CN106153212A - Acoustic surface wave sensor manufacturing method based on nano imprinting technology - Google Patents

Acoustic surface wave sensor manufacturing method based on nano imprinting technology Download PDF

Info

Publication number
CN106153212A
CN106153212A CN 201510184216 CN201510184216A CN106153212A CN 106153212 A CN106153212 A CN 106153212A CN 201510184216 CN201510184216 CN 201510184216 CN 201510184216 A CN201510184216 A CN 201510184216A CN 106153212 A CN106153212 A CN 106153212A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
method
imprint
step
wave sensor
substrate
Prior art date
Application number
CN 201510184216
Other languages
Chinese (zh)
Inventor
周子冠
欧清海
刘柱
甄岩
李温静
王云棣
于华东
张喆
Original Assignee
国家电网公司
国网信息通信产业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses an acoustic surface wave sensor manufacturing method based on the nano imprinting technology. The method comprises steps that a primary imprinting template on which a distribution pattern of an interdigital transducer and reflecting gratings at left and right sides of the interdigital transducer are carved is generated; the primary imprinting template is utilized to carry out continuous printing on a substrate through a step-by-step repetition imprinting method, the substrate is made to become a secondary imprinting template having multiple patterns identical to the pattern on the primary imprinting template; and the secondary imprinting template is utilized to imprint an acoustic surface wave sensor. The method is advantaged in that generation of the interdigital transducer can be accurately controlled, quite high measurement precision and consistency can be realized, insertion loss of a high-frequency acoustic surface wave device can be reduced through reducing interdigital resistance of the interdigital transducer, a sensorquality factor Q value is stably improved, quite high practicality is realized, manufacturing cost of the interdigital transducer can be reduced, and no pollution is realized.

Description

一种基于纳米压印工艺的声表面波传感器制造方法 A surface acoustic wave sensor based on the method of manufacturing a nano-imprinting process

技术领域 FIELD

[0001] 本发明涉及纳米压印技术领域,特别是指一种基于纳米压印工艺的声表面波传感器制造方法。 [0001] The present invention relates to the field of nanoimprint technology, in particular to a method of manufacturing a surface acoustic wave sensor based on nano-imprint technology.

背景技术 Background technique

[0002] 声表面波是沿物体表面传播的一种弹性波。 [0002] The surface acoustic wave is an acoustic wave propagating along the surface of the object. 由于压电晶体本身是换能介质,电声之间存在耦合,因此在传播声表面波的压电晶体表面可以制作电声换能器,使电能和声能互相转换,如图1A所示。 Since the piezoelectric crystal transducer medium itself, there is a coupling between the electro-acoustic, can be produced in the surface acoustic wave propagating surface of the piezoelectric crystal electro-acoustic transducer, acoustic energy into electrical energy with each other, shown in Figure 1A. 当压电晶体基片上的换能器通过逆压电效应将输入的无线信号转变成声信号后,被左右两个周期性栅条反射形成谐振,该谐振器的谐振频率与温度有关,其谐振器频率的改变随温度的改变在一定范围内呈线性关系,如图1B所示。 When the radio signals from the transducers on a piezoelectric crystal substrate by the inverse piezoelectric effect is converted into an acoustic signal input, left and right two periodic reflection grating bars form a resonance, the resonance frequency of the resonator is temperature dependent resonance the frequency change with a change in temperature is linear within a certain range, shown in Figure 1B. 利用这种线性关系就可以通过获取声表面波的频率得到精确的被测温度。 With this linear relationship can be accurately measured by obtaining the temperature of the surface acoustic wave frequency.

[0003] 无线无源温度测温系统由声表面波(SAW)传感器和读写器(温度获取单元)组成。 [0003] Wireless passive temperature measuring system consists of a surface acoustic wave (SAW) sensor and readers (temperature acquisition unit) composition. SAW传感器通过其材料特性获取温度的变化,并将温度的变化转换为谐振频率的变化。 SAW sensor acquires the temperature change by the material properties, changes in temperature and the change of the resonance frequency conversion. 读写器由数字控制部分和射频收发信机组成,实现频率的扫频和微弱响应信号的检测。 Reader by the digital control part and a radio frequency transceiver composition, to achieve the detection and weak response signal sweep frequency. 读写器产生射频信号经过天线发送出去,SAff温度传感器经过天线接收射频信号并将受温度影响的射频信号反射出来,再由读写器接收反射回来的信号经过放大、ADC采样和FPGA处理读取温度,从而实现无线温度数据采集。 The reader generating a radio frequency signal is transmitted via an antenna, a temperature sensor Saff receive radio frequency signals via the antenna and the radio frequency signal is affected by temperature reflected, then received by the reader amplified reflected signal, sampling the ADC and FPGA processes the read temperature, enabling wireless temperature data acquisition. 无源无线温度监测系统如图2所示。 Passive wireless temperature monitoring system shown in Fig.

[0004] 叉指换能器(IDT)是声表面波器件的核心部件,是一种电极相互交错的、能够激发和检测声表面波的声-电、电-声换能器。 [0004] The interdigital transducer (IDT) is the core component of the surface acoustic wave device, an electrode is intertwined, and capable of detecting acoustic excitation of the surface acoustic wave - electrical, electro - acoustic transducer. IDT激发声表面波的原理和电磁波的激发原理完全相似。 IDT principle as excitation of surface acoustic wave excitation and electromagnetic waves completely similar. IDT的一般结构如图3所示,31是叉指条,32是汇流条,其几何结构参数主要有叉指周期P、电极宽度a (30微米)、电极间隙b (30微米)、电极厚度h (2微米)、叉指孔径W(2.5微米)、叉指对数N(24)等。 The general structure of the IDT is shown in Figure 3, 31 is interdigitated, the bus bar 32 is that the main geometric parameters P period interdigital electrode width a (30 m), the electrode gap b (30 m), the thickness of the electrode h (2 microns), interdigital aperture W (2.5 m), the number of interdigital N (24) and the like. 叉指换能器与左右反射栅是声表面波传感器的核心,直接影响传感器品质因素(Q值),其传统工艺是光刻腐蚀技术,该技术存在频率响应范围过窄、插入损耗过高、精度一致性难以控制等不足之处。 Interdigital transducer and reflectors around the core surface acoustic wave sensor, the sensor directly affect the quality factor (Q value), which is a conventional process photolithographic etching technique there is a frequency response range is too narrow, the insertion loss is too high, precision consistency is difficult to control deficiencies.

发明内容 SUMMARY

[0005] 有鉴于此,本发明的目的在于提出一种基于纳米压印工艺的声表面波传感器制造方法,通过二次压印模版压印制作声表面波传感器。 [0005] In view of this, an object of the present invention to provide a method for manufacturing a surface acoustic wave sensor based on nano-imprint technology, the embossing stencil produced by a secondary embossing surface acoustic wave sensor.

[0006] 基于上述目的本发明提供一种基于纳米压印工艺的声表面波传感器制造方法,包括:生成刻有叉指换能器以及位于所述叉指换能器左、右两侧的反射栅的分布图案的一次压印模板;使用所述一次压印模板采用分步重复压印方法在基片上连续印制,将该基片制作为具有多个与所述一次压印模板上的图案相同的二次压印模板;使用所述二次压印模版压印制作声表面波传感器。 [0006] provided a method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, the above object of the present invention comprises: generating engraved interdigital transducer and a reflector positioned in the interdigital transducers left and right sides of a distribution pattern of the imprint template gate; using the imprint template using a step and repeat imprint process for the continuous printing on a substrate, the substrate is fabricated to have a plurality of the primary pattern on the imprint template same secondary imprint template; using the secondary embossing stencil making embossed surface acoustic wave sensor.

[0007] 根据本发明的一个实施例,进一步的,所述采用分步重复压印方法中的压印方法包括:热压印方法、紫外固化压印方法、微接触压印方法。 [0007] According to one embodiment of the present invention, further, the step and repeat imprint method using the imprint method comprising: hot stamping method, an ultraviolet curing imprinting method, micro-contact imprinting method.

[0008] 根据本发明的一个实施例,进一步的,所述采用分步重复压印方法中的压印方法为热压印方法,具体包括:步骤1,在所述基片上均匀涂布一层热塑性高分子光刻胶,并将所述光刻胶加热到玻璃转化温度以上;步骤2,施加压力,将所述一次压印模板压入到已高温软化的光刻胶内,并维持高温、高压状态;经过预设的维持时间后,使热塑性高分子光刻胶填充到所述一次压印模板的纳米结构内;步骤3,待所述光刻胶冷却固化后,释放压力,将所述一次压印模板脱离所述基片;步骤4,平移所述一次压印模板,重复步骤2和3,在所述光刻胶上重复进行压印复制所述一次压印模板的图形;步骤5,对所述基片表面的带有压印图形的光刻胶进行反应离子刻蚀去除残留的底胶。 [0008] According to one embodiment of the present invention, further, the step and repeat imprint method using the imprint method is hot stamping method specifically includes: Step 1, a uniform coating layer on said substrate the thermoplastic polymer photoresist, and the photoresist is heated above the glass transition temperature; step 2, pressure is applied, the primary imprint template has been pressed into the softened resist high temperatures, and maintaining the high temperature, high pressure; after the preset maintenance time, the thermoplastic polymer is filled into the photoresist primary nanostructure imprint template; step 3, after the photoresist to be cooled and solidified, the pressure was released, the once the imprint template from the substrate; step 4, a translation of the imprint template, repeat steps 2 and 3, a repeated pattern of the imprint template is replicated on the imprint resist; step 5 , with the embossed pattern on the resist substrate surface is removed by reactive ion etching primer remaining.

[0009] 根据本发明的一个实施例,进一步的,在完成步骤5后进行步骤6,在带有光刻胶图形的所述基片的表面溅射一薄层金属膜;步骤7,采用剥离工艺去除所述基片表面的光刻胶以及其上面覆盖的金属膜,保留所述基片表面无光刻胶处覆盖的金属膜,生成所述二次压印模板。 [0009] According to an embodiment of the present invention, further, after the completion of step 6 step 5, a thin metal film on the surface of the substrate with the sputtering resist pattern; step 7, the lift-off the process of removing the photoresist and the substrate surface overlying the metal film which retain the surface of the metal substrate covered with the resist film free at generating the secondary imprint template.

[0010] 根据本发明的一个实施例,进一步的,对所述二次压印模板表面采用烷基硅烷进行处理,在所述二次压印模板表面生成钝化层;所述烷基硅烷包括:CF3 (CF2) 6 (CH2) 2SiC13等。 [0010] According to an embodiment of the present invention, further, the use of an alkylsilane of the second imprint template surface is processed to generate a surface passivation layer on the second imprint template; said alkylsilane comprises : CF3 (CF2) 6 (CH2) 2SiC13 like.

[0011] 根据本发明的一个实施例,进一步的,以所述二次压印模板表面保留下来的金属膜作为掩膜进行反应离子刻蚀,使所述基片具有相移型分布的图案。 [0011] According to one embodiment of the present invention, further, retained at the surface of the imprint template secondary metal film as a mask, reactive ion etching, the substrate having a phase shift distribution pattern.

[0012] 根据本发明的一个实施例,进一步的,采用所述二次压印模版压印制作所述叉指换能器以及位于所述叉指换能器左、右两侧的反射栅,印制材料采用金属网,使得所述叉指换能器的汇流条为50%金属覆盖率的网格状汇流条。 [0012] According to one embodiment of the present invention, further, using the second embossing stencil making the imprint interdigital transducers and reflectors located on said interdigital transducer left and right sides, printed metal mesh material, such that the interdigital transducer busbar 50% coverage of the grid-like metal bus bars.

[0013] 根据本发明的一个实施例,进一步的,所述二次压印模版的基片材质为石英晶片;所述叉指换能器的电极材料为铝、金或铜。 [0013] According to one embodiment of the present invention, further, the secondary embossing stencil made of a quartz wafer substrate; the interdigital transducer electrode material is aluminum, gold or copper.

[0014] 根据本发明的一个实施例,进一步的,在所述叉指换能器的叉指条、汇流条的表面敷设二氧化硅保护膜。 [0014] According to one embodiment of the present invention, further, the surface of the interdigital transducer interdigitated bus bar laying a silica protective film.

[0015] 根据本发明的一个实施例,进一步的,利用电子束直写技术在一次模板上制作50-500个叉指换能器以及位于所述叉指换能器左、右两侧的反射栅的图案,生成所述一次压印模板。 [0015] According to one embodiment of the present invention, further, an electron beam direct writing in a production 50-500 interdigital transducers positioned on a template and the interdigital transducers left and right sides of the reflector grid pattern, generating the primary imprint template.

[0016] 本发明的基于纳米压印工艺的声表面波传感器制造方法,利用纳米压印工艺在石英基底上印制叉指换能器与左右反射栅的方法制作声表面波传感器,印制材料采用50%金属覆盖率的网状汇流条,可以精确的控制叉指换能器条宽与插入损耗,进而提高声表面波传感器一致性与品质因素,具有极高的实用性,制作成本低,无污染。 [0016] The present invention is a method for producing a surface acoustic wave sensor based on nanoimprinting process, the printing process using the nano-imprint method of the interdigital transducer and reflectors around the surface acoustic wave sensor prepared on a quartz substrate, a printed material with 50% coverage of the metal mesh bus bar can be precisely controlled interdigital transducer stripe width and the insertion loss, thereby improving the consistency and quality of the surface acoustic wave sensor element, having a very high availability, low manufacturing cost, non-polluting.

附图说明 BRIEF DESCRIPTION

[0017] 图1A为现有技术中声表面波测温原理图;其中,1-反射栅、2-压电基片、3-换能器、4-天线、5-声表面波、6-反射栅;图1B为芯片谐振频率和温度变化关系示意图; [0017] FIG 1A is a prior art schematic diagram of a surface acoustic wave temperature; wherein the reflectors 1-, 2- piezoelectric substrate, the transducer 3-, 4- antennas, SAW 5-, 6- reflectors; FIG. 1B is a chip and a resonance frequency versus temperature change schematic;

[0018] 图2为现有技术中的无源无线温度监测系统构成示意图;其中,21-读写器、22,23,24-SAW温度传感器; [0018] FIG. 2 is configured as a passive temperature monitoring system wireless prior art schematic; wherein the reader 21, 22,23,24-SAW temperature sensors;

[0019] 图3为叉指换能器的结构示意图; [0019] FIG. 3 is a schematic view of the interdigital transducer;

[0020] 图4为根据本发明的基于纳米压印工艺的声表面波传感器制造方法的一个实施例的流程图; [0020] FIG. 4 is a flow diagram of one embodiment of the surface acoustic wave sensor according to a method for producing nano-imprint process based on the present invention;

[0021] 图5A至图5E为根据本发明的基于纳米压印工艺的声表面波传感器制造方法的二次模板的制作示意图;其中,图5A为一次压印模板、图5B为一次压印模板通过分布多次压印生成的二次压印模板、图5C为对二次压印模板进行溅射金属处理、图f5D为对二次压印模板进行剥离处理、图5E为生成最终的二次模板; [0021] FIGS. 5A to 5E is a schematic view of making the second template-based method of manufacturing a surface acoustic wave sensor nanoimprinting process of the present invention; wherein Fig. 5A is a imprint template, once the imprint template FIG 5B by distribution of secondary imprint imprint template generated a plurality of times, FIG 5C is a secondary imprint template metal sputtering process, FIG f5D imprint template for the second peeling process, Fig. 5E to generate a second final template;

[0022]图6为根据本发明的基于纳米压印工艺的声表面波传感器制造方法的制作示意图;其中,51-—次压印模板、52-二次压印模板; [0022] FIG. 6 is a schematic diagram of a production method of manufacturing a surface acoustic wave sensor based on nanoimprinting process of the present invention; wherein the imprint template 51-- views, 52- second imprint template;

[0023] 图7为采用50%金属覆盖率的网状汇流条的声表面波器件示意图。 [0023] FIG. 7 is a schematic view of a surface acoustic wave device of the bus bar mesh metal coverage of 50% employed.

具体实施方式 detailed description

[0024] 为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。 [0024] To make the objectives, technical solutions, and advantages of the present invention will become more apparent hereinafter in conjunction with specific embodiments, and with reference to the accompanying drawings, the present invention is described in further detail.

[0025] 纳米压印技术是纳米材料与印刷技术相结合的新兴交叉技术,利用最新的纳米功能传感材料,通过纳米印刷方式,并采用蒸镀旋涂温度处理等工艺,在陶瓷、塑料及橡胶等基底上印刷电子线路及器件,无需复杂的刻蚀工艺,具有工艺简单、无污染的特点。 [0025] The nanoimprint technology is an emerging technology cross nanomaterials and printing techniques combining the use of sensing features of nano materials, nano printing method, spin coating and vapor deposition temperature treatment etc., ceramic, plastic and printed electronic circuits and devices on a substrate such as rubber, without complicated etching process, the process is simple, and no pollution.

[0026] 该技术由美国普林斯顿大学华裔教授周郁(Stephen Chou)于1995年首次提出。 [0026] This technique was first proposed in 1995 by the Chinese-American Princeton University professor Zhou Yu (Stephen Chou). 通过将纳米结构模板放置在聚合物膜表面,在一定的温度、压力等条件下,使聚合物逐渐填充到纳米模板空腔中,待聚合物固化定型后,将模板与聚合物剥离,从而实现纳米结构转移的一种方法。 By placing the template nanostructures on the surface of the polymer film, at a certain temperature, pressure, etc., the polymer is gradually filled into the nano-template cavities, until curing of the polymer shape, peeling the template with the polymer, in order to achieve a method of transferring nanostructures. 与传统光刻原理不同,纳米压印是一种利用纳米压印模板进行结构转移的方法,在结构转移过程中,结构尺寸由模板尺寸决定,完全不受光波长的影响,也就不受光学波长衍射极限对构筑结构的限制,因此显示出超高分辨率、高产率、低成本等适合工业化应用的独特优点。 Different principle to conventional photolithography, nanoimprinting is a nanoimprint transfer method template structure, the structure of the transfer process, the template size is determined by the size of the structure, completely free from the wavelength of light, it is not the optical wavelength diffraction limit restrictions on building structures, thus indicating the unique advantages for industrial application of surplus high-resolution, high yield and low cost. 纳米压印技术由于其广阔的应用前景,自诞生之日起,就引起了学术界及产业界的高度重视。 Nano-imprint technology because of its broad application prospects, since the date of birth, has aroused great attention of academia and industry.

[0027] 本发明的“左”、“右”、“上”、“下”等,为基于附图的方位进行描述,并没有其它特殊的含义。 [0027] "left" of the present invention, "right", "upper", "lower" and the like, as will be described based on the orientation of the figure, and no other special meaning.

[0028] 图4为根据本发明的基于纳米压印工艺的声表面波传感器制造方法的一个实施例的流程图,如图4所示: [0028] FIG 4 is a flowchart of a method of manufacturing a surface acoustic wave sensor based nanoimprint process according to one embodiment of the present invention, shown in Figure 4:

[0029] 步骤101,生成刻有叉指换能器以及位于叉指换能器左、右两侧的反射栅的分布图案的一次压印模板。 [0029] Step 101 generates engraved interdigital transducers and an interdigital transducer positioned left, a distribution pattern of the imprint template and right sides of the reflectors.

[0030] 步骤102,使用一次压印模板采用分步重复压印方法在基片上连续印制,将该基片制作为具有多个与一次压印模板上的图案相同的二次压印模板。 [0030] Step 102, once the imprint template using a step and repeat imprint process for the continuous printing on a substrate, the substrate having a plurality of prepared pattern on the imprint template same time the secondary imprint template.

[0031] 步骤103,使用二次压印模版压印制作声表面波传感器。 [0031] Step 103, an imprint produced using a secondary imprint template surface acoustic wave sensor. 使用二次压印模版压印制作声表面波传感器采用纳米压印技术,包括压印图形转移、后续的刻蚀结构转移等工序。 Produced using a secondary imprint imprint template surface acoustic wave sensor using the nanoimprint technology, comprising transfer embossing pattern, the structure of the subsequent etching step metastasis.

[0032]制作模板最常用的材料是石英和硅,用电子束直写技术可以在硅模板上得到1nm线宽,在石英模板上可以得到20nm线宽。 [0032] Production templates most commonly used material is quartz and silicon, with an electron beam direct writing can be obtained on a silicon template 1nm width, the line width of 20nm can be obtained on the quartz template. 而且石英是可透紫外线和可见光的,而硅不可以透紫外线和可见光。 And quartz is permeable to ultraviolet and visible, and ultraviolet and visible light transparent not silicon. 由于要应用分步式模压曝光(stepandflashimprintlithography, SFIL) S-FIL技术,故米用透光的石英作为模板材料。 Due to the stepwise application of molding impressions (stepandflashimprintlithography, SFIL) SFIL technology, so the rice as a template transmissive quartz material. 在一个实施例,利用电子束直写技术在一次模板上制作50-500个叉指换能器以及位于叉指换能器左、右两侧的反射栅的图案,生成一次压印模板。 In one embodiment, an electron beam direct writing in a production 50-500 interdigital transducers located on a template and left interdigital transducers, reflectors and right sides of the pattern, generated once the imprint template.

[0033] 采用分步重复压印方法中的压印方法包括:热压印方法、紫外固化压印方法、微接触压印方法等。 [0033] using a step and repeat imprint method for imprinting method comprising: a hot stamping method, an ultraviolet curing imprinting method, micro-contact imprinting method and the like. 例如,如图5A至5B所示,采用分步重复压印方法中的压印方法为热压印方法,具体包括: For example, FIGS. 5A to 5B, the imprinting method using the imprint method is hot stamping step and repeat method comprises:

[0034] 步骤1,在基片上均匀涂布一层热塑性高分子光刻胶,并将光刻胶加热到玻璃转化温度以上,例如为135度。 [0034] Step 1, was uniformly applied on a substrate layer of a thermoplastic polymer of photoresist, and the photoresist is heated to above the glass transition temperature, for example 135 degrees.

[0035] 步骤2,施加压力,将一次压印模板压入到已高温软化的光刻胶内,并维持高温、高压状态;经过预设的维持时间后,例如为5-10分钟,使热塑性高分子光刻胶填充到一次压印模板的纳米结构内。 [0035] Step 2, pressure is applied, the primary imprint template has been pressed into the softened resist high temperatures, and maintaining the high temperature, high pressure state; after the preset maintenance time, for example 5-10 minutes, the thermoplastic the photoresist polymer is filled into the primary nanostructure of the imprint template.

[0036] 步骤3,待光刻胶冷却固化后,释放压力,将一次压印模板脱离基片。 [0036] Step 3. After the photoresist is cooled and solidified, the pressure was released, once the imprint template from the substrate.

[0037] 步骤4,平移一次压印模板,重复步骤2和3,在光刻胶上重复进行压印复制一次压印模板的图形。 [0037] Step 4, a translation of the imprint template, repeat steps 2 and 3 repeated imprinting of the imprint template copy once performed on the photoresist pattern.

[0038] 步骤5,对基片表面的带有压印图形的光刻胶进行反应离子刻蚀去除残留的底胶。 [0038] Step 5, the photoresist pattern with the embossing surface of the substrate is reactive ion etching to remove residual primer.

[0039] 步骤6,在带有光刻胶图形的基片的表面溅射一薄层金属膜。 [0039] Step 6, the sputtering surface of the substrate with a thin layer of metal resist pattern film.

[0040] 步骤7,采用剥离工艺去除基片表面的光刻胶以及其上面覆盖的金属膜,保留基片表面无光刻胶处覆盖的金属膜,生成二次压印模板。 [0040] step 7, the photoresist is removed using a stripping process surface of the substrate and its overlying metal film, a metal film to retain the substrate surface covered with the resist at the non-generating secondary imprint template. 重复上述步骤,可以生成多个二次压印模板,如图6所示。 Repeating the above steps, a plurality of secondary imprint template may be generated, as shown in FIG.

[0041] 上述实施例提供的基于纳米压印工艺的声表面波传感器制造方法,在取得刻有少量图形的一次模版后,用分步重复热压印及剥离的方法取得二次凸型模版,然后采用二次凸型压印模版来压印制作叉指换能器。 [0041] The embodiment provides a method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, after obtaining the engraved pattern of a small amount of a template, a thermal imprint method repeats step acquisition and release of secondary convex template, then convex quadratic embossed imprint template to produce an interdigital transducer.

[0042] 在一个实施例中,对二次压印模板表面采用烷基硅烷进行处理,在二次压印模板表面生成钝化层,烷基硅烷包括:CF3(CF2)6(CH2)2SiC13等。 [0042] In one embodiment, the secondary imprint template surface treatment using an alkyl silane, a passivation layer generated on the surface of the secondary imprint template, alkyl silanes include: CF3 (CF2) 6 (CH2) 2SiC13 like . 固化成型的聚合物能否完整脱模,取决于模板和聚合物表面自由能量。 Curing can complete release polymer, and depends on the free energy of polymer template surface. 对模板表面进行处理,除了常规的清洗,还要进行硅烷化工艺,即采用烷基硅烷进行处理(如CF3 (CF2) 6 (CH2) 2SiC13等),在模板表面制作钝化层,使脱模容易并减少表面污垢。 Processing the template surface, in addition to regular cleaning, but also for silylation process, i.e. process using an alkyl silane (e.g., CF3 (CF2) 6 (CH2) 2SiC13, etc.), a passivation layer on the surface of the template, so that the release easily and reduce surface fouling.

[0043] 在一个实施例中,以二次压印模板表面保留下来的金属膜作为掩膜进行反应离子刻蚀,使基片具有相移型分布的图案。 [0043] In one embodiment, the surface of the imprint template to the second metal film is retained as a mask, reactive ion etching, so that the substrate having a phase shift distribution pattern. 采用二次压印模版压印制作叉指换能器以及位于叉指换能器左、右两侧的反射栅,印制材料采用金属网,使叉指换能器的汇流条为50%金属覆盖率的网格状汇流条,叉指换能器左、右两侧的反射栅也可以为50%金属覆盖率的网格状金属条。 Imprinting an imprint produced using the second template interdigital transducers and an interdigital transducer positioned left and right sides of the reflectors, printed metal mesh material, so that the interdigital transducers metal bus bars 50% coverage grid-like busbar interdigital transducers left and right sides of the reflectors may be a mesh-like metal strip metal coverage of 50%.

[0044] 纳米压印依赖于聚合物层的变形,尺寸大小不同聚合物层变形的程度也不一样,而声表面波器件的结构决定了叉指换能器亚微米级的指条和几百微米的汇流条是共存的,造成制作100%金属覆盖率的叉指换能器很容易产生压印失败。 [0044] nanoimprint polymer layer depends on the deformation degree of deformation of size of different polymer layers are not the same, and the structure of surface acoustic wave device determines the interdigital transducer submicron-finger and hundreds the bus bar microns coexist, 100% coverage of the metal resulting in the production of the interdigital transducer is prone to failure imprint. 为消除尺寸差异,提出采用50%金属覆盖率的网状汇流条设计方案,如7所示。 To eliminate the difference in size, the mesh is proposed design uses the bus bars 50% coverage of the metal, as shown in FIG.

[0045] 在一个实施例中,二次压印模版的基片材质为石英晶片。 [0045] In one embodiment, the secondary imprint template made of quartz wafer substrate. 叉指换能器的电极材料为铝、金或铜等。 Interdigital transducer electrode material such as aluminum is, gold or copper. 在叉指换能器的叉指条、汇流条的表面敷设二氧化硅保护膜,可以采用电子束蒸镀工艺,厚度可以根据需要设置,能够提高工作的可靠性,延长工作寿命。 In the interdigital transducer interdigital bar, the bus bar laying silica surface protective film, an electron beam evaporation process may be employed, a thickness can set, it is possible to improve the reliability in operation and extending the working life.

[0046] 上述实施例提供的基于纳米压印工艺的声表面波传感器制造方法,利用纳米压印工艺在石英基底上印制叉指换能器与左右反射栅的方法制作声表面波传感器,在取得刻有少量图形的一次模版后,用分步重复热压印及剥离的方法取得二次凸型模版,然后采用二次凸型压印模版来压印制作叉指换能器与左右反射栅,印制材料采用50%金属覆盖率的网状汇流条,可以精确的控制叉指换能器条宽与插入损耗,进而提高声表面波传感器一致性与品质因素。 [0046] The embodiment provides a method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, the printing process using the nano-imprint method of the interdigital transducer and reflectors around the surface acoustic wave sensor prepared on a quartz substrate, in after obtaining a pattern engraved with a small amount of template, a thermal imprint method repeats step acquisition and release of the second convex template and a convex quadratic embossed imprint template to produce an interdigital transducer and reflectors around printed material with 50% coverage of the metal mesh bus bar can be precisely controlled interdigital transducer stripe width and the insertion loss, thereby improving the consistency and quality of the surface acoustic wave sensor element.

[0047] 上述实施例提供的基于纳米压印工艺的声表面波传感器制造方法,具有至少一种以下优点: [0047] The embodiment provides a method of manufacturing a surface acoustic wave sensor based on nano-imprint process, having at least one of the following advantages:

[0048] 1、采用纳米压印工艺可以将叉指换能器条宽控制的很准,从而实现极高的测量精度与一致性,还可以通过降低换能器叉指电阻来降低高频声表面波器件的插入损耗,可以稳定的提升传感器Q值(非实验室性质),具有极高的实用性。 [0048] 1, using nano-imprint process may be an interdigital transducer very accurate control of stripe width, thereby achieving high measurement accuracy and consistency may also interdigital transducer by reducing resistance to reduce the high frequency SAW the insertion loss of the device, the sensor can be stabilized to enhance the Q value (non-laboratory properties), it has a very high practicality.

[0049] 2、采用纳米压印工艺可以降低叉指换能器制作成本,无污染。 [0049] 2, using nano-imprint process can reduce the manufacturing cost of the interdigital transducer, non-polluting.

[0050] 所属领域的普通技术人员应当理解:以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 [0050] Those of ordinary skill in the art should be understood: the specific embodiments above are only embodiments of the invention, but not intended to limit the present invention, all within the spirit and principle of the present invention, any changes made, equivalents, improvements, etc., should be included within the scope of the present invention.

Claims (10)

  1. 1.一种基于纳米压印工艺的声表面波传感器制造方法,其特征在于,包括: 生成刻有叉指换能器以及位于所述叉指换能器左、右两侧的反射栅的分布图案的一次压印模板; 使用所述一次压印模板采用分步重复压印方法在基片上连续印制,将该基片制作为具有多个与所述一次压印模板上的图案相同的二次压印模板; 使用所述二次压印模版压印制作声表面波传感器。 A method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, characterized by comprising: generating engraved interdigital transducer positioned and distribution reflectors of the interdigital transducer of the left and right sides a pattern of an imprint template; using the imprint template using a step and repeat imprint process for the continuous printing on a substrate, the substrate having a plurality of the primary production with the same pattern on the imprint template II times imprint template; using the secondary embossing stencil making embossed surface acoustic wave sensor.
  2. 2.根据权利要求1所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 所述采用分步重复压印方法中的压印方法包括:热压印方法、紫外固化压印方法、微接触压印方法。 2. The method of claim manufacturing a surface acoustic wave sensor based on nanoimprinting process, of claim 1 wherein: the step and repeat imprint method using the imprint method comprising: hot stamping method, an ultraviolet-curable pressure The method of printing, micro-contact imprinting method.
  3. 3.根据权利要求2所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 所述采用分步重复压印方法中的压印方法为热压印方法,具体包括: 步骤1,在所述基片上均匀涂布一层热塑性高分子光刻胶,并将所述光刻胶加热到玻璃转化温度以上; 步骤2,施加压力,将所述一次压印模板压入到已高温软化的光刻胶内,并维持高温、高压状态;经过预设的维持时间后,使热塑性高分子光刻胶填充到所述一次压印模板的纳米结构内; 步骤3,待所述光刻胶冷却固化后,释放压力,将所述一次压印模板脱离所述基片; 步骤4,平移所述一次压印模板,重复步骤2和3,在所述光刻胶上重复进行压印复制所述一次压印模板的图形; 步骤5,对所述基片表面的带有压印图形的光刻胶进行反应离子刻蚀去除残留的底胶。 3. The method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, characterized according to claim 2: the step and repeat imprint method using the imprint method is hot stamping method comprises the steps of: 1, uniform coating on the substrate layer of a thermoplastic polymer photoresist, and the photoresist is heated above the glass transition temperature; step 2, pressure is applied, the primary imprint template is pressed into the It softened resist high temperature, and maintaining the high temperature, high pressure state; after the preset holding time, the thermoplastic polymer is filled into the photoresist primary nanostructure imprint template; step 3, the light to be after cooling the solidified plastic moment, the pressure is released, the primary imprint template from the substrate; step 4, a translation of the imprint template, repeat steps 2 and 3 repeated imprinted on the photoresist a pattern replicating the imprint template; step 5, with the photoresist pattern embossed surface of said substrate is reactive ion etching to remove residual primer.
  4. 4.根据权利要求3所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 在完成步骤5后进行步骤6,在带有光刻胶图形的所述基片的表面溅射一薄层金属膜;步骤7,采用剥离工艺去除所述基片表面的光刻胶以及其上面覆盖的金属膜,保留所述基片表面无光刻胶处覆盖的金属膜,生成所述二次压印模板。 4. A method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, characterized according to claim 3: a step after the completion of step 56, the sputtering surface of the substrate with a resist pattern emitting a thin metal film; step 7, the photoresist is removed using a stripping process of the substrate surface and a metal film coated thereon, retaining the substrate surface not covered with the metal film photoresist at generating the secondary imprint template.
  5. 5.根据权利要求4所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 对所述二次压印模板表面采用烷基硅烷进行处理,在所述二次压印模板表面生成钝化层;所述烷基硅烷包括:CF3(CF2)6(CH2)2SiC13。 5. The method of claim manufacturing a surface acoustic wave sensor based on nanoimprinting process, characterized in that the 4: Using the alkylsilane to the surface of the second imprint template is processed in a secondary imprint template a passivation layer formed on the surface; said alkyl silanes include: CF3 (CF2) 6 (CH2) 2SiC13.
  6. 6.根据权利要求4所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 以所述二次压印模板表面保留下来的金属膜作为掩膜进行反应离子刻蚀,使所述基片具有相移型分布的图案。 4 according to the method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, as claimed in claim wherein: the secondary imprint template to the surface of the metal film is retained as a mask, reactive ion etching, so that said substrate having a pattern of phase shift distribution.
  7. 7.根据权利要求5所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 采用所述二次压印模版压印制作所述叉指换能器以及位于所述叉指换能器左、右两侧的反射栅,印制材料采用金属网,使得所述叉指换能器的汇流条为50%金属覆盖率的网格状汇流条。 5 7. The method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, as claimed in claim wherein: the second embossed using embossing stencil making the interdigital transducers and the interdigital positioned transducer left, and right sides of the reflectors, printed metal mesh material, such that the interdigital transducer busbar 50% coverage of the grid-like metal bus bars.
  8. 8.根据权利要求7所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 所述二次压印模版的基片材质为石英晶片; 所述叉指换能器的电极材料为铝、金或铜。 8. A method of manufacturing a surface acoustic wave sensor based on nanoimprinting process, characterized in that said 7 wherein: the secondary embossing stencil made of a quartz wafer substrate; the interdigital transducer electrode material is aluminum, gold or copper.
  9. 9.根据权利要求7所述的基于纳米压印工艺的叉指换能器的制造方法,其特征在于: 在所述叉指换能器的叉指条、汇流条的表面敷设二氧化硅保护膜。 According to claim 7, said manufacturing method based on the interdigital transducer nanoimprinting process, wherein: the surface of said interdigital transducer interdigital bar, the bus bar laying protective silica membrane.
  10. 10.根据权利要求1所述的基于纳米压印工艺的声表面波传感器制造方法,其特征在于: 利用电子束直写技术在一次模板上制作50-500个叉指换能器以及位于所述叉指换能器左、右两侧的反射栅的图案,生成所述一次压印模板。 10. The method of claim 1, a method of manufacturing the surface acoustic wave sensor based on nanoimprinting process, wherein: direct writing using an electron beam in a production 50-500 interdigital transducers located on the template and the interdigital transducers left and right sides of the reflectors of the pattern, to generate the primary imprint template.
CN 201510184216 2015-04-17 2015-04-17 Acoustic surface wave sensor manufacturing method based on nano imprinting technology CN106153212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510184216 CN106153212A (en) 2015-04-17 2015-04-17 Acoustic surface wave sensor manufacturing method based on nano imprinting technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510184216 CN106153212A (en) 2015-04-17 2015-04-17 Acoustic surface wave sensor manufacturing method based on nano imprinting technology

Publications (1)

Publication Number Publication Date
CN106153212A true true CN106153212A (en) 2016-11-23

Family

ID=58057918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510184216 CN106153212A (en) 2015-04-17 2015-04-17 Acoustic surface wave sensor manufacturing method based on nano imprinting technology

Country Status (1)

Country Link
CN (1) CN106153212A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127033A1 (en) * 2003-12-11 2005-06-16 Industrial Technology Research Institute Imprint method for manufacturing micro capacitive ultrasonic transducer
CN1979340A (en) * 2005-11-30 2007-06-13 中国科学院微电子研究所 Method for making surface acoustic wave element of matching and mixing nano impression and optical photo etching
CN101022270A (en) * 2006-02-15 2007-08-22 中国科学院微电子研究所 Method for producing surface acoustic wave (SAW) device
CN101192818A (en) * 2006-12-01 2008-06-04 北京中科飞鸿科技有限公司 Sound surface wave sensor chip and its making method
CN101446759A (en) * 2008-12-24 2009-06-03 武汉光迅科技股份有限公司;华中科技大学 Method for producing secondary coining moulding board for nanometer coining and secondary coining moulding board thereof
US20090239331A1 (en) * 2008-03-24 2009-09-24 Palo Alto Research Center Incorporated Methods for forming multiple-layer electrode structures for silicon photovoltaic cells
CN101587099A (en) * 2008-05-21 2009-11-25 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Method for manufacturing surface acoustic wave sensor
JP2009289395A (en) * 2009-07-13 2009-12-10 Hitachi Ltd Information recording device, information recording method, and recording medium
CN103522783A (en) * 2013-10-24 2014-01-22 天津理工大学 Method for preparing low-cost interdigital transducer and reflecting grating by utilizing silk-screen printing process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127033A1 (en) * 2003-12-11 2005-06-16 Industrial Technology Research Institute Imprint method for manufacturing micro capacitive ultrasonic transducer
CN1979340A (en) * 2005-11-30 2007-06-13 中国科学院微电子研究所 Method for making surface acoustic wave element of matching and mixing nano impression and optical photo etching
CN101022270A (en) * 2006-02-15 2007-08-22 中国科学院微电子研究所 Method for producing surface acoustic wave (SAW) device
CN101192818A (en) * 2006-12-01 2008-06-04 北京中科飞鸿科技有限公司 Sound surface wave sensor chip and its making method
US20090239331A1 (en) * 2008-03-24 2009-09-24 Palo Alto Research Center Incorporated Methods for forming multiple-layer electrode structures for silicon photovoltaic cells
CN101587099A (en) * 2008-05-21 2009-11-25 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Method for manufacturing surface acoustic wave sensor
CN101446759A (en) * 2008-12-24 2009-06-03 武汉光迅科技股份有限公司;华中科技大学 Method for producing secondary coining moulding board for nanometer coining and secondary coining moulding board thereof
JP2009289395A (en) * 2009-07-13 2009-12-10 Hitachi Ltd Information recording device, information recording method, and recording medium
CN103522783A (en) * 2013-10-24 2014-01-22 天津理工大学 Method for preparing low-cost interdigital transducer and reflecting grating by utilizing silk-screen printing process

Similar Documents

Publication Publication Date Title
Stampfer et al. Fabrication of single-walled carbon-nanotube-based pressure sensors
US6753131B1 (en) Transparent elastomeric, contact-mode photolithography mask, sensor, and wavefront engineering element
Smythe et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces
Ahn et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography
Nyyssonen et al. Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory
WO1999064642A1 (en) Method for fabricating metal nanostructures
CN102708946A (en) Double-sided graphical transparent conductive film and preparation method thereof
CN1664523A (en) Method for making nano-scaled micro temperature sensor
Bergmair et al. Single and multilayer metamaterials fabricated by nanoimprint lithography
JP2007242710A (en) Resist pattern simulation method
Ye et al. Research on the cast molding process for high quality PDMS molds
Deki et al. Liquid-phase infiltration (LPI) process for the fabrication of highly nano-ordered materials
WO2004114016A2 (en) Imprint lithography with improved monitoring and control and apparatus therefor
Yu et al. Triangular profile imprint molds in nanograting fabrication
Park et al. Conformable Solid‐Index Phase Masks Composed of High‐Aspect‐Ratio Micropillar Arrays and Their Application to 3D Nanopatterning
Yu et al. In situ real time process characterization in nanoimprint lithography using time-resolved diffractive scatterometry
JP2010284814A (en) Method of manufacturing stamper
CN101446762A (en) Micro-complex type method for inducing electric field under the restrict of non-contact moulding board
US20120274004A1 (en) Nanopatterning method and apparatus
JP2005328020A (en) Lithography mask and optical lithography method using surface plasmon
Kwak et al. Large‐Area Dual‐Scale Metal Transfer by Adhesive Force
CN101806996A (en) Preparation method of nanoimprint hard templates
CN101508419A (en) Processing method for nano-pole forest
Tang et al. Study of moiré grating fabrication on metal samples using nanoimprint lithography
JP2006514428A (en) Method and system for determining a property of a substrate using a shape of the liquid

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination