiment of the control device of the present invention, the first calculating module 20 and control module 30 may be integrated into the control unit 5 shown in FIG.

[0114] 根据本发明实施例的无电解电容电机驱动系统的控制装置,通过电压检测模块实时检测电机驱动系统的输入交流电压,第一计算模块根据输入交流电压计算压缩机电机的当前最高运行频率,控制模块根据当前最高运行频率对压缩机电机进行控制,以在输入交流电压骤变时能够及时限制压缩机电机的最高转速,从而有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和电机驱动系统稳定、可靠运行。 [0114] The control device non-electrolytic capacitors motor drive system according to an embodiment of the present invention, the input AC voltage detection module detects in real time motor drive system, a first calculation module calculates the compressor motor according to the input voltage at the current maximum operating frequency of the AC , the control module controls the compressor motor according to a current maximum operating frequency, when the input AC voltage to a sudden change to timely limit the maximum speed of the compressor motor, so as to effectively prevent the compressor motor runaway or damage the motor drive system, ensure that the compressor motor and a motor drive system stable and reliable operation.

[0115] 此外,本发明的实施例还提出了一种无电解电容电机驱动系统,其包括上述的无电解电容电机驱动系统的控制装置。 [0115] Further, embodiments of the present invention also proposes a non-electrolytic capacitor motor driving system, including a control device of the non-electrolytic capacitors motor drive system.

[0116] 本发明实施例的无电解电容电机驱动系统,通过上述的控制装置,能够根据输入交流电压计算压缩机电机的当前最高运行频率,以在输入交流电压骤变时能够及时限制压缩机电机的最高转速,从而有效避免压缩机电机失控或电机驱动系统损坏,保证压缩机电机和电机驱动系统稳定、可靠运行。 [0116] The present invention is not electrolytic capacitor motor driving system of this embodiment, by the above control apparatus, the compressor can be calculated according to the input AC voltage to motor current maximum operating frequency to the compressor motor can be limited in time when the sudden change in the input AC voltage maximum speed, so as to effectively prevent the compressor motor runaway or damage the motor drive system, the motor and the motor driving the compressor to ensure that the system is stable, reliable operation.

[0117]在本发明的描述中,需要理解的是,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。 [0117] In the description of the present invention, it is to be understood that the terms "first", "second" are for illustrative purposes only, and not intended to indicate or imply relative importance or implicitly indicated technical features specified in quantity. 由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括至少一个该特征。 Thus, there is defined "first", "second" features may be explicitly or implicitly include at least one of the feature. 在本发明的描述中,"多个" 的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。 In the description of the present invention, the meaning of the "plurality" is at least two, e.g. two, three, etc., unless explicitly specifically limited.

[0118] 在本发明中,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"、"固定"等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。 [0118] In the present invention, unless otherwise expressly specified or limited, the terms "mounted," "connected," "connected," "fixed" and like terms are to be broadly understood, for example, may be a fixed connection, may be detachable connection, or integrally; may be a mechanical connector may be electrically connected; may be directly connected, can also be connected indirectly through intervening structures, it may be interaction between the two internal communicating elements or two elements, unless otherwise expressly limited. 对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。 Those of ordinary skill in the art, to be understood that the specific meanings in the present invention depending on the circumstances.

[0119] 在本说明书的描述中,参考术语"一个实施例"、"一些实施例"、"示例"、"具体示例"、或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。 [0119] In the description of the present specification, reference to the term "one embodiment," "some embodiments", "an example", "a specific example", or "some examples" means that a description of the exemplary embodiment or embodiments described a particular feature, structure, material, or characteristic is included in at least one embodiment of the present invention, embodiments or examples. 在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。 In the present specification, a schematic representation of the above terms must not be the same for the embodiment or exemplary embodiments. 而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。 Furthermore, the particular features, structures, materials, or characteristics described may be in any one or more embodiments or examples combined in suitable manner. 此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。 Furthermore, different embodiments or examples and embodiments or features of different exemplary embodiments without conflicting, those skilled in the art described in this specification can be combined and the combination thereof.

[0120] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。 [0120] Although the above has been illustrated and described embodiments of the present invention, it is understood that the above embodiments are exemplary and are not to be construed as limiting the present invention, within the scope of the invention to those of ordinary skill in the art It may be variations of the above embodiments, modifications, alternatives, and modifications.

Claims (8)

  1. 1. 一种无电解电容电机驱动系统的控制方法,其特征在于,包括以下步骤: 实时检测电机驱动系统的输入交流电压; 根据所述输入交流电压计算压缩机电机的当前最高运行频率;以及根据所述当前最高运行频率对所述压缩机电机进行控制。 1. A method for controlling non-electrolytic capacitors motor drive system, characterized by comprising the steps of: detecting an input AC voltage of the motor drive system in real time; calculation of the compressor motor current according to the input AC voltage maximum operating frequency; and The the current maximum operating frequency of the compressor motor control. 2 ·根据权利要求1所述的控制方法,其特征在于,当所述输入交流电压上升时,通过以下公式计算所述压缩机电机的当前最高运行频率: 2. The control method according to claim 1, wherein, when the input AC voltage rises, the compressor motor is calculated by the following equation current highest operating frequency:
    Figure CN106208887AC00021
    其中,Fmax为所述压缩机电机的当前最高运行频率,Vrms为所述输入交流电压的有效值, V2为第二预设电压,V3为第三预设电压,V5为第五预设电压,F maxl为所述V2对应的所述压缩机电机的最高运行频率,FMax2为所述V3对应的所述压缩机电机的最高运行频率,且V 2〈V3<V5。 Where, Fmax is the maximum current of the compressor motor operating frequency, the effective value Vrms of the input AC voltage, V2 is the second predetermined voltage, V3 of a third predetermined voltage, V5 for the fifth predetermined voltage, F maxl V2 is the maximum operating frequency of the compressor motor corresponding to the maximum operating frequency of the Fmax2 V3 corresponding to the compressor motor, and V 2 <V3 <V5.
  2. 3. 根据权利要求1或2所述的控制方法,其特征在于,当所述输入交流电压下降时,通过以下公式计算所述压缩机电机的当前最高运行频率: The control method of claim 1 or claim 2, wherein, when the input AC voltage drop is calculated by the following formula of the compressor motor current maximum operating frequency:
    Figure CN106208887AC00022
    其中,Fmax为所述压缩机电机的当前最高运行频率,vrms为所述输入交流电压的有效值, W为第一预设电压,V2为第二预设电压,v3为第三预设电压,V4为第四预设电压,F maxl为所述V2对应的所述压缩机电机的最_运行频率,Fmax2为所述V3对应的所述压缩机电机的最尚运ί丁频率,且Vl〈V2<V3<V4。 Where, Fmax is the maximum current of the compressor motor operating frequency, the effective value Vrms of the input AC voltage, W is a first predetermined voltage, V2 is the second predetermined voltage, v3 of the third predetermined voltage, a fourth predetermined voltage V4, F maxl _ most of the operating frequency of the compressor motor V2 corresponding to, the most Fmax2 V3 corresponding to the compressor motor is still operational frequency ί butoxy, and Vl < V2 <V3 <V4.
  3. 4. 根据权利要求1所述的控制方法,其特征在于,所述根据所述当前最高运行频率对所述压缩机电机进行控制,包括: 根据所述当前最高运行频率计算所述压缩机电机的最高运行转速; 获取所述最高运行转速与预设的给定转速之间的较小值,并根据所述较小值对所述压缩机电机进行控制。 The control method according to claim 1, wherein said controlling the compressor motor according to the current maximum operating frequency, comprising: according to the current maximum operating frequency of the compressor motor is calculated the maximum operating speed; obtaining the maximum operating speed and a preset given a smaller value between the rotational speed, and controls the compressor motor according to the smaller value. 5 ·根据权利要求4所述的控制方法,其特征在于,所述根据所述当前最高运行频率对所述压缩机电机进行控制,还包括: 获取所述输入交流电压的电压瞬时值,并根据所述电压瞬时值计算所述输入交流电压的相位估计值; 对所述压缩机电机的转子位置进行估计以获得所述压缩机电机的转子角度估计值和转子速度估计值; 根据所述较小值、所述转子速度估计值、所述输入交流电压的形状和所述相位估计值计算所述压缩机电机的q轴给定电流; 根据逆变电路的最大输出电压和所述逆变电路的输出电压幅值计算所述压缩机电机的d轴给定电流; 根据所述q轴给定电流、所述d轴给定电流、q轴实际电流和d轴实际电流获取所述压缩机电机的q轴给定电压和d轴给定电压,并根据所述q轴给定电压、所述d轴给定电压、所述转子角度估计值生成控制信号,以及根据所 5. The control method as claimed in claim 4, wherein said controlling the compressor motor according to the current maximum operating frequency, further comprising: obtaining a voltage instantaneous value of the input AC voltage, and in accordance with the voltage value calculating instantaneous phase estimate of the input AC voltage; estimates the rotor position to obtain the compressor motor of the compressor motor and the rotor angle estimation value estimated rotor speed value; according to said smaller value of the rotor speed estimate, the q-axis current given shape AC voltage and the phase of the estimated value calculating compressor motor; according to the maximum output voltage of the inverter circuit and the inverter circuit calculating the compressor output voltage amplitude given d-axis current of the motor; according to the given q-axis current, the d-axis given current, q axis actual current and the d-axis actual current of the compressor motor acquires the q-axis and d-axis given voltage a given voltage, and according to the given q-axis voltage, the d-axis given voltage, the rotor angle estimation value to generate a control signal, and in accordance with the 控制信号通过所述逆变电路对所述压缩机电机进行控制。 Control signal controls the compressor motor through the inverter circuit.
  4. 6.-种无电解电容电机驱动系统的控制装置,其特征在于,包括: 电压检测模块,用于实时检测电机驱动系统的输入交流电压; 第一计算模块,用于根据所述输入交流电压计算压缩机电机的当前最高运行频率;以及控制模块,用于根据所述当前最高运行频率对所述压缩机电机进行控制。 Control means 6.- species of electrolytic capacitors motor drive system, characterized by comprising: a voltage detecting means for detecting an input AC voltage motor drive system in real time; a first calculation module for calculating according to the AC voltage input the current maximum operating frequency of the compressor motor; and a control module, for controlling the compressor motor according to the current maximum operating frequency.
  5. 7·根据权利要求6所述的控制装置,其特征在于,当所述输入交流电压上升时,所述第一计算模块通过以下公式计算所述压缩机电机的当前最高运行频率: 7. The control device according to claim 6, wherein, when the input AC voltage rises, the current maximum operating frequency of the compressor motor by the first calculation module calculates the following formula:
    Figure CN106208887AC00031
    其中,Fmax为所述压缩机电机的当前最高运行频率,Vrms为所述输入交流电压的有效值, V2为第二预设电压,V3为第三预设电压,V5为第五预设电压,F maxl为所述V2对应的所述压缩机电机的最高运行频率,Fmax2为所述V3对应的所述压缩机电机的最高运行频率,且V2<V 3<V5。 Where, Fmax is the maximum current of the compressor motor operating frequency, the effective value Vrms of the input AC voltage, V2 is the second predetermined voltage, V3 of a third predetermined voltage, V5 for the fifth predetermined voltage, F maxl V2 is the maximum operating frequency corresponding to the compressor motor, said Fmax2 V3 corresponding to the highest of the compressor motor operating frequency, and V2 <V 3 <V5.
  6. 8. 根据权利要求6或7所述的控制装置,其特征在于,当所述输入交流电压下降时,所述第一计算模块通过以下公式计算所述压缩机电机的当前最高运行频率: The control device of claim 6 or claim 7, wherein, when the AC input voltage drops, the current maximum operating frequency of the compressor motor by the first calculation module calculates the following formula:
    Figure CN106208887AC00032
    其中,Fmax为所述压缩机电机的当前最高运行频率,vr"s为所述输入交流电压的有效值, I为第一预设电压,V2为第二预设电压,V3为第三预设电压,V4为第四预设电压,F maxl为所述V2对应的所述压缩机电机的最高运行频率,Fmax2为所述V3对应的所述压缩机电机的最高运行频率,且VKVXVKVh Where, Fmax is the maximum operating frequency of the current of the compressor motor, vr "s is the effective value of the AC input voltage, I is a first predetermined voltage, V2 is the second predetermined voltage, V3 for the third predetermined voltage, V4 is a fourth predetermined voltage, F maxl V2 of the highest operating frequency of the compressor motor corresponding to the maximum operating frequency of the Fmax2 V3 corresponding to the compressor motor, and VKVXVKVh
  7. 9. 根据权利要求6所述的控制装置,其特征在于,所述控制模块包括: 第二计算模块,用于根据所述当前最高运行频率计算所述压缩机电机的最高运行转速; 比较模块,用于获取所述最高运行转速与预设的给定转速之间的较小值,以根据所述较小值对所述压缩机电机进行控制。 The control apparatus according to claim 6, wherein said control module comprises: a second calculating module, for calculating the maximum operating speed of the compressor motor according to the current maximum operating frequency; comparison module, for obtaining the maximum operating speed and the smaller value between the rotation speed of a given preset, to control the compressor motor according to the smaller value. 10 ·根据权利要求9所述的控制装置,其特征在于,所述控制模块还包括: 相位检测锁相环t吴块,用于获取所述输入交流电压的电压瞬时值,并根据所述电压瞬时值计算所述输入交流电压的相位估计值; 位置速度估计器,用于对所述压缩机电机的转子位置进行估计以获得所述压缩机电机的转子角度估计值和转子速度估计值; q轴给定电流计算模块,用于根据所述较小值、所述转子速度估计值、所述输入交流电压的形状和所述相位估计值计算所述压缩机电机的q轴给定电流; d轴给定电流计算模块,用于根据逆变电路的最大输出电压和所述逆变电路的输出电压幅值计算所述压缩机电机的d轴给定电流; 电流控制器,用于根据所述q轴给定电流、所述d轴给定电流、q轴实际电流和d轴实际电流获取所述压缩机电机的q轴给定电压和d轴给定电压,并根据所述q轴 10. The control device according to claim 9, wherein the control module further comprises: detecting a phase locked loop t Wu block configured to acquire the instantaneous value of the voltage of the input AC voltage, based on the voltage and calculating an instantaneous phase estimate value of the input AC voltage; position, velocity estimator for estimating a rotor position of the motor of the compressor to obtain a rotor angle estimate value of the compressor motor and the estimated rotor speed value; Q given axis current calculation module, according to the smaller value, the rotor speed estimate, the shape of the input AC voltage and the phase estimation value calculated q-axis motor of the compressor of a given current; D given axis current calculation module, for the d-axis motor of the compressor output voltage amplitude of the maximum output voltage of the inverter circuit and the inverter circuit is calculated based on a given current; a current controller for the given q-axis current, the d-axis current is given, the actual d-axis actual current and the q-axis current obtaining the q-axis motor of the compressor and a given voltage a given d-axis voltage and the q-axis in accordance with 定电压、所述d轴给定电压、所述转子角度估计值生成控制信号,以及根据所述控制信号通过所述逆变电路对所述压缩机电机进行控制。 Constant voltage, a given voltage, the rotor angle estimation value to generate a control signal, and controls the compressor motor through the inverter circuit according to the control signal of the d-axis.
  8. 11. 一种无电解电容电机驱动系统,其特征在于,包括根据权利要求6-10中任一项所述的无电解电容电机驱动系统的控制装置。 11. An electrolytic capacitor motor driving system, wherein the control means comprises a non-electrolytic capacitors in the motor drive system of any one of 6-10 claims.
CN 201610561858 2016-07-13 2016-07-13 Motor driving system without electrolytic capacitor and control method and device of motor driving system CN106208887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201610561858 CN106208887A (en) 2016-07-13 2016-07-13 Motor driving system without electrolytic capacitor and control method and device of motor driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201610561858 CN106208887A (en) 2016-07-13 2016-07-13 Motor driving system without electrolytic capacitor and control method and device of motor driving system

Publications (1)

Publication Number Publication Date
CN106208887A true true CN106208887A (en) 2016-12-07

Family

ID=57476035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201610561858 CN106208887A (en) 2016-07-13 2016-07-13 Motor driving system without electrolytic capacitor and control method and device of motor driving system

Country Status (1)

Country Link
CN (1) CN106208887A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147347A (en) * 2017-07-21 2017-09-08 奥克斯空调股份有限公司 Frequency conversion driving system
CN107147348A (en) * 2017-07-21 2017-09-08 奥克斯空调股份有限公司 Frequency conversion driving method and device
CN107294467A (en) * 2017-07-21 2017-10-24 奥克斯空调股份有限公司 Frequency-variable driving control device
CN107359843A (en) * 2017-07-20 2017-11-17 奥克斯空调股份有限公司 Power conversion control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754303A (en) * 2003-03-17 2006-03-29 松下电器产业株式会社 Driving method and driver of DC brushless motor
CN103023424A (en) * 2011-09-23 2013-04-03 苏州汇川技术有限公司 Low-voltage protection method and crane with low-voltage protection function
JP2014068465A (en) * 2012-09-26 2014-04-17 Daikin Ind Ltd Inverter controller
CN103782504A (en) * 2011-12-15 2014-05-07 东芝开利株式会社 Motor drive device
CN105305930A (en) * 2014-06-19 2016-02-03 本田技研工业株式会社 Electric motor control system
CN105356468A (en) * 2015-10-23 2016-02-24 广东美的制冷设备有限公司 Motor driving system without electrolytic capacitor and harmonic current suppressing method and device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754303A (en) * 2003-03-17 2006-03-29 松下电器产业株式会社 Driving method and driver of DC brushless motor
CN103023424A (en) * 2011-09-23 2013-04-03 苏州汇川技术有限公司 Low-voltage protection method and crane with low-voltage protection function
CN103782504A (en) * 2011-12-15 2014-05-07 东芝开利株式会社 Motor drive device
JP2014068465A (en) * 2012-09-26 2014-04-17 Daikin Ind Ltd Inverter controller
CN105305930A (en) * 2014-06-19 2016-02-03 本田技研工业株式会社 Electric motor control system
CN105356468A (en) * 2015-10-23 2016-02-24 广东美的制冷设备有限公司 Motor driving system without electrolytic capacitor and harmonic current suppressing method and device thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIN-WON KANG ET AL: "High Power Factor Control of an Inverter-controlled Synchronous Motor Drive System with Small DC-link Capacitor", 《IECON 2013 - 39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY》 *
尹泉等: "无电解电容逆变器永磁同步电机驱动系统控制研究", 《电气传动》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359843A (en) * 2017-07-20 2017-11-17 奥克斯空调股份有限公司 Power conversion control system
CN107359843B (en) * 2017-07-20 2018-07-31 奥克斯空调股份有限公司 Power conversion control system
CN107147347A (en) * 2017-07-21 2017-09-08 奥克斯空调股份有限公司 Frequency conversion driving system
CN107147348A (en) * 2017-07-21 2017-09-08 奥克斯空调股份有限公司 Frequency conversion driving method and device
CN107294467A (en) * 2017-07-21 2017-10-24 奥克斯空调股份有限公司 Frequency-variable driving control device
CN107294467B (en) * 2017-07-21 2018-07-31 奥克斯空调股份有限公司 Variable frequency drive control means

Similar Documents

Publication Publication Date Title
JP2005160183A (en) Synchronous motor driving device, control method for synchronous motor driving device, refrigerator-freezer, and air conditioner
CN101931362A (en) Direct torque control device and method for permanent magnet synchronous motor
US20110025237A1 (en) Method and Control System for Controlling a Brushless Electric Motor
JP2003219678A (en) Synchronous electric motor driving device
JP2003259679A (en) Vector control inverter apparatus and rotation driving apparatus
JP2004048886A (en) Drive controller for synchronous motor
JP2003259680A (en) Synchronous motor driving apparatus, inverter apparatus and control method of synchronous motor
JPH1189297A (en) Power converting device
CN101396976A (en) Electric machine control method and device in hybrid motor
JP2006204050A (en) Motor drive and air conditioner employing it
JP2006109589A (en) Controller of synchronous motor
CN102324877A (en) Car permanent magnet synchronous motor control system and method
CN103780191A (en) Open winding permanent magnet synchronous motor series compensation vector control system and control method
JP2004282838A (en) Braking method of inverter driven induction motor
US20150002067A1 (en) Method and apparatus for stability control of open loop motor drive operation
Jevremovic et al. Speed-sensorless control of induction motor based on reactive power with rotor time constant identification
CN102545742A (en) Position sensorless control device and control method for permanent magnet synchronous motor
CN1638260A (en) Controller for synchromotor, electric equipment and module
JP2003284387A (en) Method and apparatus for controlling inverter
US20140312811A1 (en) Position sensorless open loop control for motor drives with output filter and transformer
CN1905351A (en) Motor controller, washing machine, air conditioner and electric oil pump
CN102400899A (en) Control device and control method of air conditioner compressor and variable-frequency air conditioner
US20150002059A1 (en) Method and apparatus for stability control of open loop motor drive operation
JP2005020837A (en) Polyphase current supply circuit
JP2006180605A (en) Controller for motor

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination