CN106207748A - Tunable semiconductor laser and fabrication method and use method therefor - Google Patents

Tunable semiconductor laser and fabrication method and use method therefor Download PDF

Info

Publication number
CN106207748A
CN106207748A CN201610742153.2A CN201610742153A CN106207748A CN 106207748 A CN106207748 A CN 106207748A CN 201610742153 A CN201610742153 A CN 201610742153A CN 106207748 A CN106207748 A CN 106207748A
Authority
CN
China
Prior art keywords
grating
region
laser
structure
distributed bragg
Prior art date
Application number
CN201610742153.2A
Other languages
Chinese (zh)
Inventor
赵建宜
王任凡
张明洋
Original Assignee
武汉光迅科技股份有限公司
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司, 武汉电信器件有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to CN201610742153.2A priority Critical patent/CN106207748A/en
Publication of CN106207748A publication Critical patent/CN106207748A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1209Sampled grating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back [DFB] lasers
    • H01S5/1231Grating growth or overgrowth details
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Abstract

The invention relates to the technical field of a laser, and provides a tunable semiconductor laser and a fabrication method and a use method therefor. The laser comprises at least two DBR lasers and a combiner, wherein each DBR laser comprises an active region structure and an optical grating region structure; the optical grating region structure of each DBR laser comprises one or more optical grating regions, and the optical grating regions are arranged at the interval of an appointed length; the optical grating region in each DBR laser is formed by optical gratings with the same optical grating periods; and a sampling length value which consists of the length of each optical grating region and the appointed length between the corresponding optical grating regions is determined according to the wavelength emitted by the DBR laser. According to the tunable semiconductor laser, the DBR lasers which are connected in parallel are adopted, and the combiner is utilized to combine waves into single waveguide, so that a large-range tunable function can be realized; and meanwhile, through the design of the sampled optical gratings and the active regions, the performances of the lasers in the laser array can be highly consistent.

Description

一种可调谐半导体激光器及其制造方法和使用方法【技术领域】 A tunable semiconductor laser and a manufacturing method and use FIELD

[0001] 本发明涉及激光器技术领域,特别是涉及一种可调谐半导体激光器及其制造方法和使用方法。 [0001] The present invention relates to the field of laser technology, particularly to a tunable semiconductor laser and a manufacturing method and use. 【背景技术】 【Background technique】

[0002] 半导体激光器是光纤通信系统中的重要光源。 [0002] The semiconductor laser light source is important in optical fiber communication systems. 它体积小,效率高,十分适合光纤通信系统中使用。 Its small size, high efficiency, is suitable for use in optical fiber communication systems. 目前光纤通信系统普遍使用波分复用方式增加单根光纤的通信容量。 Currently WDM optical fiber communication systems commonly used way to increase the communication capacity of a single optical fiber. 每一个通信信道占用一个半导体激光器,不同信道波长不同。 Each communication channel occupies a semiconductor laser, different channel wavelengths. 传统的固定波长半导体激光器每种只能输出一个波长,因此在波分复用系统中,需要为每个不同的信道准备不同的半导体激光器,极大的增加了运营商的仓储压力。 Conventional fixed-wavelength semiconductor laser that outputs only one of each wavelength, so the wavelength division multiplexing system, it is necessary to prepare different semiconductor lasers, greatly increasing the pressure storage operator for each different channel. 因此在波分系统中急需波长可调谐半导体激光器。 Thus an urgent need in the wavelength-tunable semiconductor laser of the wavelength division system. 一个波长可调谐半导体激光器可以覆盖部分或者全部通信信道,减小运营商备货种类, 降低运营商仓储压力及成本。 A wavelength-tunable semiconductor laser may cover part or all of the communication channels, reducing stocking type operators, storage operators to reduce costs and pressure. 同时可调谐半导体激光器还可以广泛的应用于波分复用系统中各个光网络功能单元内,如光分叉复用器,波长转换器等。 While tunable semiconductor laser can be widely applied to an optical wavelength division multiplexed network system in each functional unit, such as a bifurcated optical multiplexer, the wavelength converter and the like. 因此可调谐半导体激光器在光通信系统中具有举足轻重的作用。 Thus tunable semiconductor laser plays an important role in the optical communication system. 随着光通信系统的发展,光子集成器件得到越来越广泛的应用,而可调谐激光器作为重要的光源单元,在光子集成器件中起着举足轻重的作用。 With the development of optical communication systems, the integrated photonic devices are more widely used, the tunable laser light source as an important unit, it plays an important role in the integrated photonic device.

[0003] 传统的宽可调谐半导体激光器分为两类:一类是利用一组不同波长的DFB激光器构成DFB激光器阵列,而后通过集成合波器进行合波。 [0003] Widely Tunable conventional semiconductor lasers fall into two categories: one is a group of the DFB laser by using different wavelengths constituting the DFB laser array and then be multiplexed by a multiplexer integrated. 一般一个DFB激光器通过加热的方式可以实现3~4nm的波长调谐,因此要实现32nm的宽波长调谐需要采用8~12个不同波长的DFB激光器。 Usually a DFB laser wavelength tuning can be achieved by heating 3 ~ 4nm way, so to realize a wide wavelength tuning requires the use of 32nm to 12 8 different wavelengths of DFB lasers. 一般该类可调谐激光器利用MMI合波器进行合波,MMI的传输效率约为1/N,N为DFB激光器的数目,因此当N很大时,传输效率很低,损耗很大,芯片的功耗很高,并且并联器件多,芯片良率低。 Such tunable lasers generally use MMI combiner for multiplexing, transmission efficiency is about MMI. 1 N, N is the number of the DFB laser /, so when N is large, the transmission efficiency is low, a great loss, chip high power consumption, and multiple parallel devices, chip low yield. 另一类宽可调谐激光器主要是SGDBR类可调谐激光器。 Another class of wide tunable laser based mainly SGDBR tunable laser. 一般这类激光器采用两组光栅,利用两组光栅的游标效应进行波长的调谐。 These lasers generally use two gratings with vernier effect two grating wavelength tuning. 由于采用游标效应,该类激光器的波长调谐特性特别复杂,需要利用专用的集成电路芯片对波长进行调控。 As a result of vernier effect, the wavelength tuning characteristics of such laser is particularly complex, requires the use of a dedicated integrated circuit chip wavelength regulation. 同时这种复杂的二维甚至三维调控,使得测试过程也变得异常漫长。 At the same time this complex two-dimensional and even three-dimensional regulation, so that the testing process also become very long. 加大了该类激光器的最终成本。 Increase the final cost of such lasers.

[0004] 在可调谐激光器中还有一种激光器是三段式DBR激光器,该类激光器由于只靠一组光栅进行波长调谐,因此调谐范围有限,目前已有的实物及文献报道均未超过20nm。 [0004] The tunable lasers there is a three-DBR lasers are lasers, such lasers since the action of one set of grating wavelength tuning, so the tuning range is limited, and there are physical literature did not exceed 20nm. 但是该类激光器相比于四段式的SGDBR类激光器具有控制电路简单,测试成本低等优点,在低端应用上有一定的价值。 However, such lasers as compared to the four classes formula SGDBR laser includes a control circuit is simple, low cost testing, there is a certain value in the low-end applications. 利用多个不同调谐范围的DBR激光器并联,利用合波器进行合波,可以既保持DBR激光器控制电路简单的优点,又增大激光器的可调谐范围。 DBR lasers in parallel using a plurality of different tuning range, using multiplexer for multiplexing, both the DBR laser may be kept simple control circuit advantages, but also increase the laser tuning range. 同时由于单个DBR 激光器调谐范围较大,在总调谐范围一定的情况下,可以减少DBR激光器的并联数目,降低芯片功耗及复杂度,提高良率。 At the same time due to the large single DBR laser tuning range, under certain circumstances the total tuning range is possible to reduce the number of DBR lasers in parallel, reducing chip power consumption and complexity and improve yield. 但是不同调谐范围的DBR激光器通常需要利用到布拉格波长不同的光栅,难以通过简便的全息曝光的方式制作,需要利用电子束曝光等高精度微纳加工手段,使得芯片光栅加工成本较高。 However, the tuning range of different DBR laser generally uses a wavelength different Bragg grating, difficult to fabricate holographic exposure by a simple manner, the need to use other high-precision electron beam exposure micro nanofabrication means, such that the grating chip high processing costs. 【发明内容】 [SUMMARY]

[0005] 发明人在研究过程中发现同时作为阵列器件,一般情况下,单元激光器的各项指标及驱动条件希望相同,过大的差异会加重控制系统的负担,增加信号间的串扰,劣化信号的传输质量。 [0005] The inventors have found that during the study at the same time as the array device, in general, the indicators and the driving condition of the laser unit the same desired, an excessively large difference in the control system will increase the burden of increased crosstalk between the signals, the signal degradation transmission quality.

[0006] 本发明要解决的技术问题是不同调谐范围的DBR激光器通常需要利用到布拉格波长不同的光栅,难以通过简便的全息曝光的方式制作,需要利用电子束曝光等高精度微纳加工手段,使得芯片光栅加工成本较高、加工效率低。 [0006] The present invention is to solve the technical problem different tuning range of the DBR laser generally uses a different Bragg wavelength of the grating, it is difficult to produce by a simple holographic exposure, electron beam exposure need to use other high-precision micro-nano fabrication means, such that the grating chip high processing costs, low processing efficiency.

[0007] 本发明进一步要解决的技术问题是提供该可调谐半导体激光器的制造方法和使用方法。 [0007] The present invention further technical problem to be solved is to provide a method of manufacturing a tunable semiconductor laser and a method of use.

[0008] 本发明采用如下技术方案: [0008] The present invention adopts the following technical solution:

[0009] 第一方面本发明提供了一种可调谐半导体激光器,包括至少两个分布式布拉格反射激光器、一合波器,其中,每一个分布式布拉格反射激光器包括有源区结构和光栅区结构: [0009] In a first aspect the present invention provides the active region and the grating structure of a multiplexer structure region, wherein each laser comprises a distributed Bragg reflector A tunable semiconductor laser comprising at least two distributed Bragg reflector laser, :

[0010] 每一个分布式布拉格反射激光器的光栅区结构包括一个或者多个光栅区,各光栅区相隔指定长度; [0010] Each grating zone structure of a distributed Bragg reflector laser includes one or a plurality of grating regions, each grating region spaced a specified length;

[0011 ]其中,米用具有相同光栅周期的光栅构成各分布式布拉格反射激光器中的光栅区; [0011] wherein m with a grating having the same grating period constituting the distributed Bragg reflector lasers the grating region;

[0012] 在各分布式布拉格反射激光器中,由各自的一光栅区长度和相应光栅区相隔的一指定长度所构成的取样长度值,是根据该分布式布拉格反射激光器所要激射的波长所确定;每一个分布式布拉格反射激光器的有源区结构和光栅区结构分别还包括一电极。 [0012] In each of the distributed Bragg reflector laser, the length of the sample value by a respective one grating region length and the respective grating region spaced a specified length is formed, is determined based on the distributed Bragg reflector lasers for lasing wavelength ; active region structure and the grating structure of each region of a distributed Bragg reflector laser further includes an electrode, respectively.

[0013] 优选的,每一个分布式布拉格反射激光器对应生成可调谐半导体激光器中的一指定波长的激光,则所述取样长度值是根据该分布式布拉格反射激光器所要激射的波长所确定,具体包括: [0013] Preferably, each corresponding to a distributed Bragg reflector laser tunable laser to generate a specific wavelength of the semiconductor laser is determined based on the distributed Bragg reflector lasers lasing wavelength to the length of the sampling value, in particular include:

[0014] 所述取样长度值的设定,满足所述光栅区结构自身的取样光栅梳状反射谱的1级反射峰或-1级反射峰所处的波长,和分布式布拉格反射激光器所要激射的波长相同;各分布式布拉格反射激光器之间的激射波长的间隔小于等于光栅区结构的调谐范围。 [0014] The sample set length values, sampled grating meet its comb reflection spectrum of the grating structure of the stage 1 region or reflection peak wavelength of the -1st-order reflection peak is located, and a distributed Bragg reflector lasers for a laser the same wavelength emitted; between the lasing wavelength of the distributed Bragg reflector laser tuning range interval less grating structure area.

[0015] 优选的,在所述各分布式布拉格反射激光器中,位于所述有源区结构和光栅区结构之间,还包括相位区结构,具体的: [0015] Preferably, each of the distributed Bragg reflector lasers, located between the active region and the grating region structure structure, the structure further comprising a phase zone, specifically:

[0016] 所述有源区结构、相位区结构以及光栅区结构依序纵向相连,其中,相位区结构设置有电极。 The [0016] structure of the active region, the grating region and the phase domain structure of longitudinal structures sequentially connected, wherein the phase structure is provided with an electrode area.

[0017] 优选的,所述各分布式布拉格反射激光器的取样光栅梳状反射谱之间的1级反射峰的反射率小于5%,或者取样光栅梳状反射谱之间的-1级反射峰的反射率小于5%。 [0017] Preferably, the sampling comb grating reflection level between a reflection peak reflectance spectrum of each of said distributed Bragg reflector lasers is less than 5%, or sampled grating comb -1 order reflection peak of the reflectance spectrum between the reflectance of less than 5%.

[0018] 第二方面本发明提供了一种可调谐半导体激光器的制造方法,包括: [0018] A second aspect of the present invention provides a method for manufacturing a tunable semiconductor laser, comprising:

[0019]在晶圆上对用于制作可调谐半导体激光器的各分布式布拉格反射激光器的有源区结构部分和/或相位区结构部分进行掩膜处理,并利用全息曝光法在光栅区结构部分刻蚀具有相同光栅周期的光栅区;其中,各分布式布拉格反射激光器中各光栅区的间隔根据所要激射的波长设定; [0019] The tunable semiconductor laser for producing a distributed Bragg reflector laser in each portion of the active region of the structure and / or moieties phase zone masking process on the wafer, and a holographic exposure method in the grating region moiety etching a grating region of the same grating period; wherein each of the distributed Bragg reflector laser spacing of the grating region is set according to a desired lasing wavelength;

[0020]在所述有源区结构部分生长完成有源区结构,在所述已完成光栅区制作的光栅区结构部分生长完成光栅区结构和/或在相位区结构部分生长完成相位区结构; [0020] The growth of the grating region to complete the structure and / or phase domain structure moiety growth phase field created moiety moiety of the active region of the grating region growth is complete structure of the active region, the grating region produced has been completed;

[0021 ]连接所述各分布式布拉格反射激光器和合波器。 [0021] connected to the respective distributed Bragg reflector laser Hop wave.

[0022]优选的,所述利用全息曝光法在光栅区结构部分刻蚀具有相同光栅周期的光栅区,具体包括: [0022] Preferably, the holographic exposure method has the same grating period of the grating region is partially etched structure in the grating region comprises:

[0023] 将光栅区结构部分对于非光栅区进行掩膜处理;设置全息曝光的光栅周期为指定值Λ,对所述光栅区结构部分进行全息曝光;或者, [0023] The moiety for the non-grating region the grating region masking process; exposure hologram grating period set for the specified Lambda value, the configuration of the grating portion of the holographic exposure zone; or

[0024] 设置全息曝光的光栅周期为指定值Λ,对所述光栅区结构部分进行全息曝光,用光刻版进行光刻掩蔽,在光栅区非掩蔽部分利用光刻机进行二次过曝光。 [0024] provided holographic exposure grating period specified Lambda value, the grating structure part holographic exposure zone, photolithography masking photomask, the grating region in the non-masked portion by using lithography secondary overexposure.

[0025]优选的,确定所述可调谐半导体激光器所包含的各布式布拉格反射激光器的激光波长Μ,其中i为对应各布式布拉格反射激光器的序号,则根据公式: [0025] Preferably, the tunable laser wavelength is determined Μ distributed Bragg reflector laser in each of the semiconductor laser included, wherein i is the corresponding number of each distributed Bragg reflector laser according to the equation:

[0026] Lsi = A〇2/2ng | λί_λ〇| [0026] Lsi = A〇2 / 2ng | λί_λ〇 |

[0027] 求解得到取样长度值,其中,其中,AQ = 2Ang、Λ为光栅周期、λ〇为光栅梳状反射谱的〇级反射峰的波长;所述取样长度值是根据各布式布拉格反射激光器中光栅区长度值和光栅区之间间隔值求和得到; [0027] Solving obtained sample length value, wherein, wherein, AQ = 2Ang, Λ order reflection peak wavelength square is the grating period, grating λ〇 comb reflection spectrum; length value is based on the sampling of each distributed Bragg reflector laser spacing between the grating region and the grating region length values ​​summed value;

[0028]按照所述取样长度值LS1,生成用于所述非光栅区掩膜处理的掩膜。 [0028] in accordance with the value of the sampling length LS1, generating a non-grating region mask for masking process.

[0029]优选的,在构成可调谐半导体激光器的各布式布拉格反射激光器的个数η为3,且激射波长包括1 · 56um、1 · 57um和1 · 58um时,设置光栅区结构的静态工作状态下其有效折射率为3.4,所述方法还包括: [0029] Preferably, the number of constituting the distributed Bragg reflector lasers tunable semiconductor laser η is 3, and the lasing wavelength including 1 · 56um, 1 · when 57um and 1 · 58um, a grating structure disposed static region operating state whose effective refractive index is 3.4, the method further comprising:

[0030] 设置全息曝光的光栅周期Λ为242nm,则λ〇为1.65um,参考公式: [0030] provided holographic exposure grating period Λ is 242nm, the λ〇 of 1.65um, with reference to formula:

[0031] Lsi = A〇2/2ng | λί_λ〇| [0031] Lsi = A〇2 / 2ng | λί_λ〇 |

[0032] 求解得到各激射波长所对应的取样长度为4.45um、5 · OOum和5 · 72um; [0032] solved for each sampling length corresponding to the lasing wavelength of 4.45um, 5 · OOum and 5 · 72um;

[0033] 按照所述取样长度值,生成用于所述非光栅区掩膜处理的掩膜。 [0033] in accordance with the sampling length value, generating a mask for the masking process of the non-grating region.

[0034] 优选的,在所述各分布式布拉格反射激光器中,位于所述相位区结构和/或光栅区结构的电极接触层设置有电极; [0034] Preferably, in each of said distributed Bragg reflector laser in the phase domain structure is located and / or the electrode contact layer grating region provided with an electrode structure;

[0035] 其中,相位区结构上电极及光栅区结构上电极用于对波导进行电流注入或者通过加热的方式改变相位区波导及光栅区波导的有效折射率。 [0035] wherein the phase domain structure of the upper electrode and the grating region waveguide structure of the electrode for current injection region or change the effective refractive index of the phase grating region waveguide and the waveguide by way of heating.

[0036] 第三方面本发明提供了一种可调谐半导体激光器的使用方法,所述使用方法基于上述第一方面中任一所述的可调谐半导体激光器,其中,各分布式布拉格反射激光器中,位于所述有源区结构和光栅区结构的电极接触层分别设置有电极,所述包括: [0036] The third aspect of the present invention provides a method of using a tunable semiconductor laser, based on the use of the first aspect in any one of tunable semiconductor lasers, wherein each of the distributed Bragg reflector laser, electrode contact layer is the active region of the structure and the grating region are respectively provided with an electrode structure, the comprising:

[0037] 给各分布式布拉格反射激光器的有源区结构的电极供电; [0037] The electrode configuration of each of the power supply of the active region of the laser to the distributed Bragg reflector;

[0038] 根据可调谐半导体激光器中各分布式布拉格反射激光器所需产生的波长值,给各分布式布拉格反射激光器光栅区结构的电极提供符合其有效折射率需求的电流。 [0038] The value of the wavelength tunable semiconductor laser required to produce each distributed Bragg reflector lasers, each distributed to provide a reflective electrode region Bragg grating laser structure which meet the current needs of the effective refractive index.

[0039] 与现有技术相比,本发明的有益效果在于:在本发明中由于各个DBR激光器光栅的布拉格波长相同,因此只需要通过一次全息曝光即可制作完成,成本低廉。 [0039] Compared with the prior art, the beneficial effects of the present invention is: in the present invention is the same as the Bragg wavelength of each grating DBR laser, it is only necessary to by a single holographic exposure produced, low cost. 通过对光栅进行不同周期的取样,实现不同DBR激光器调谐起始波长及调谐范围的不同。 By sampling different grating periods, different to achieve different tuning the DBR laser and the wavelength tuning range starting. 并联这些DBR激光器,利用合波器合波至单一波导,可以实现大范围可调谐的功能。 These parallel DBR lasers, a multiplexer using multiplexer to a single waveguide, can achieve a wide range of tunable function. 既可以拓展DBR激光器的调谐范围,也保留了DBR激光器调谐控制简单的优点。 Either expand the tuning range of the DBR laser, also retained a simple DBR laser tuning control advantages. 通过发明中取样光栅设计及有源区设计,可以使得激光器阵列中各个激光器性能具备高度的一致性。 By design of the active region and the grating design sampling invention may be such that the respective laser performance laser array with a high degree of consistency. 【附图说明】 BRIEF DESCRIPTION

[0040] 图1是本发明实施例提供的一种取样光栅反射谱示意图; [0040] FIG. 1 is a sampled grating provided in the reflection spectrum of a schematic embodiment of the present invention;

[0041] 图2是本发明实施例提供的一种有源区增益信号及取样光栅梳状反射谱之间的关系不意图; [0041] FIG. 2 is an active region gain signal to an embodiment of the present invention, the relationship between the grating and the sample reflectance spectrum is not intended comb;

[0042]图3是本发明实施例提供的一种可调谐半导体激光器的结构示意图; [0042] FIG. 3 is a block diagram of a tunable semiconductor laser according to an embodiment of the present invention;

[0043]图4是本发明实施例提供的组成可调谐半导体激光器的DBR激光器的结构示意图; [0043] FIG. 4 is a schematic diagram of the composition of tunable semiconductor lasers of the DBR laser according to an embodiment of the present invention;

[0044] 图5是本发明实施例提供的一种光栅区结构示意图; [0044] FIG. 5 is a schematic diagram of a grating zone structure according to an embodiment of the present invention;

[0045] 图6是本发明实施例提供的一种有源区增益信号及取样光栅梳状反射谱之间的关系不意图; [0045] FIG. 6 is a signal gain of the active region according to an embodiment of the present invention, the relationship between the grating and the sample reflectance spectrum is not intended comb;

[0046] 图7是本发明实施例提供的一种归一化取样光栅反射谱示意图; [0046] FIG. 7 is a normalized sampled grating provided in the reflection spectrum of a schematic embodiment of the present invention;

[0047] 图8是本发明实施例提供的取样光栅梳状反射谱峰值间隔与取样周期的关系图; [0047] FIG. 8 is a sampled grating comb reflection spectrum graph of peak interval and the sampling period according to an embodiment of the present invention;

[0048] 图9是本发明实施例提供的另一种可调谐半导体激光器的结构示意图; [0048] FIG. 9 is a schematic structural diagram of another tunable semiconductor laser according to an embodiment of the present invention;

[0049] 图10是本发明实施例提供的一种可调谐半导体激光器的制造方法流程图; [0049] FIG. 10 is an embodiment of the present invention provides a method of manufacturing a semiconductor laser can be tuned flowchart;

[0050] 图11是本发明实施例提供的一种可调谐半导体激光器的制造方法流程图; [0050] FIG. 11 is an embodiment of the present invention provides a method of manufacturing a semiconductor laser can be tuned flowchart;

[0051] 图12是本发明实施例提供的一种可调谐半导体激光器的使用方法流程图; [0051] FIG. 12 is an embodiment of the present invention provides a method of using a semiconductor laser can be tuned flowchart;

[0052]图13是本发明实施例提供的一种波长矫正原理图。 [0052] The present invention FIG 13 is a schematic diagram of one wavelength correction according to an embodiment. 【具体实施方式】 【Detailed ways】

[0053]为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。 [0053] To make the objectives, technical solutions and advantages of the present invention will become more apparent hereinafter in conjunction with the accompanying drawings and embodiments of the present invention will be further described in detail. 应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 It should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not intended to limit the present invention.

[0054]在本发明的描述中,术语"内"、"外"、"纵向"、"横向"、"上"、"下"、"顶"、"底"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。 [0054] In the description of the present invention, the position or location relative terms "inner", "outer", "longitudinal", "lateral", "upper", "lower", "top", "bottom" and the like indicated as merely for convenience of description of the present invention, the present invention is not required to be operated in a particular orientation and configuration or orientation shown in the drawings based on the positional relationship, and therefore should not be construed as limiting the present invention.

[0055]此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。 [0055] Furthermore, various embodiments of the invention described below involved the technical features as long as no conflict with one another can be configured in combination with each other.

[0056] 在半导体激光器中,激射波长位于阈值增益最低的腔模处。 [0056] In the semiconductor laser, the lasing wavelength is the lowest threshold gain at the die cavity. 阈值增益受激光器增益介质增益及腔内损耗及镜面损耗共同控制,关系如下: Threshold gain by the gain medium laser cavity loss and gain and loss of joint control mirror, the following relationship:

[0057] gth(X) =g(X)+ain(A)+am(A) [0057] gth (X) = g (X) + ain (A) + am (A)

[0058] 其中λ为光波长,gA)为有源区的增益信号,αίη(λ)为腔内损耗谱,am〇)为镜面损耗谱,在分布式布拉格反射DBR激光器中,am(A)由DBR光栅反射谱决定。 [0058] wherein [lambda] is the wavelength of light, gA) the signal gain of the active region, αίη (λ) of the cavity loss spectrum, am〇) loss spectrum of a mirror, in the distributed Bragg reflector DBR laser, am (A) DBR grating is determined by the reflection spectrum. 由此可知,我们可以通过对取样光栅梳状反射谱中各反射峰位置的调整,调整分布式布拉格反射激光器的激射波长。 This indicates that we can adjust the sampled grating comb reflection spectrum of each reflection peak position, adjusting the lasing wavelength of the distributed Bragg reflector lasers. 在普通的DBR激光器中,均匀光栅的反射谱只有一个反射峰,将反射峰移入有源区的增益信号带宽内,激光器将在反射峰处激射。 In the conventional DBR laser, the reflectance spectrum of a uniform grating only a reflection peak and the reflection peak within the gain bandwidth of the signal into the active region, the laser will lase at the peak reflection. 而在取样光栅DBR激光器中,反射谱呈梳状,且强度大小不一(如图1所示)。 In the sampled grating DBR laser, the comb-reflection spectrum and the intensity of different sizes (see Figure 1). 一般反射最强烈的在〇级反射峰处,其次是+1级反射峰和-1级反射峰。 Usually the strongest reflection in the reflection peak at the square stage, followed by the +1 order and -1 order reflection peak reflection peak. 通过调整0级反射峰和1级反射峰(或-1级反射峰)的位置,以及有源区产生的增益信号带宽大小及增益信号的位置,使得〇级反射峰处增益很小或者没有增益,而使得1级反射峰或-1级反射峰波长出的增益值最大。 By adjusting (or -1 order reflection peak) position, and the position and size of the bandwidth gain signal gain of the signal generated by the active region and the reflection peak level 0 1 reflection peak, so that a reflection peak square stage with little or no gain at the gain , such that level 1 or -1 order reflection peak wavelength of the reflection peak of the maximum gain value. 两者共同作用可以使得1级反射峰或-1级反射峰处的阈值增益最低,从而实现激光器在1级反射峰或-1级反射峰处激射的目的(如图2所述,其中1级反射峰相邻的等幅的虚线反射峰为其调制后的效果)。 Interaction between the two can be such that the minimum threshold gain stage 1 or -1 order reflection peak reflection peak at the lasing of the laser in order to achieve the purpose of reflection peaks in the level 1 or -1 order reflection peak at a (FIG. 2, wherein 1 effect modulated order reflection peak amplitude of the broken line adjacent to its reflection peak). 而取样光栅的1级反射峰与〇级反射峰的位置(或者取样光栅的1级反射峰与〇级反射峰的位置)如前述可以通过取样周期的大小灵活调整,因此可以在〇级反射峰位置固定的情况下,调整DBR激光器的起始激射波长及调谐范围。 The position of the stage reflection peak sampled grating with square order reflection peaks (or the position of the stage reflection peak with square order reflection peak of a sampled grating) as described above can be flexibly adjusted by the size of the sampling period, it can be square order reflection peak fixed position, adjust the DBR laser and the lasing wavelength tuning range starting. 而取样周期一般比较大,取样图案可以通过普通光刻的方式低成本、快速的制得。 Usually the large sampling period, the sampling pattern may be a low cost manner by an ordinary photolithography, a fast system.

[0059] 由于,在本发明各实施例中,1级反射峰和-1级反射峰相比较0级反射峰来说是对称的关系,因此,可以基于1级反射峰和〇级反射峰之间距离关系实现的方法步骤中的功能, 同样适用于调整-1级反射峰和〇级反射峰之间的距离关系,并依托于-1级反射峰来实现相应方法步骤中的功能。 [0059] Since, in the various embodiments of the present invention, a reflection peak level and the -1 order reflection peak compared to 0 reflection peak is symmetrical relationship, therefore, it may be based on the level between the peak and the square reflective order reflection peak distance relationship method steps implemented in the function, the same applies to the adjustment of the distance relationship between the square and the -1st-order reflection peak reflection peak level, and relying on the -1 order reflection peak of the function to implement the corresponding method steps. 在本发明后续实施例中,将集中通过1级反射峰和0级反射峰之间的关系来阐述本发明实施例,本领域技术人员能够基于本发明实施例中阐述的方法步骤,无需创造性推理可以将相应方案适用与-1级反射峰和0级反射峰之间去,在此不再赘述。 In a subsequent embodiment of the invention, the focus to illustrate the present invention is illustrated by the relationship between the level reflection peak and 0 reflection peak, the method steps illustrated in the Examples skilled in the art to practice the present invention based on, without inventive reasoning can the respective solutions between the applied and the -1st-order reflection peak and the reflection peak to 0, are not repeated here.

[0060] 在本发明各实施例中,涉及类似光栅区结构部分、光栅区结构和光栅区的描述方式,其中,光栅区结构部分主要是针对制造方法中,位于晶圆上用于生长成为光栅区结构的区域;光栅区结构是指在可调谐半导体激光器中构成分布式布拉格反射激光器的必要组成结构,拥有较为完整的电器特性,例如:在具体实施例中,如图5所示,光栅区结构包括:光栅区、非光栅区、InP衬底(或者SiOs)和电极等等;光栅区具体指光栅区结构中分布有连续光栅的区域,如图5所述各光栅区长度Lg限定的区域。 [0060] In various embodiments of the present invention relates to a manner analogous to the grating region is described moieties, the grating region and the grating region of the structure, wherein the grating region moiety mainly for the manufacturing method, be positioned on the wafer grating for growing region domain structure; refers to a grating region in the structure is tunable integral structure constituting the semiconductor laser of the distributed Bragg reflector lasers, with a more complete electrical characteristics, for example: in the particular embodiment, as shown, the grating region 5 structure comprising: a grating region, the non-grating region, InP substrate (or SIOS) electrodes and the like; specifically refers to a region of the grating region with a continuous region of the grating structure of the grating profile, the grating region 5 of the length Lg of each defined region .

[0061 ] 实施例1: [0061] Example 1:

[0062] 本发明实施例1提供了一种可调谐半导体激光器,如图3所示,包括至少两个分布式布拉格反射激光器(如图3所不,包括分布式布拉格反射激光器11、分布式布拉格反射激光器12、分布式布拉格反射激光器13…)、一合波器21 (合波器21的选择可以是多模干涉器MMI、Y分叉波导或者阵列波导光栅AWG),参考图4,每一个分布式布拉格反射激光器包括有源区结构111和光栅区结构112,如图3-图5所示: Embodiment [0062] Example 1 of the present invention there is provided a tunable semiconductor laser 3, comprising at least two distributed Bragg reflector laser (not shown in Figure 3, comprising a distributed Bragg reflector laser 11, a distributed Bragg reflected laser 12, a distributed Bragg reflector laser 13 ...), a multiplexer 21 (selection multiplexer 21 may be a multi-mode interferometer MMI, Y bifurcated waveguide or an array waveguide grating AWG), with reference to FIG. 4, each of distributed Bragg reflector laser structure including an active region 111 and the grating structure area 112, as shown in FIGS. 3 5:

[0063] 每一个分布式布拉格反射激光器的光栅区结构112包括一个或者多个光栅区,各光栅区相隔指定长度。 [0063] Each grating zone structure of a distributed Bragg reflector laser 112 comprises one or more grating regions, the grating regions each spaced a specified length. 其中,采用具有相同光栅周期Λ的光栅构成各分布式布拉格反射激光器中的光栅区。 Wherein the grating having the same grating period Λ of constituting the distributed Bragg reflector lasers the grating region.

[0064]所述光栅区相隔指定长度为图中取样长度Ls减去图中光栅区长度Lg后获得,以图5所示,所述光栅区相隔指定长度位于光栅区之间,且未覆盖光栅的区域位置。 After subtracting the length Ls of FIG sampling FIG grating region length Lg [0064] separated from the grating region to obtain the specified length, as shown in FIG. 5, the grating region is located between specified length separated grating region, does not cover the grating the regional location.

[0065] 在各分布式布拉格反射激光器中,由各自的一光栅区长度和相应光栅区相隔的一指定长度所构成的取样长度值,是根据该分布式布拉格反射激光器所要激射的波长所确定。 [0065] In each of the distributed Bragg reflector laser, the length of the sample value by a respective one grating region length and the respective grating region spaced a specified length is formed, is determined based on the distributed Bragg reflector lasers for lasing wavelength .

[0066] 每一个分布式布拉格反射激光器的有源区结构和光栅区结构分别还包括一电极。 [0066] The structure of the active region and the grating structure of each region of a distributed Bragg reflector laser further includes an electrode, respectively.

[0067] 其中,组成光栅区与波导区采用的材料是三五族半导体材料,或者是硅材料、二氧化娃材料、氮化娃材料及聚合物材料。 [0067] wherein grating region and a waveguide material is used in region III-V semiconductor material, or a silicon material, a material dioxide baby, baby nitride materials and polymer materials.

[0068] 在本发明实施例中,由于各个DBR激光器光栅的布拉格波长相同,因此只需要通过一次全息曝光即可制作完成,成本低廉。 [0068] In an embodiment of the present invention, since the same Bragg wavelength of each grating DBR laser, it is only necessary to by a single holographic exposure produced, low cost. 通过对光栅进行不同周期的取样,实现不同DBR激光器调谐起始波长及调谐范围的不同。 By sampling different grating periods, different to achieve different tuning the DBR laser and the wavelength tuning range starting. 并联这些DBR激光器,利用合波器合波至单一波导, 可以实现大范围可调谐的功能。 These parallel DBR lasers, a multiplexer using multiplexer to a single waveguide, can achieve a wide range of tunable function. 既可以拓展DBR激光器的调谐范围,也保留了DBR激光器调谐控制简单的优点。 Either expand the tuning range of the DBR laser, also retained a simple DBR laser tuning control advantages. 通过发明中取样光栅设计及有源区设计,可以使得激光器阵列中各个激光器性能具备高度的一致性。 By design of the active region and the grating design sampling invention may be such that the respective laser performance laser array with a high degree of consistency.

[0069] 其中,光栅区长度Lg和取样长度Ls的比值为S = Lg/Ls,所述δ与取样光栅梳状反射谱的反射率成正比,其对应关系为: [0069] wherein, sampling length of Lg and Ls is the ratio of the grating region of length S = Lg / Ls, δ proportional to the reflectivity sampled grating comb reflection spectrum, which corresponds to the relationship:

[0070] R(n) =tanh2( I Kn I *N*LS) (1) [0070] R (n) = tanh2 (I Kn I * N * LS) (1)

[0071] 其中,R(n)为n级反射峰的反射率,N为取样周期数,所述取样周期由一光栅区和一光栅区间隔构成,其长度即取样长度Ls;Kn是η级反射峰的耦合系数,其求解式如下: [0071] wherein, R & lt (n) is the reflectance of the reflection peak level n, N is the number of sampling period, the sampling period of a grating region and a grating region constituting interval, i.e. the length sampling length Ls; Kn level is η reflection peak coupling coefficient, which solved the formula:

Figure CN106207748AD00091

[0073]其中,Κο是均匀光栅的耦合系数。 [0073] wherein, Κο is the coupling coefficient of the uniform grating.

[0074]接下来将结合具体的光栅梳状反射谱和公式推导,阐述本发明实施例中,就每一个分布式布拉格反射激光器对应生成可调谐半导体激光器中的一指定波长的激光,则所述取样长度值是根据该分布式布拉格反射激光器所要激射的波长所确定,其实现原理做具体分析如下: [0074] Next, the specific binding comb grating reflection spectrum and derivation of the formula set forth embodiment of the present invention, on each of a distributed Bragg reflector laser generated corresponding to a specific wavelength tunable laser of the semiconductor laser, then the sampling length value is determined based on the distributed Bragg reflector lasers for lasing wavelength, which make a specific implementation principle as follows:

[0075]所述取样长度值的设定,满足所述光栅区结构112自身的取样光栅梳状反射谱的1 级反射峰所处的波长和分布式布拉格反射激光器所要激射的波长相同。 The same [0075] length of the sample set values, 112 to meet their comb-shaped reflection spectrum of the sampled grating region the grating structure of the stage 1 and the reflection peak wavelength in which the distributed Bragg reflector lasers for lasing wavelength. 各分布式布拉格反射激光器之间的激射波长的间隔小于等于光栅区结构的调谐范围。 The interval between the lasing wavelength of the distributed Bragg reflector region of the laser tuning range less grating structure. 在本发明实施例中,为了避免取样光栅梳状反射谱的0级反射峰与有源区结构增益峰相遇而发生激射,因此,所选择的光栅周期保证取样光栅梳状反射谱的0级反射峰所在波长和对应的各分布式布拉格反射激光器的有源区结构的增益峰波长相差至少50nm。 In an embodiment of the present invention, in order to avoid sampling comb grating reflection spectrum and the reflection peak 0 configuration of a gain peak of the active region meet and lasing occurs, and therefore, the grating period is selected to ensure that the sampled grating comb-like reflection spectrum 0 where each reflection peak wavelength distributed Bragg reflector and the corresponding laser gain peak wavelength of the active region structure by at least 50nm.

[0076] 如图6所示,为本发明实施例提供的一种光栅区结构112的取样光栅梳状反射谱的1级反射峰和一种有源区产生并折射到所述光栅区结构112后的增益峰值曲线(如图6中虚线所示)关系示意图。 [0076] As shown in FIG 6, the present stage the sampled grating reflection peaks of the comb reflectance spectrum and an active region provided in a raster domain structure of the embodiment 112 is generated and the refractive grating zone structure 112 to the invention after the peak of the gain curve (a broken line shown in FIG. 6) relationship map. 在经过诸多实验和理论研究后,得出如图6所述光栅梳状反射谱的0级反射峰所处的波长位置,是由光栅区结构112中所生成的光栅的光栅周期Λ所决定。 After many experimental and theoretical studies elapsed, the results in FIG. 6 position of the reflection wavelength grating comb spectrum in which the reflection peak 0, the grating period Λ is the grating region 112 generates the configuration of the grating is determined. 其关系式满足A〇= 2Ang,其中,λ〇光栅梳状反射谱的〇级反射峰所处的波长,ng为光栅区结构112的有效折射率。 Satisfies the following relationship A〇 = 2Ang, wherein the wavelength at which the reflection peak level square λ〇 comb grating reflection spectrum, ng is the effective refractive index of the grating region 112 of the structure.

[0077] 本发明在背景技术中介绍了若采用不同的光栅周期来实现可调谐半导体激光器, 其原理就是通过生成不同的光栅周期,使得各光栅周期决定的光栅梳状反射谱的〇级反射峰的波长和可调谐半导体激光器所需激射的波长相对应,但是现有的采用不同的光栅周期来实现可调谐半导体激光器是无法在一次全息曝光过程中实现的,现有的技术手段是采用加工耗时长,加工成本昂贵的电子束光刻的。 [0077] The present invention describes billion order reflection peak of the use of a different grating periods to achieve a tunable semiconductor laser, the principle is by generating different grating periods, such that the grating comb-like reflection spectrum of each grating period determined in the background art the desired wavelength and lasing wavelength tunable semiconductor laser corresponding to the conventional use but different grating periods can be implemented in the tunable semiconductor laser is a holographic exposure process can not be implemented, the prior art is the use of the processing means time-consuming, costly process of electron beam lithography. 在此研究基础上。 In this study basis. 进一步,研究发现光栅区结构112中的取样长度1^会对光栅梳状反射谱的0级反射峰和1级反射峰之间的距离△ λ产生直接影响,如图7所示,其对应的关联关系如下式(3)所示: Further, the sample length found in the structure of the grating region 1121 ^ 0 the distance between the grating reflectivity peaks have a comb reflection spectrum and a reflection peak level △ λ direct impact, shown in Figure 7, the corresponding associated the following relationship formula (3):

[0078] AA = A〇2/2ngLs (3) [0078] AA = A〇2 / 2ngLs (3)

[0079] 其中,AQ = 2Ang,AQ光栅梳状反射谱的〇级反射峰所处的波长、Λ为光栅周期、&为光栅区结构112的有效折射率、△ λ为光栅梳状反射谱中相邻能级的间隔距离,如图8所示, 给予了取样长度Ls与光栅梳状反射谱中相邻能级的间隔距离的关系示意图。 [0079] wherein, AQ 2Ang, wavelength = AQ comb grating reflection spectrum in which the square order reflection peak, Lambda is the grating period, the grating region & the effective refractive index structure 112, △ λ comb grating reflection spectrum distance adjacent energy levels, shown in Figure 8, showing the relationship between a given sampling length Ls and grating adjacent comb-like reflection spectrum of the energy level spacing. 基于上述特性,本发明实施例通过满足所述光栅区结构112自身的取样光栅梳状反射谱的1级反射峰所处的波长和分布式布拉格反射激光器所要激射的波长相同,确定所述取样长度Ls。 Based on the above characteristics, similar to Example 112 satisfies the grating zone structure itself sampled grating comb reflection spectrum in which the peak level of the wavelength 1 reflected and distributed Bragg reflector lasers lasing wavelength to the present invention, the sampling determination length Ls. 在损失了部分反射率的情况下(即将用于反射从有源区结构111产生的增益信号,从传统的〇级调整为1级,如图7所示),能够基于相同的光栅周期,提供不同波长的1级反射峰,从而实现可调谐半导体激光器所需实现的各波长激光。 In the case of a partial loss of reflectivity (ie, gain for the reflected signal is generated from the active region of the structure 111, from a conventional level adjusting billion level 1, 7), can be based on the same grating period, provides peak level reflecting a different wavelength, thereby realizing a tunable wavelength laser light of each semiconductor laser is required to achieve.

[0080] 本发明实施例所提供的所述可调谐半导体激光器,在实现过程中,尤其是根据公式(3)相关参数制造分布式布拉格反射激光器的光栅区结构112时候,未必能够达到预期精确度,因此,为了进一步克服上述问题,结合本发明实施例还存在一种可实现方案: [0080] The embodiment of the present invention, the structure of the grating region to the embodiment of the tunable semiconductor laser is provided, in the implementation process, especially according to the equation (3) the relevant parameters for producing a distributed Bragg reflector laser 112, when the accuracy may not be able to achieve the desired Therefore, in order to further overcome the above problems, there are cases in conjunction with an embodiment of the present invention implementations:

[0081] 所述有源区结构111和光栅区结构112分别设置有电极; [0081] The structure of the grating region 111 and the structure of the active region 112 are respectively provided with an electrode;

[0082] 其中,有源区结构111上的电极用于有源区的电流注入,光栅区结构112上电极用于对波导进行电流注入或者通过加热的方式改变光栅区波导的有效折射率。 [0082] wherein the electrode structure 111 on the active region for the current injected into the active region, the grating region 112 of the electrode structure for waveguide current injection or change the effective refractive index of the grating region waveguide by way of heating.

[0083] 在本发明实施例所提出的可调谐半导体激光器中,为了能够达到各波长上的激光强度的一致性,则通常要求各分布式布拉格反射激光器的取样光栅梳状反射谱之间的1级反射峰相差的反射率小于5%。 Between 1 [0083] In an embodiment of the tunable semiconductor laser of the embodiment of the present invention proposed in order to achieve uniformity of the laser intensity at each wavelength, it is generally required for each laser is a distributed Bragg reflector sampled grating comb reflection spectrum order reflection peak reflectivity differ by less than 5%. 即要求不同分布式布拉格反射激光器的1级反射峰的反射率拥有较好的一致性,从而才能为最终产生的激光强度能够满足一致性要求提供保证。 That requires a different reflectivity of the distributed Bragg reflector laser reflection peak level 1 has good consistency, and thus be able to provide guarantees for the laser intensity ultimately produced to meet the conformance requirements.

[0084] 实施例2: [0084] Example 2:

[0085] 本发明实施例1介绍了一种可调谐半导体激光器,并通过结合背景技术中阐述的技术问题的方式,从原理上分析了本发明所提出的一种可调谐半导体激光器的可实现性, 以及就实现过程中可能遇到的问题和可优化的方面进行了部分阐述。 Embodiment [0085] Example 1 of the present invention describes a tunable semiconductor laser, and combined by way of technical problems set forth in the background art, the present invention analyzes a proposed tunable semiconductor laser can be realized in principle of , and made some elaborate on the issues that may be encountered in the implementation process and aspects can be optimized. 本发明实施例2是在上述实施例1基础上,就其最后提到的未必能够达到预期精确度情况,在研究得到通过给光栅区结构中的电极供电情况下,能够改变光栅区结构整体的有效折射率,从而在可控范围内调整光栅梳状反射谱各反射峰在小范围内完成平移。 Example 2 of the present invention is based on the above-described embodiment 1, its last-mentioned may not be able to achieve the desired accuracy of the case, obtained by the study of power to the lower electrode structure, where the grating region, it is possible to change the overall structure of the grating region the effective refractive index, to adjust the reflectance spectrum of each comb grating reflection peak within a small range to complete the translation in the controllable range. 因此,提供另一种可实现方案,相较前者在有源区结构111和光栅区结构112分别设置有电极的方式,本实施例所提出的方案能够实现更灵活的调控,如图9所示,具体阐述如下: Accordingly, another embodiment can be achieved, compared with the former embodiment is provided with an electrode structure 111 in the active region and the grating region 112 are structures, the proposed solution of this embodiment can realize more flexible regulation, shown in Figure 9 specifically described as follows:

[0086] 在所述各分布式布拉格反射激光器中,位于所述有源区结构111和光栅区结构112 之间,还包括相位区结构113,具体的: [0086] In each of the distributed Bragg reflector laser, positioned between the active region and the grating region 111 configuration structure 112, further comprising a phase zone structure 113, specifically:

[0087] 所述有源区结构111、相位区结构113以及光栅区结构112依序纵向相连,其中,相位区结构设置有电极1131; [0087] The structure 111, the phase structure of the active area region and the grating region 113 are sequentially longitudinal structure 112 is connected, wherein the phase structure is provided with an electrode area 1131;

[0088] 其中,有源区结构111上的电极用于有源区的电流注入,相位区结构上电极及光栅区结构112上电极用于对波导进行电流注入或者通过加热的方式改变相位区波导及光栅区波导的有效折射率。 [0088] wherein the electrode structure 111 on the active region for the current injected into the active region, the grating region and the upper electrode 112 on the structure of a phase region of the waveguide structure of the electrode for current injection region of the waveguide by changing the phase or heating, and the grating region and the effective refractive index of the waveguide.

[0089] 由于本发明实施例2仅从实现精度上考虑,就实施例1所提供的方案基础上,提出了一种可扩展的方案。 [0089] Since the embodiment of the present invention to achieve the precision considerations only 2, of Example 1, the solution provided proposed based on a scalable solution. 本实施例所述结构同样可以和实施例1中所描述的各细化的技术手段结合实现,在此不一一赘述。 The structure of this embodiment may also be refined and the respective technical means described in Example 1 in conjunction implemented, which is not detailed herein.

[0090] 实施例3: [0090] Example 3:

[0091] 在实施例1提供了一种可调谐半导体激光器的基础上,本发明还提供了实施例3: 一种可调谐半导体激光器的制造方法,所述制造方法可用于制造如实施例1或者实施例2所述的可调谐半导体激光器,如图10所示,所述制造方法包括以下执行步骤: [0091] In Example 1 provided the basis for A tunable semiconductor laser, the present invention also provides the Example 3: method for manufacturing a tunable semiconductor laser, the method may be used to manufacture as described in Example 1 or tunable semiconductor laser described in Example 2, shown in Figure 10, the method comprising performing the following steps:

[0092] 在步骤201中,在晶圆上对用于制作可调谐半导体激光器的各分布式布拉格反射激光器的有源区结构部分和/或相位区结构部分进行掩膜处理,并利用全息曝光法在光栅区结构部分刻蚀具有相同光栅周期的光栅区;其中,各分布式布拉格反射激光器中各光栅区的间隔根据所要激射的波长设定; [0092] In step 201, on the wafer for the production of the tunable semiconductor laser active regions of each moiety distributed Bragg reflector lasers and / or the phase zone moiety masking process, and a holographic exposure method grating region having the same grating period of the grating region is partially etched structure; wherein each of the distributed Bragg reflector laser according to the spacing of the grating region to be the lasing wavelength is set;

[0093]在步骤202中,在所述有源区结构部分生长完成有源区结构,在所述已完成光栅区制作的光栅区结构部分生长完成光栅区结构和/或在相位区结构部分生长完成相位区结构。 [0093] In step 202, the grating region in the active moiety moiety completion of the growth region of the active region structure, produced in the finished grating region the grating region growth is complete structure and / or growth phase region in the moiety complete phase domain structure.

[0094] 在步骤203中,连接所述各分布式布拉格反射激光器和合波器。 [0094] In step 203, each connected to the distributed Bragg reflector laser Hop wave.

[0095] 在本发明实施例中,所述有源区结构可以是设计成相同结构的,也可以采用能够产生不同增益信号的结构,从而提高所述可调谐半导体激光器的光谱覆盖范围。 [0095] In an embodiment of the present invention, the active region structure may be designed to be the same structure, the structure may be employed capable of producing different gain signal, thereby improving the spectral coverage of the tunable semiconductor laser. 可以根据具体需求,做出相应调整。 According to the specific needs and make the appropriate adjustments.

[0096]由于各个DBR激光器光栅的布拉格波长相同,因此只需要通过一次全息曝光即可制作完成,成本低廉。 [0096] Since each of the same DBR laser grating Bragg wavelength, and therefore only need to once finished holographic exposure and low cost. 通过对光栅进行不同周期的取样,实现不同DBR激光器调谐起始波长及调谐范围的不同。 By sampling different grating periods, different to achieve different tuning the DBR laser and the wavelength tuning range starting. 并联这些DBR激光器,利用合波器合波至单一波导,可以实现大范围可调谐的功能。 These parallel DBR lasers, a multiplexer using multiplexer to a single waveguide, can achieve a wide range of tunable function. 既可以拓展DBR激光器的调谐范围,也保留了DBR激光器调谐控制简单的优点。 Either expand the tuning range of the DBR laser, also retained a simple DBR laser tuning control advantages. 通过发明中取样光栅设计及有源区设计,可以使得激光器阵列中各个激光器性能具备高度的一致性。 By design of the active region and the grating design sampling invention may be such that the respective laser performance laser array with a high degree of consistency.

[0097]在本发明实施例中,尤其是步骤201中的所述利用全息曝光法在光栅区结构部分刻蚀具有相同光栅周期的光栅区,具体多种具体的实现方式,具体阐述如下: [0097] In an embodiment of the present invention, in particular in the step 201 by the holographic exposure method has the same grating period of the grating region is partially etched structure in the grating region, more particularly specific implementation, specifically set forth as follows:

[0098]方式一: [0098] Method 1:

[0099] 各分布式布拉格反射激光器的有源区结构部分和/或相位区结构部分的掩膜处理的过程,和光栅区结构部分的掩膜处理过程同时进行;其中,对于光栅区结构部分的掩膜处理过程具体为遮掩住非光栅区,而露出待制作成光栅区部分。 [0099] The active regions of each moiety distributed Bragg reflector laser and / or mask processes during phase field moiety, and the mask process moiety grating region simultaneously; wherein the grating region for the moiety masking process is particularly obscured by the non-grating area, to be made into the exposed portion of the grating region. 则所述利用全息曝光法在光栅区结构部分刻蚀具有相同光栅周期的光栅区,具体为: Then the holographic exposure method has the same grating period of the grating region is partially etched structure in the grating region, in particular:

[0100] 设置全息曝光的光栅周期为指定值Λ,对所述光栅区结构部分进行全息曝光。 [0100] provided holographic exposure value specified grating period Λ, the grating region of the moiety holographic exposure. 在完成所述全息曝光,刻蚀后便可除去各自的掩膜,并执行步骤202。 In the holographic exposure is completed, can be removed after each etching mask, and the step 202 is performed. 其中,光栅区结构部分的掩膜处理过程相比较有源区结构部分和/或相位区结构部分的掩膜处理,还可以是相对独立完成的,因为有源区结构部分和/或相位区结构部分的掩膜处理仅需要完全遮掩即可,而对于光栅区结构部分的掩膜则需要有选择性的达到指定精度的区域性遮掩,其工序和方式相对于全遮掩来说,在使用掩膜材料或者掩膜步骤具有较大差别时,独立完成有其存在的优势。 Wherein the mask process moiety grating region compared moieties and / or masking process moiety region of the active region of the phase, but also may be relatively independently, as part of the active region structure and / or phase domain structure mask processing section is only necessary to completely cover, and for the mask grating region moiety is needed to achieve the accuracy specified regional cover selective manner with respect to its step and the full cover, in use of the mask the material having a large difference or a masking step, independently of the advantage of its presence.

[0101] 方式二: [0101] Second way:

[0102] 对于完成所述完成有源区结构部分和/或相位区结构部分的掩膜处理后的晶圆, 进行指定光栅周期为Λ的第一轮全息曝光; [0102] For the complete wafer or after completion of said moieties and / masking process moieties phase region of an active region, the grating period Λ specified first round holographic exposure;

[0103] 对于各分布式布拉格反射激光器的光栅区结构部分利用光刻版进行掩蔽,并进行第二轮普通光刻曝光,从而完成光栅区结构部分中非光栅区的过曝光;然后进行显影,刻蚀后即形成取样光栅。 [0103] For use of the grating regions of each moiety distributed Bragg reflector laser lithography masking plate, and a second round of ordinary lithography exposure, thereby completing the overexposure moiety Africa grating region the grating region; then developed, etching after the formation of the sampled grating. 进一步完成步骤202。 Further completion of step 202.

[0104] 在本发明实施例实现过程中,要完成全息曝光的过程,通常需要确定该制造方法所要生产的可调谐半导体激光器所包含的各布式布拉格反射激光器的激光波,其中i 为对应各布式布拉格反射激光器的序号,ie [ 1,n],n为自然数,则根据公式: [0104] In the embodiment of the present invention, the implementation process, to complete the process of the holographic exposure, often necessary to determine the laser wave of each distributed Bragg reflector laser in the manufacturing method to produce tunable semiconductor laser included, wherein i is corresponding to the respective No. distributed Bragg reflector laser, ie [1, n], n is a natural number, according to the formula:

[0105] Lsi = A〇2/2ng|Ai-A〇(4) [0105] Lsi = A〇2 / 2ng | Ai-A〇 (4)

[0106] 求解得到取样长度值,其中,λ〇为光栅梳状反射谱的〇级反射峰的波长;所述取样长度值是根据各布式布拉格反射激光器中光栅区长度值和光栅区之间间隔值求和得到; [0106] Solving obtained sample length value, wherein λ〇 stage is square grating reflection peak wavelength of the reflection spectrum of the comb; between the sampling length value is distributed according to the respective Bragg reflector lasers the grating region and the grating region length value summation interval value;

[0107] 按照所述取样长度值LS1,生成用于所述非光栅区掩膜处理的掩膜。 [0107] in accordance with the value of the sampling length LS1, generating a non-grating region mask for masking process.

[0108] 为了减少因为制造精确度所带来的生产设备成本的提高,结合本发明实施例,存在一种可扩展的实现方案,具体在步骤202后还包括如下步骤: [0108] In order to reduce equipment costs increase because the manufacturing accuracy caused by connection with the embodiments of the present invention, the presence of a scalable implementations, particularly after the step 202 further comprises the steps of:

[0109] 在步骤203中,在所述各分布式布拉格反射激光器中,位于所述相位区结构和/或光栅区结构的电极接触层设置有电极; [0109] In step 203, each of the distributed Bragg reflector laser in the phase domain structure is located and / or the electrode contact layer grating region provided with an electrode structure;

[0110] 其中,相位区结构上电极及光栅区结构上电极用于对波导进行电流注入或者通过加热的方式改变相位区波导及光栅区波导的有效折射率。 [0110] wherein the phase domain structure of the upper electrode and the grating region waveguide structure of the electrode for current injection region or change the effective refractive index of the phase grating region waveguide and the waveguide by way of heating.

[0111] 实施例4: [0111] Example 4:

[0112] 在实施例3所提供的一种可调谐半导体激光器的制造方法基础上,本发明实施例将结合一套具体可行参数,阐述如何利用实施例3所述的方法来完成可调谐半导体激光器的制造。 [0112] In Example 3 provided a method for manufacturing a tunable semiconductor laser based on the embodiment of the present invention in conjunction with a set of parameters specific and feasible, describes how to use the method of Example 3 to complete the tunable semiconductor laser manufacturing. 在本实施例中,各布式布拉格反射激光器可产生不同波长的增益信号,假设本发明实施例中构成可调谐半导体激光器的在构成可调谐半导体激光器的各布式布拉格反射激光器的个数η为3,且激射波长包括1.56um、1.57um和1.58um时,设置光栅区结构的静态工作状态下其有效折射率为3.4,在本发明实施例中采用了实施例3中的方式一,所述方法还包括: In the present embodiment, each of the distributed Bragg reflector laser can generate a gain of signals of different wavelengths, assuming respective distributed Bragg reflector laser in the tunable semiconductor laser constituting the embodiment of the tunable semiconductor laser constituting the embodiment of the present invention, the number is η 3, and includes a lasing wavelength 1.56um, when 1.57um and 1.58um, the static working state provided a grating structure area whose effective refractive index is 3.4, using an embodiment of the embodiment in Example 3. in an embodiment of the present invention, the said method further comprising:

[0Ί13] 设置全息曝光的光栅周期λ为242nm,则λ〇为1.65um,参考公式: [0Ί13] disposed holographic exposure grating period λ is 242nm, the λ〇 of 1.65um, with reference to formula:

[0114] Lsi = A〇2/2ng | λί_λ〇| (4) [0114] Lsi = A〇2 / 2ng | λί_λ〇 | (. 4)

[0115] 求解得到各激射波长所对应的取样长度为4.45um、5 · OOum和5 · 72um; [0115] solved for each sampling length corresponding to the lasing wavelength of 4.45um, 5 · OOum and 5 · 72um;

[0116] 按照所述取样长度值,生成用于所述非光栅区掩膜处理的掩膜。 [0116] in accordance with the sampling length value, generating a mask for the masking process of the non-grating region.

[0117] 例如4.45um求解过程为,将1.56um带入公式(4)如下: [0117] for example, solution process is 4.45um, 1.56um into the equation (4) as follows:

[0118] Lsi= (1650)2/( 1650-1560)/2/3 · 4 = 4 · 45um。 [0118] Lsi = (1650) 2 / (1650-1560) / 2/3 · 4 = 4 · 45um.

[0119] 在此计算参数基础上,依据实施例3完成包含1 · 56um、1 · 57um和1 · 58um各激射波长的可调谐半导体激光器的制造方法,如图11所示,具体包括以下步骤: [0119] On the basis of this calculation parameter, the present embodiment 3 comprises a complete 1 · 56um, 1 · 57um and 1 · 58um each lasing wavelength may be tunable semiconductor laser manufacturing method, as shown in FIG. 11, comprises the steps of :

[0120] 在步骤301中,在晶圆上对用于制作可调谐半导体激光器的各分布式布拉格反射激光器的有源区结构部分和/或相位区结构部分进行掩膜处理,其中,对于各分布式布拉格反射激光器的光栅区结构部分按照4 · 45um、5 · OOum和5 · 72um的取样周期(其参数值对应取样长度)设置掩膜。 [0120] In step 301, on the wafer for the production of the tunable semiconductor laser active regions of each moiety distributed Bragg reflector lasers and / or the phase zone moiety masking process, wherein for each distribution DBR lasers the grating region according moiety 4 · 45um, 5 · OOum 5 · 72um and the sampling period (sampling length which corresponds to the parameter value) mask is provided.

[0121] 在步骤302中,设置用全息曝光的参数值,使得全息曝光能够在光栅区结构部分形成具有光栅周期为242nm的一个或者多个光栅区图样,刻蚀后形成光栅图形。 [0121] In step 302, it sets the parameter values ​​holographic exposure, the holographic exposure that is capable of forming a grating region of 242nm or more pattern having a grating period as the grating region moiety, a grating pattern formed after etching.

[0122] 在步骤303中,去除上述掩膜; [0122] In step 303, removing the mask;

[0123] 在步骤304中,在所述有源区结构部分生长完成有源区结构,在所述已完成光栅区制作的光栅区结构部分生长完成光栅区结构和/或在相位区结构部分生长完成相位区结构。 [0123] In step 304, the grating region of the active moiety moiety completion of the growth region of the active region structure, produced in the finished grating region the grating region growth is complete structure and / or growth phase region in the moiety complete phase domain structure. 其中,各区结构的生长方式可以使用现有技术完成,在此不一一赘述。 Wherein, growth pattern zones may be prior art structure is completed, which is not detailed herein.

[0124] 在步骤305中,在所述各分布式布拉格反射激光器中,位于所述相位区结构和/或光栅区结构的电极接触层设置有电极。 [0124] In step 305, each of the distributed Bragg reflector laser in the phase domain structure is located and / or the electrode contact layer region provided with an electrode structure of a grating.

[0125] 在步骤306中,连接各分布式布拉格反射激光器和合波器。 [0125] In step 306, each connected to a distributed Bragg reflector laser Hop wave.

[0126] 其中,相位区结构上电极及光栅区结构上电极用于对波导进行电流注入或者通过加热的方式改变相位区波导及光栅区波导的有效折射率。 [0126] wherein the phase domain structure of the upper electrode and the grating region waveguide structure of the electrode for current injection region or change the effective refractive index of the phase grating region waveguide and the waveguide by way of heating.

[0127] 在本发明中由于各个DBR激光器光栅的布拉格波长相同,因此只需要通过一次全息曝光即可制作完成,成本低廉。 [0127] In the present invention, the same as the Bragg wavelength of each grating DBR laser, it is only necessary to by a single holographic exposure produced, low cost. 通过对光栅进行不同周期的取样,实现不同DBR激光器调谐起始波长及调谐范围的不同。 By sampling different grating periods, different to achieve different tuning the DBR laser and the wavelength tuning range starting. 并联这些DBR激光器,利用合波器合波至单一波导,可以实现大范围可调谐的功能。 These parallel DBR lasers, a multiplexer using multiplexer to a single waveguide, can achieve a wide range of tunable function. 既可以拓展DBR激光器的调谐范围,也保留了DBR激光器调谐控制简单的优点。 Either expand the tuning range of the DBR laser, also retained a simple DBR laser tuning control advantages. 通过发明中取样光栅设计及有源区设计,可以使得激光器阵列中各个激光器性能具备高度的一致性。 By design of the active region and the grating design sampling invention may be such that the respective laser performance laser array with a high degree of consistency.

[0128] 实施例5: [0128] Example 5:

[0129] 上述实施例1-2提供了可调谐半导体激光器的结构特性,并在实施例3-4中提供了可调谐半导体激光器的制造方法。 [0129] Examples 1-2 above provides the structural characteristics of the tunable semiconductor laser, and to provide a method of manufacturing a tunable semiconductor laser in Example 3-4. 作为本发明的组成部分,将在本实施例5中给予一种可调谐半导体激光器的使用方法,所述使用方法基于上述实施例1或实施例2任一所述的可调谐半导体激光器,其中,各分布式布拉格反射激光器中,位于所述有源区结构和光栅区结构的电极接触层分别设置有电极,如图12所示,包括: As part of the present invention, in the present embodiment 5, the administration of one method of using the tunable semiconductor laser, the use of the above Example 1 or 2 may be a tunable semiconductor laser according to any one of embodiments embodiment, wherein, each distributed Bragg reflector lasers, the active region is located in the grating structure and domain structure are provided with electrode contact electrode layer, 12, comprising:

[0130] 在步骤401中,给各分布式布拉格反射激光器的有源区结构的电极供电。 [0130] In step 401, the power supply to the electrode structure of each of the active regions distributed Bragg reflector lasers.

[0131] 在步骤402中,根据可调谐半导体激光器中各分布式布拉格反射激光器所需产生的波长值,给各分布式布拉格反射激光器光栅区结构的电极提供符合其有效折射率需求的电流。 [0131] In step 402, the value depending on the wavelength tunable semiconductor laser is required to produce each of the distributed Bragg reflector lasers, distributed Bragg reflector lasers to each electrode area to provide a grating structure which meet the current needs of the effective refractive index.

[0132] 在本发明中由于各个DBR激光器光栅的布拉格波长相同,因此只需要通过一次全息曝光即可制作完成,成本低廉。 [0132] In the present invention, the same as the Bragg wavelength of each grating DBR laser, it is only necessary to by a single holographic exposure produced, low cost. 通过对光栅进行不同周期的取样,实现不同DBR激光器调谐起始波长及调谐范围的不同。 By sampling different grating periods, different to achieve different tuning the DBR laser and the wavelength tuning range starting. 并联这些DBR激光器,利用合波器合波至单一波导,可以实现大范围可调谐的功能。 These parallel DBR lasers, a multiplexer using multiplexer to a single waveguide, can achieve a wide range of tunable function. 既可以拓展DBR激光器的调谐范围,也保留了DBR激光器调谐控制简单的优点。 Either expand the tuning range of the DBR laser, also retained a simple DBR laser tuning control advantages. 通过发明中取样光栅设计及有源区设计,可以使得激光器阵列中各个激光器性能具备高度的一致性。 By design of the active region and the grating design sampling invention may be such that the respective laser performance laser array with a high degree of consistency.

[0133] 本发明实施例在实现过程中,所述步骤402给出了"给各分布式布拉格反射激光器光栅区结构的电极提供符合其有效折射率需求的电流"的方法,然而,该方式多属于一种静态的调整方式。 [0133] Example embodiments of the present invention in the implementation process, step 402 gives the "electrode provided to each of the distributed Bragg reflector laser structure of a region whose effective refractive index grating meet current demand" method, however, the multi-mode It belongs to a static adjustment mode. 其目的是为了能够实现公式: Its purpose is to enable the formula:

[0134] Δλ=(2η8Λ )2/2ngLs (5) [0134] Δλ = (2η8Λ) 2 / 2ngLs (5)

[0135] A〇= 2ng A (6) [0135] A〇 = 2ng A (6)

[0136] 获取相应取样光栅梳状反射谱的1级反射峰与0级反射峰的预设峰值间距需求。 [0136] Gets the default spacing peaks corresponding to the peak demand level reflecting the sampled grating reflection spectra comb with 0 reflection peak. 然而,实际情况则是可能因为光栅制作精确度、分布式布拉格反射激光器工作时产生的温度等等,对光栅区结构工作的稳定性造成影响,因此,对于可调谐半导体激光器中各分布式布拉格反射激光器,如果还设置有针对产生的各激射波长的检测装置,则所述使用方法还包括: However, the actual situation is made possible because of the accuracy of the grating, distributed Bragg reflection occurs when the temperature of the laser working, etc., affect the stability of the grating structure of the work area, so for each of the tunable semiconductor laser distributed Bragg reflector laser, if there is further provided detecting means for generating respective lasing wavelength, the method further comprising the use of:

[0137] 在步骤403中,在检测到其中一分布式布拉格反射激光器的激射波长的波动超过预设阈值时,根据公式(5)、(6)的对应关系,调整相应分布式布拉格反射激光器光栅区结构的电极供电。 [0137] In step 403, upon detection of a fluctuation in which the lasing wavelength of the distributed Bragg reflector laser exceeds a preset threshold, according to Equation (5), (6) a correspondence relationship, adjust the distributed Bragg reflector lasers the electrode power supply structure grating region. 如图13所示,为本发明实施例提供的波长矫正原理图。 13, the wavelength correction diagram according to an embodiment of the present invention.

[0138] 值得说明的是,上述装置和系统内的模块、单元之间的信息交互、执行过程等内容,由于与本发明的处理方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。 [0138] It should be noted that the content of the modules within the system and apparatus, the information exchange between the unit and execution processes, and since the processing method of the embodiment of the present invention is based on the same concept, reference may be made to the present embodiments of the invention the method the description is not repeated here.

[0139] 本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(R〇M,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。 [0139] Those of ordinary skill in the art can appreciate that various embodiments of the method embodiments all or part of the steps may be relevant hardware instructed by a program, the program may be stored in a computer-readable storage medium, the storage medium may be comprising: a read-only memory (R〇M, Read Only memory), a random access memory (RAM, random access memory), a magnetic disk or optical disk.

[0140] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 [0140] The foregoing is only preferred embodiments of the present invention but are not intended to limit the present invention, any modifications within the spirit and principle of the present invention, equivalent substitutions and improvements should be included in the present within the scope of the invention.

Claims (10)

1. 一种可调谐半导体激光器,包括至少两个分布式布拉格反射激光器、一合波器,其中,每一个分布式布拉格反射激光器包括有源区结构和光栅区结构,其特征在于: 每一个分布式布拉格反射激光器的光栅区结构包括一个或者多个光栅区,各光栅区相隔指定长度; 其中,米用具有相同光栅周期的光栅构成各分布式布拉格反射激光器中的光栅区; 在各分布式布拉格反射激光器中,由各自的一光栅区长度和相应光栅区相隔的一指定长度所构成的取样长度值,是根据该分布式布拉格反射激光器所要激射的波长所确定;每一个分布式布拉格反射激光器的有源区结构和光栅区结构分别还包括一电极。 1. A tunable semiconductor laser comprising at least two distributed Bragg reflector laser, a multiplexer, wherein each of the distributed Bragg reflector laser structure including an active region and the grating region structure, characterized in that: each distribution DBR lasers the grating region or a structure comprising a plurality of grating regions, the grating regions each spaced apart a given length; wherein m having the same grating period of each grating constituting a distributed Bragg reflector lasers the grating region; in the distributed Bragg reflecting the laser, the length of the value sampled by a respective one grating region length and the respective grating region spaced a specified length is formed, is determined based on the distributed Bragg reflector lasers for lasing wavelength; each distributed Bragg reflector lasers the active region and the grating structure further comprises a region of each electrode structure.
2. 根据权利要求1所述的可调谐半导体激光器,其特征在于,每一个分布式布拉格反射激光器对应生成可调谐半导体激光器中的一指定波长的激光,则所述取样长度值是根据该分布式布拉格反射激光器所要激射的波长所确定,具体包括: 所述取样长度值的设定,满足所述光栅区结构自身的取样光栅梳状反射谱的1级反射峰或-1级反射峰所处的波长,和分布式布拉格反射激光器所要激射的波长相同;各分布式布拉格反射激光器之间的激射波长的间隔小于等于光栅区结构的调谐范围。 2. The tunable semiconductor laser according to claim 1, characterized in that each correspond to a distributed Bragg reflector laser generates a specified wavelength tunable laser in the semiconductor laser, the value of the sampling length based on the distributed Bragg reflector lasers lasing wavelength to be determined, comprises: setting the length of the sampling values, structures level satisfies the grating region 1 itself sampled grating reflection peak comb reflection spectrum or -1 order reflection peaks which the same wavelength, and a distributed Bragg reflector lasers for lasing wavelength; between the lasing wavelength distributed Bragg reflector laser tuning range interval less grating structure area.
3. 根据权利要求1所述的可调谐半导体激光器,其特征在于,在所述各分布式布拉格反射激光器中,位于所述有源区结构和光栅区结构之间,还包括相位区结构,具体的: 所述有源区结构、相位区结构以及光栅区结构依序纵向相连,其中,相位区结构设置有电极。 3. The tunable semiconductor laser according to claim 1, wherein each of said distributed Bragg reflector laser, the structure between the active region and the grating structure in said region, further comprising a phase domain structure, particularly : the structure of the active region, the grating region and the phase domain structure of longitudinal structures sequentially connected, wherein the electrode structure is provided with a phase section.
4. 根据权利要求1-3任一所述的可调谐半导体激光器,其特征在于,所述各分布式布拉格反射激光器的取样光栅梳状反射谱之间的1级反射峰的反射率小于5%,或者取样光栅梳状反射谱之间的-1级反射峰的反射率小于5%。 4. The tunable semiconductor laser according to any one of claims 1-3, wherein each of said sampled grating distributed comb reflection level of a reflection peak reflectance spectrum between Bragg reflector lasers is less than 5% or reflectivity sampled grating comb reflection peaks between -1 order reflection spectrum is less than 5%.
5. -种可调谐半导体激光器的制造方法,其特征在于,包括: 在晶圆上对用于制作可调谐半导体激光器的各分布式布拉格反射激光器的有源区结构部分和/或相位区结构部分进行掩膜处理,并利用全息曝光法在光栅区结构部分刻蚀具有相同光栅周期的光栅区;其中,各分布式布拉格反射激光器中各光栅区的间隔根据所要激射的波长设定; 在所述有源区结构部分生长完成有源区结构,在所述已完成光栅区制作的光栅区结构部分生长完成光栅区结构和/或在相位区结构部分生长完成相位区结构; 连接所述各分布式布拉格反射激光器和合波器。 5 - method of manufacturing a tunable semiconductor laser, characterized by comprising: an active moiety of a tunable semiconductor laser for producing a distributed Bragg reflector laser in each region moieties and / or phase region on the wafer masking processing, and exposure method using a holographic grating region having the same grating period of the grating region is partially etched structure; wherein each of the distributed Bragg reflector laser according to the interval of each grating region desired lasing wavelength is set; in the said active region grown moiety complete structure of the active region, the grating region produced has been completed moiety grating region the grating region growth is complete structure and / or completion of the growth phase domain structure in the phase region moiety; each of said connecting profile Hop DBR laser wave.
6. 根据权利要求5所述的可调谐半导体激光器的制造方法,其特征在于,所述利用全息曝光法在光栅区结构部分刻蚀具有相同光栅周期的光栅区,具体包括: 将光栅区结构部分对于非光栅区进行掩膜处理;设置全息曝光的光栅周期为指定值A,对所述光栅区结构部分进行全息曝光;或者, 设置全息曝光的光栅周期为指定值A,对所述光栅区结构部分进行全息曝光,用光刻版进行光刻掩蔽,在光栅区非掩蔽部分利用光刻机进行二次过曝光。 6. The method for manufacturing a tunable semiconductor laser can of claim 5, wherein, said exposure method using a holographic grating region having the same grating period of the grating region is partially etched structure, comprises: a grating region moiety masking processing on the non-grating region; exposure hologram grating period set for the predetermined value a, the grating holographic exposure zone moiety; or holographic exposure grating period set to the specified value a, the grating zone structure part holographic exposure, the lithographic printing plate using photolithography masking, the masked part using the non-grating region lithography secondary overexposure.
7. 根据权利要求6所述的可调谐半导体激光器的制造方法,其特征在于,确定所述可调谐半导体激光器所包含的各布式布拉格反射激光器的激光波长h,其中i为对应各布式布拉格反射激光器的序号,则根据公式: Lsi -入0 /2llg | 入i_入0 求解得到取样长度值,其中,其中,A〇= 2Ang、A为光栅周期、为光栅梳状反射谱的0 级反射峰的波长;所述取样长度值是根据各布式布拉格反射激光器中光栅区长度值和光栅区之间间隔值求和得到; 按照所述取样长度值LS1,生成用于所述非光栅区掩膜处理的掩膜。 7. A method for manufacturing a tunable semiconductor laser can according to claim 6, wherein determining the tunable laser wavelength distributed Bragg reflector h each laser comprising a semiconductor laser, wherein i is corresponding to the respective distributed Bragg No. reflected laser according to the equation: Lsi - the 0 / 2llg | 0 into i_ solved for the value of the sampling length, wherein wherein A〇 = 2Ang, a is the grating period, grating reflection spectrum comb 0 reflection peak wavelength; said sample value is a value obtained by summing the length of the interval between the cloth according DBR lasers the grating region and the grating region length values; value in accordance with the sampling length LS1, for generating a non-grating region mask mask process.
8. 根据权利要求7所述的可调谐半导体激光器的制造方法,其特征在于,在构成可调谐半导体激光器的各布式布拉格反射激光器的个数n为3,且激射波长包括1.56um、1.57um和1.58um时,设置光栅区结构的静态工作状态下其有效折射率为3.4,所述方法还包括: 设置全息曝光的光栅周期A为242nm,则为1.65um,参考公式: Lsi -入0 /2llg | 入i_入0 求解得到各激射波长所对应的取样长度为4.45um、5. OOum和5.72um; 按照所述取样长度值,生成用于所述非光栅区掩膜处理的掩膜。 8. A method for manufacturing a tunable semiconductor laser can according to claim 7, characterized in that the number n constituting the distributed Bragg reflector lasers tunable semiconductor laser 3, and comprises a lasing wavelength 1.56um, 1.57 and when um 1.58um, the static working state provided a grating structure area whose effective refractive index is 3.4, the method further comprising: setting the exposure of the holographic grating period a is 242nm, compared to 1.65um, with reference to the formula: Lsi - the 0 / 2llg | 0 into the i_ solved for each sampling length corresponding to the lasing wavelength of 4.45um, 5 OOum and 5.72um; mask according to the length of the sampling values, for generating a non-grating region of the masking process. membrane.
9. 根据权利要求5-8任一所述的可调谐半导体激光器的制造方法,其特征在于,在所述各分布式布拉格反射激光器中,位于所述相位区结构和/或光栅区结构的电极接触层设置有电极; 其中,相位区结构上电极及光栅区结构上电极用于对波导进行电流注入或者通过加热的方式改变相位区波导及光栅区波导的有效折射率。 The method of manufacturing a tunable semiconductor laser according to any one of claims 5-8, characterized in that each of said distributed Bragg reflector laser, the electrode structure of the phase region and / or regions of the grating structure a contact layer provided with an electrode; wherein the phase domain structure of the upper electrode and the grating region waveguide structure of the electrode for current injection region or change the effective refractive index of the phase grating region waveguide and the waveguide by way of heating.
10. -种可调谐半导体激光器的使用方法,其特征在于,所述使用方法基于上述权利要求1-4任一所述的可调谐半导体激光器,其中,各分布式布拉格反射激光器中,位于所述有源区结构和光栅区结构的电极接触层分别设置有电极,所述包括: 给各分布式布拉格反射激光器的有源区结构的电极供电; 根据可调谐半导体激光器中各分布式布拉格反射激光器所需产生的波长值,给各分布式布拉格反射激光器光栅区结构的电极提供符合其有效折射率需求的电流。 10. - Species tunable semiconductor laser using a method, wherein the method based on the use of tunable diode laser as claimed in any one of claims 1-4, wherein each of the distributed Bragg reflector lasers, located electrode contact layer region and the active region structure grating structures are provided with electrodes, said comprising: a power supply to each electrode region distributed Bragg reflector laser structure of an active; Bragg reflector lasers tunable semiconductor laser according to each of the distributed required wavelength values ​​generated, to provide an electrode structure of a reflective region of each laser is a distributed Bragg grating which meet the current needs of the effective refractive index.
CN201610742153.2A 2016-08-26 2016-08-26 Tunable semiconductor laser and fabrication method and use method therefor CN106207748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610742153.2A CN106207748A (en) 2016-08-26 2016-08-26 Tunable semiconductor laser and fabrication method and use method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610742153.2A CN106207748A (en) 2016-08-26 2016-08-26 Tunable semiconductor laser and fabrication method and use method therefor

Publications (1)

Publication Number Publication Date
CN106207748A true CN106207748A (en) 2016-12-07

Family

ID=57526980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610742153.2A CN106207748A (en) 2016-08-26 2016-08-26 Tunable semiconductor laser and fabrication method and use method therefor

Country Status (1)

Country Link
CN (1) CN106207748A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031009A1 (en) * 2003-08-07 2005-02-10 San-Liang Lee Structure and manufacturing method for single-wavelength and multi-wavelength distributed feedback lasers
CN103490280B (en) * 2013-09-27 2016-01-20 中国科学院半导体研究所 Tunable distributed feedback quantum cascade laser array device and its preparation method
CN105356292A (en) * 2015-11-30 2016-02-24 武汉电信器件有限公司 Tunable wavelength semiconductor laser
CN105846312A (en) * 2015-01-12 2016-08-10 南京大学(苏州)高新技术研究院 Monolithic integration double-segment type DFB semiconductor laser and array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031009A1 (en) * 2003-08-07 2005-02-10 San-Liang Lee Structure and manufacturing method for single-wavelength and multi-wavelength distributed feedback lasers
CN103490280B (en) * 2013-09-27 2016-01-20 中国科学院半导体研究所 Tunable distributed feedback quantum cascade laser array device and its preparation method
CN105846312A (en) * 2015-01-12 2016-08-10 南京大学(苏州)高新技术研究院 Monolithic integration double-segment type DFB semiconductor laser and array
CN105356292A (en) * 2015-11-30 2016-02-24 武汉电信器件有限公司 Tunable wavelength semiconductor laser

Similar Documents

Publication Publication Date Title
Ward et al. Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance
US5915051A (en) Wavelength-selective optical add/drop switch
JP2757235B2 (en) Multiple stripes array grating integrated cavity laser
US6993243B2 (en) Optical waveguide circuit including passive optical waveguide device combined with active optical waveguide device, and method for making same
US20020028390A1 (en) Techniques for fabricating and packaging multi-wavelength semiconductor laser array devices (chips) and their applications in system architectures
CA2137596C (en) Alternating grating tunable dbr laser
US6345135B1 (en) Multi-wavelength optical reflector
US20030003735A1 (en) Optical waveguide circuit including multiple passive optical waveguide devices, and method of making same
JP3434257B2 (en) Addressable semiconductor adaptable Bragg grating (asabg)
CN1288810C (en) Tunable laser
US7342950B1 (en) Tunable laser source with integrated optical modulator
CA2228683C (en) Superimposed grating wdm tunable lasers
WO1998053535A1 (en) Semiconductor micro-resonator device
US20110243496A1 (en) Narrow surface corrugated grating
US7190858B1 (en) Optical time delay apparatus incorporating diffractive element sets
JPH11330631A (en) Vertical cavity surface-emission laser layer structure, vertical cavity surface-emission laser array, and assembling method thereof
JPH07183622A (en) Reflective tunable laser
RU2363968C2 (en) Controlled device of light control and controlled method for light control
US7981591B2 (en) Semiconductor buried grating fabrication method
EP0952470A2 (en) A method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
US7179669B2 (en) Tunable semiconductor laser and method thereof
JP2004038162A (en) Method for manufacturing tapered optical waveguide
CN103733448B (en) Semiconductor optical element
CN1240167C (en) Improved mirror and cavity for sampled-grating distributed Bragg reflector lasers
JP4657853B2 (en) Semiconductor lasers, laser modules, optical components, a laser device, a control method of the production method and the semiconductor laser of the semiconductor laser

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination