CN106111987B - 一种合金粉末制备涂层导体用NiW合金基带坯锭的方法 - Google Patents

一种合金粉末制备涂层导体用NiW合金基带坯锭的方法 Download PDF

Info

Publication number
CN106111987B
CN106111987B CN201610562741.8A CN201610562741A CN106111987B CN 106111987 B CN106111987 B CN 106111987B CN 201610562741 A CN201610562741 A CN 201610562741A CN 106111987 B CN106111987 B CN 106111987B
Authority
CN
China
Prior art keywords
niw alloy
niw
ball
alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610562741.8A
Other languages
English (en)
Other versions
CN106111987A (zh
Inventor
索红莉
刘婧
马麟
喻丹
王毅
刘敏
孟易晨
李春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610562741.8A priority Critical patent/CN106111987B/zh
Publication of CN106111987A publication Critical patent/CN106111987A/zh
Application granted granted Critical
Publication of CN106111987B publication Critical patent/CN106111987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

一种合金粉末制备涂层导体用NiW合金基带坯锭的方法属于高温超导涂层导体用基带技术领域。本发明得到了W元素分布均匀且晶粒尺寸细小的NiW合金坯锭,经热轧开坯,冷轧及两步再结晶热处理后得到了强立方织构NiW合金基带。与传统工艺相比,此方法制备的NiW合金坯锭组织性能良好的同时工艺步骤简单,在大规模产业化应用中节能效益明显;适用范围广,可用于单层或复合NiW合金基带的坯锭制备。

Description

一种合金粉末制备涂层导体用NiW合金基带坯锭的方法
技术领域
本发明涉及一种强立方织构NiW合金基带坯锭的制备方法,属于高温超导涂层导体用基带技术领域。
背景技术
以YBa2Cu3O7-δ(YBCO)为代表的稀土类钡铜氧化物,属于高温超导材料,具有高的不可逆场,低的交流损耗,大大提升了超导材料的应用温度与磁场,但YBCO超导性能表现出强烈的各向异性,且与铋系、铁基、MgB2等其他高温超导材料相比,其相干长度很小,临界电流密度强烈地依赖于晶界夹角。为了获得YBCO薄膜优良的超导电性与机械性能,作为涂层导体基底的NiW合金基带,承担着外延织构与承受一定应力应变两大功能。因此高立方织构度、高强度NiW合金基带的制备是压延辅助双轴织构基板法(RABiTS)制备钇系高温超导材料的关键技术。
金属材料组织与织构的发展具有很强的“遗传性”,良好的坯锭基础是NiW合金基带后续大形变冷轧及再结晶过程的重要保障。涂层导体用NiW合金基带强立方织构的形成建立在初始坯锭中W元素的均匀分布与晶粒尺寸的控制上:W元素的偏聚使坯锭局部层错能迅速降低,导致应力集中形变不均匀,这对后续的铜型形变组织与强立方再结晶组织的形成来说是致命的打击;另一方面细化晶粒对立方织构形成的积极意义已在各文献中多次体现,相同的形变与再结晶条件下,晶粒尺寸小的坯锭形变过程更多的以位错滑移方式进行,形变更均匀。
目前NiW合金基带坯锭的制备主要分熔炼法与粉末冶金法两大方向,德国Dresden实验室采用熔炼法制备Ni9.3W、Ni9.5W合金基带,坯锭均匀化与晶粒细化采用了热锻、热轧、均匀化热处理及初始再结晶热处理四大步骤,工艺路线长,坯锭稳定性差。
2007年美国休斯顿大学提出粉末冷等静压烧结的方式,制备Ni9W合金基带;2008年赵跃采用放电等离子烧结,经坯锭均匀化热处理制备Ni9.3W合金基带;2010年邱火勤等人设计热等静压法(专利号:ZL201010167063.8)制备NiW合金复合基带。以上提及的粉末冶金法制备NiW合金基带均采用单质Ni粉单质W粉混合粉末球磨后置于石墨模具中进行烧结,Ni与W在高温高压过程中合金化形成NiW合金固溶体。此方法W难以在短时间内充分扩散均匀,研究人员常常采用1200℃、24h高温长时间均匀化热处理处理坯锭,但在保证W扩散均匀的同时晶粒尺寸不可避免地长大至80~100μm,因此,如何兼顾NiW合金坯锭W元素的均匀分布与细小晶粒尺寸的控制是NiW合金基带研究亟待解决的难题。
发明内容
本发明的目的是提出一种合金粉末制备涂层导体用NiW合金基带坯锭的方法,可以有效地避免传统粉末冶金法制备NiW合金坯锭W元素分布不均匀及均匀化热处理后晶粒尺寸过大的问题,促进了NiW合金基带轧制过程铜型形变织构及再结晶过程强立方织构的形成。
所选NiW合金粉末采用氩气雾化法生产,并在坯锭制备前进行球磨预处理。球磨预处理细化合金粉末颗粒的同时压实原始粉末中存在的空心粉,防止坯锭中引入封闭式气孔、杂质。
一种球磨合金粉末制备涂层导体用NiW合金基带的方法包括以下步骤:
(1)NiW合金粉末预处理
选取粒度为30~35μm、W原子百分含量为5~12的NiW合金粉末,置于高能球磨机中球磨得到粒度在10~15μm的合金粉末。球磨采用15mm、10mm、5mm三种直径的玛瑙球,球磨级配为大中小球质量比为1:4:3,球粉质量比为6:1;球磨过程在保护性气氛下进行,球磨转速为150~200rpm/min,球磨时间共7h。
(2)NiW合金粉末替代单质混合粉末放电等离子烧结
将步骤(1)得到的合金粉末置于石墨模具中,通过放电等离子烧结成型得到NiW合金坯锭。其中放电等离子烧结在真空条件下加压烧结,烧结压强为30MPa;烧结温度控制在850~880℃,升温速度为100℃/min,保温5min后随炉冷却。
(3)形变
将步骤(2)得到的NiW合金坯锭进行热轧开坯轧至8mm,轧制温度为900~1100℃,每道次轧制压下量与轧前厚度之比为20~30%;冷轧轧至0.08mm,每道次轧制压下量与轧前厚度之比5%;冷轧过程加入轧制中间热处理若干次(0-3次,即也可不加轧制中间热处理)来缓解大变形量轧制造成的加工硬化,轧制中间热处理温度为550℃,保温时间为60~120min。
(4)再结晶
将轧制好的NiW合金带材经两步再结晶热处理得到强立方织构NiW合金基带。第一步再结晶热处理温度为700~750℃保温60min,第二步再结晶热处理温度为1050~1250℃保温120min。
以上热处理均在H2体积分数为4%的Ar/H2混合气氛中进行,升温速度5℃/min,随炉冷却。
本发明设计的NiW合金粉末制备涂层导体用NiW合金基带坯锭的方法,得到了W元素分布均匀且晶粒尺寸细小的NiW合金坯锭,经热轧开坯,冷轧及两步再结晶热处理后得到了强立方织构NiW合金基带。与传统工艺相比,此方法制备的NiW合金坯锭组织性能良好的同时工艺步骤简单,在大规模产业化应用中节能效益明显;适用范围广,可用于单层(见实施例1与2)复合(见实施例3))NiW合金基带的坯锭制备。
附图说明
图1、实施例1中Ni8W轧制至0.08mm后形变组织(111)极图
图2、实施例1中Ni8W再结晶热处理后立方织构含量EBSD图
图3、实施例2中Ni5W轧制至0.08mm后形变组织(111)极图
图4、实施例2中Ni5W再结晶热处理后立方织构含量EBSD图
图5、实施例3中Ni8W/Ni12W/Ni8W轧制至0.08mm后形变组织(111)极图
图6、实施例3中Ni8W/Ni12W/Ni8W再结晶热处理后立方织构含量EBSD图
具体实施方式
下面结合实施例对本发明做进一步的说明,但本发明并不仅限于以下实施例。
实例1
选取粒度为30~35μm、W原子百分含量为8的NiW合金粉末,称量20g置于高能球磨机中球磨粒度在10~15μm的合金粉末。球磨采用玛瑙球,球磨级配为大中小球质量比为1:4:3,球粉质量比为6:1。球磨过程在H2体积分数为4%的Ar/H2混合气氛下进行,球磨机转速为200rpm/min,球磨时间共7h。球磨两次共得到40g Ni8W合金粉末。将所得合金粉末称量36.24g置于石墨模具中,通过放电等离子烧结成型,得到长宽高为20*15*13mm的Ni8W合金坯锭。放电等离子烧结在真空条件下加压烧结,烧结压强为30MPa,烧结温度控制在850~880℃,升温速度100℃/min,保温5min后随炉冷却。然后将此Ni8W合金坯锭磨抛至12mm后进行热轧开坯轧至8mm,轧制温度为1100℃,每道次轧制压下量与轧前厚度之比为20~30%。热轧后的合金基带去除表面氧化皮后冷轧轧至0.08mm,每道次轧制压下量与轧前厚度之比为5%。冷轧过程加入3次550℃保温120min的轧制中间热处理:第一次轧制中间热处理在轧至3mm时进行,第二次轧制中间热处理在轧至1mm时进行,第三次轧制中间热处理在轧至0.4mm时进行。轧制中间热处理在H2体积分数为4%的Ar/H2混合气氛中进行,升温速度5℃/min,随炉冷却。最后将轧制好的Ni8W合金带材经两步再结晶热处理得到得到立方织构含量(取向差10°以内)达96.5%的Ni8W基带。两步再结晶热处理在H2体积分数为4%的Ar/H2混合气氛中进行,第一步再结晶热处理温度为750℃保温60min,第二步再结晶热处理温度为1200℃保温120min,升温速度5℃/min随炉冷却。
实例2
选取粒度为30~35μm、W原子百分含量为5的NiW合金粉末,称量20g置于高能球磨机中球磨粒度在10~15μm的合金粉末。球磨采用玛瑙球,球磨级配为大中小球质量比为1:4:3,球粉质量比为6:1。球磨过程在H2体积分数为4%的Ar/H2混合气氛下进行,球磨机转速为200rpm/min,球磨时间共7h。球磨两次共得到40g Ni5W合金粉末。将所得合金粉末称量34.71g置于石墨模具中,通过放电等离子烧结成型,得到长宽高为20*15*12.8mm的Ni5W合金坯锭。放电等离子烧结在真空条件下加压烧结,烧结压强为30MPa,烧结温度控制在850~880℃,升温速度100℃/min,保温5min后随炉冷却。然后将此Ni5W合金坯锭磨抛至12mm后进行热轧开坯轧至8mm,轧制温度为900℃,每道次轧制压下量与轧前厚度之比为20~30%。热轧后的合金基带去除表面氧化皮后冷轧轧至0.08mm,每道次轧制压下量与轧前厚度之比为5%。最后将轧制好的Ni5W合金带材经两步再结晶热处理得到得到立方织构含量(取向差10°以内)达99%的Ni5W基带。两步再结晶热处理在H2体积分数为4%的Ar/H2混合气氛中进行,第一步再结晶热处理温度为700℃保温60min,第二步再结晶热处理温度为1200℃保温120min,升温速度5℃/min,随炉冷却。
实例3
选取粒度为30~35μm、W原子百分含量为8的NiW合金粉末,称量20g置于高能球磨机中球磨得到粒度在10~15μm的合金粉末。球磨采用玛瑙球,球磨级配为大中小球质量比为1:4:3,球粉质量比为6:1。球磨过程在H2体积分数为4%的Ar/H2混合气氛下进行,球磨机转速为200rpm/min,球磨时间共7h。球磨两次共得到40g Ni8W合金粉末。采用同样的方法球磨一次得到20g Ni12W合金粉末。分别称量Ni8W合金粉末12.08g、Ni12W合金粉末12.74g与Ni8W合金粉末12.08g逐层置于石墨模具中,通过放电等离子烧结成型,得到长宽高为20*15*13mm的Ni8W/Ni12W/Ni8W复合坯锭。放电等离子烧结在真空条件下加压烧结,烧结压强为30MPa,烧结温度控制在850~880℃,升温速度为100℃/min,保温5min后随炉冷却。然后将此Ni8W/Ni12W/Ni8W复合坯锭磨抛至12mm后进行热轧开坯轧至8mm,轧制温度为1100℃,每道次轧制压下量与轧前厚度之比为20~30%。热轧后的合金基带去除表面氧化皮后冷轧轧至0.08mm,每道次轧制压下量与轧前厚度之比为5%。冷轧过程加入3次550℃保温120min的轧制中间热处理:第一次轧制中间热处理在轧至3mm时进行,第二次轧制中间热处理在轧至1mm时进行,第三次轧制中间热处理在轧至0.4mm时进行。轧制中间热处理在H2体积分数为4%的Ar/H2混合气氛中进行,升温速度5℃/min,随炉冷却。最后将轧制好的Ni8W/Ni12W/Ni8W复合带材经两步再结晶热处理得到得到立方织构含量(取向差10°以内)达96%的Ni8W/Ni12W/Ni8W复合基带。两步再结晶热处理在H2体积分数为4%的Ar/H2混合气氛中进行,第一步再结晶热处理温度为750℃保温60min,第二步再结晶热处理温度为1250℃保温120min,升温速度5℃/min,随炉冷却。

Claims (2)

1.一种合金粉末制备涂层导体用NiW合金基带坯锭的方法,其特征在于,包括以下步骤:
(1)NiW合金粉末预处理
选取粒度为30~35μm、W原子百分含量为5~12的NiW合金粉末,置于高能球磨机中球磨得到粒度在10~15μm的合金粉末;球磨采用15mm、10mm、5mm三种直径的玛瑙球,球磨级配为大、中、小球质量比为1:4:3,球粉质量比为6:1;球磨过程在保护性气氛下进行,球磨转速为150~200rpm/min,球磨时间共7h;
(2)NiW合金粉末替代单质混合粉末放电等离子烧结
将步骤(1)得到的合金粉末置于石墨模具中,通过放电等离子烧结成型得到NiW合金坯锭;其中放电等离子烧结在真空条件下加压烧结,烧结压强为30MPa,烧结温度控制在850~880℃,升温速度为100℃/min,保温5min后随炉冷却;
(3)形变
将步骤(2)得到的NiW合金坯锭进行热轧开坯轧至8mm,轧制温度为900~1100℃,每道次轧制压下量与轧前厚度之比为20~30%;冷轧轧至0.08mm,每道次轧制压下量与轧前厚度之比5%;
(4)再结晶
将轧制好的NiW合金带材经两步再结晶热处理得到NiW合金基带;第一步再结晶热处理温度为700~750℃保温60min,第二步再结晶热处理温度为1050~1250℃保温120min;
以上热处理均在H2体积分数为4%的Ar/H2混合气氛中进行,升温速度5℃/min,随炉冷却。
2.根据权利要求1所述的方法,其特征在于,包括以下步骤:
冷轧过程加入轧制中间热处理1-3次,每次轧制中间热处理温度为550℃,保温时间为60~120min。
CN201610562741.8A 2016-07-16 2016-07-16 一种合金粉末制备涂层导体用NiW合金基带坯锭的方法 Active CN106111987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610562741.8A CN106111987B (zh) 2016-07-16 2016-07-16 一种合金粉末制备涂层导体用NiW合金基带坯锭的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610562741.8A CN106111987B (zh) 2016-07-16 2016-07-16 一种合金粉末制备涂层导体用NiW合金基带坯锭的方法

Publications (2)

Publication Number Publication Date
CN106111987A CN106111987A (zh) 2016-11-16
CN106111987B true CN106111987B (zh) 2018-10-12

Family

ID=57283996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610562741.8A Active CN106111987B (zh) 2016-07-16 2016-07-16 一种合金粉末制备涂层导体用NiW合金基带坯锭的方法

Country Status (1)

Country Link
CN (1) CN106111987B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108385135B (zh) * 2018-05-03 2020-03-13 北京工业大学 一种电化学沉积制备涂层导体用高钨合金基带坯锭的方法
CN110465666A (zh) * 2019-09-16 2019-11-19 陕西理工大学 纳米界面与超微晶粒钨合金材料的制备方法
CN111185596A (zh) * 2020-01-06 2020-05-22 河南师范大学 一种提高镍钨合金基带表面质量的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784686A (en) * 1987-04-24 1988-11-15 The United States Of America As Represented By The United States Department Of Energy Synthesis of ultrafine powders by microwave heating
CN1312301C (zh) * 2005-09-23 2007-04-25 北京工业大学 用于高温超导的Ni-W合金的制备方法
CN100371482C (zh) * 2006-04-21 2008-02-27 北京工业大学 用于高温超导的高W含量Ni-W合金的制备方法
CN100374596C (zh) * 2006-05-19 2008-03-12 北京工业大学 Ni基合金复合基带及其粉末冶金制备方法
CN100374597C (zh) * 2006-05-19 2008-03-12 北京工业大学 Ni基合金复合基带的放电等离子体制备方法
CN101635185B (zh) * 2009-08-28 2011-01-12 北京工业大学 一种无/低磁性立方织构Ni-W合金基带的制备方法
CN101786352A (zh) * 2010-01-15 2010-07-28 北京工业大学 无磁性立方织构Cu基合金复合基带及制备方法
CN101850422B (zh) * 2010-04-30 2011-11-16 北京工业大学 热等静压法制备Ni基合金复合基带
CN105521546B (zh) * 2016-02-01 2018-09-04 丽水市人民医院 可拆卸的引流管腹带

Also Published As

Publication number Publication date
CN106111987A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN1312301C (zh) 用于高温超导的Ni-W合金的制备方法
CN101635186B (zh) 一种制备无磁性立方织构Ni-W合金基带的方法
CN102756512B (zh) 低或无磁性、高强度Ni-W合金复合基带及其制备方法
CN100571970C (zh) 一种涂层超导高W含量Ni-W合金基带的制备方法
CN101635185B (zh) 一种无/低磁性立方织构Ni-W合金基带的制备方法
CN106825104B (zh) 一种强立方织构的高强度镍钨合金基带及其制备方法
CN106111987B (zh) 一种合金粉末制备涂层导体用NiW合金基带坯锭的方法
CN108913928A (zh) 一种制备氧化物弥散强化铜复合材料的方法
CN110396619A (zh) 一种铜铁合金线材及其制备方法
Zheng et al. Achieving enhanced strength in ultrafine lamellar structured Al2024 alloy via mechanical milling and spark plasma sintering
Zhao et al. The investigation of Y doping content effect on the microstructure and microhardness of tungsten materials
CN115044794B (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN106077642B (zh) 一种纳米合金粉末制备涂层导体用高钨合金基带坯锭的方法
Zhang et al. Preparation and microstructure and properties of AlCuFeMnTiV lightweight high entropy alloy
Cao et al. In-situ oxide particles reinforced Fe40Mn40Co10Cr10 high-entropy alloy by internal oxidation and powder forging
CN109518021A (zh) 一种高强度铁钴镍合金的制备方法
CN106702216B (zh) 一种无铁磁性立方织构镍钨合金基带的制备方法
CN102825857A (zh) 一种无磁性织构Ni基合金复合基带及其制备方法
Zhao et al. Study on the formation of cubic texture in Ni–7 at.% W alloy substrates by powder metallurgy routes
Ji et al. A study about Ni–8 at% W alloy substrates used for REBCO coated conductors
Zhou et al. Development of cube textured Ni–W alloy tapes using powder metallurgy along with high energy ball milling for HTS coated conductors
CN103031503B (zh) 一种NiW合金基长带材料的坯锭制备方法
CN109811310A (zh) 无铁磁性、高强度、强立方织构镍钨复合基带及制备方法
CN108300895A (zh) 一种高温超导涂层导体用无磁性立方织构Cu-Ni-Cr合金基带的制造方法
Yu et al. Intermediate annealing and strong cube texture of Ni8W/Ni12W/Ni8W composite substrates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant