CN106064805B - Mems device which drives the thermal control of the oven - Google Patents

Mems device which drives the thermal control of the oven Download PDF

Info

Publication number
CN106064805B
CN106064805B CN 201510881090 CN201510881090A CN106064805B CN 106064805 B CN106064805 B CN 106064805B CN 201510881090 CN201510881090 CN 201510881090 CN 201510881090 A CN201510881090 A CN 201510881090A CN 106064805 B CN106064805 B CN 106064805B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
ring
thermal
temperature
thermostat
structure
Prior art date
Application number
CN 201510881090
Other languages
Chinese (zh)
Other versions
CN106064805A (en )
Inventor
丁金玲
陈巧
谢会开
Original Assignee
无锡微奥科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

一种带恒温控制的热式驱动MEMS器件,包括芯片内部可动结构1和衬底2,还包括恒温隔热环3,芯片内部可动结构1通过恒温隔热环3连接到衬底2上,所述恒温隔热环3包括至少一个恒温环3‑1和至少两个热隔离环3‑2,A热隔离环3‑2a和B热隔离环3‑2b位于恒温环3‑1的两侧,A热隔离环3‑2a连接到衬底2上,B热隔离环3‑2b连接到芯片内部可动结构1上。 Thermal MEMS device A tape drive thermostatically controlled, the movable structure comprises a chip 1 and the substrate 2, further comprising temperature insulation ring 3, the movable structure of the chip 1 on the insulating ring 3 by a thermostat connected to the substrate 2 the thermostat 3 comprises at least one heat insulating ring thermostat 3-1 ring spacer ring and at least two heat 3-2, a and B thermal heat isolating ring 3-2a 3-2b spacer ring located two thermostatic ring 3-1 side, A spacer ring 3-2a thermally connected to the substrate 2, B 3-2b thermal isolation ring connected to the internal structure of the chip 1 may be movable. 优点:在芯片上集成恒温控制功能模块,此恒温控制模块所占面积小,功耗低,响应时间小,恒温控制精度高。 Advantages: integrated on the chip temperature control function module, this module is a small area occupied by temperature control, low power consumption, small response time, high precision temperature control. 集成了恒温控制环的热式MEMS芯片具有显著的尺寸小、功耗低、成本低、可批量生产的特点。 Temperature control loop integrated MEMS chip having a small thermal significant size, low power, low cost, mass-produced characteristics.

Description

一种带恒温控制的热式驱动MEMS器件 A thermal drive MEMS device with a thermostatically controlled

技术领域 FIELD

[0001] 本发明涉及的是一种带恒温控制的热式驱动MEMS器件,属于微机电技术领域。 [0001] The present invention relates to a thermal drive MEMS device with a thermostatically controlled, MEMS technical field belongs.

背景技术 Background technique

[0002] 热式MEMS器件在民用产品、工业产品、物联网等领域有着广泛的应用,但是其工作温度为_55°C~125°C,这个温度对热式MEMS器件工作稳定性的影响是巨大的,因为热式MEMS 器件的敏感因子是温度。 [0002] The thermal MEMS device has been widely used in civilian products, industrial products, networking and other fields, but the operating temperature of _55 ° C ~ 125 ° C, this temperature influence on the thermal stability of MEMS devices work is great, because the thermal sensitive factor is the temperature of the MEMS device.

[0003] 为解决环境温度的波动引入的热式MEMS器件的测试误差,需要对温度进行补偿, 可采用加TEC温度控制,或者是算法补偿。 [0003] In order to solve the thermal error testing MEMS devices fluctuation of the ambient temperature is introduced, the need for temperature compensation, can be added to the TEC temperature control or compensation algorithm. TEC增加了系统的尺寸,对芯片整体恒温需要的功耗较大,并增加了成本。 TEC increases the size of the system, the power consumption required for the overall temperature of the chip is large, and increases the cost. 如专利申请号201210268441.0,半导体激光器,一级恒温控制电路和所述温度传感器TS均设置在所述恒温控制腔内,热电制冷片TEC—侧设置在导热块外侧, 二级恒温控制电路分别连接温度传感器TS和热电制冷片TEC。 Patent Application No. 201210268441.0, a semiconductor laser, a temperature control circuit and the temperature sensor TS are disposed in the thermostatically controlled chamber, the thermoelectric coolers disposed outside the side TEC- thermally conductive block, two temperature control circuits are connected to a temperature thermoelectric coolers sensor TS and TEC. 而算法补偿则补偿范围有限。 And compensation algorithm to compensate the limited range.

发明内容 SUMMARY

[0004] 本发明解决的技术问题是:外界环境温度的波动对热式MEMS器件造成测试误差的问题。 [0004] The present invention solves the technical problem: fluctuating ambient temperature measurement errors cause problems to the thermal MEMS device.

[0005] 本发明的技术方案是:一种带恒温控制的热式驱动MEMS器件,包括芯片内部可动结构1和衬底2,还包括恒温隔热环3,芯片内部可动结构1通过恒温隔热环3连接到衬底2上, 所述恒温隔热环3包括至少一个恒温环3-1和至少两个热隔离环3-2,A热隔离环3-2a和B热隔离环3-2b位于恒温环3-1的两侧,A热隔离环3-2a连接到衬底1上,B热隔离环3-2b连接到芯片内部可动结构1上。 [0005] aspect of the present invention is: a thermally driven type MEMS device with temperature control, including a movable structure within the chip 1 and the substrate 2, further comprising temperature insulation ring 3, the movable structure of the chip 1 by a thermostat insulation ring 3 is connected to the substrate 2, the insulating ring 3 thermostat thermostat at least one ring comprises 3-1 rings and at least two thermally isolated from 3-2, a and B 3-2a thermal heat isolating ring spacer ring 3 -2b 3-1 ring on both sides of the thermostat, a spacer ring 3-2a thermally connected to the substrate 1, B 3-2b thermal isolation ring connected to the internal structure of the chip 1 may be movable.

[0006] 本发明的优点和技术效果:在芯片上集成恒温控制功能模块,此恒温控制模块所占面积小,功耗低,响应时间小,恒温控制精度高。 [0006] The advantages and technical effects of the invention: on-chip functional modules integrated temperature control, temperature control module of this small area occupied, low power consumption, small response time, high precision temperature control. 集成了恒温控制环的热式MEMS芯片具有显著的尺寸小、功耗低、成本低、可批量生产的特点。 Temperature control loop integrated MEMS chip having a small thermal significant size, low power, low cost, mass-produced characteristics.

附图说明 BRIEF DESCRIPTION

[0007] 图1是带恒温隔热环的热式MEMS结构示意图。 [0007] FIG. 1 is a schematic view of a thermostat with a thermal insulation ring MEMS structure.

[0008] 图2是各部件的连接方式。 [0008] FIG 2 is a connection of the components.

[0009] 图3是热式MEMS结构的剖面示意图。 [0009] FIG. 3 is a sectional schematic view of a thermal MEMS structure.

[0010] 图4是恒温隔离环的示意图。 [0010] FIG. 4 is a schematic view of a thermostat spacer ring.

[0011] 图5是一种恒温隔热环的布置。 [0011] FIG. 5 is an arrangement of one kind of thermostat isolation ring.

[0012] 图6是实施例1中恒温环的电阻布置。 [0012] FIG. 6 is a resistance disposed in the Example 1 embodiment the thermostat ring.

[0013] 图7是实施例1中恒温控制环的反馈示意图。 [0013] FIG. 7 is a schematic view of a thermostatic Example 1 embodiment the feedback control loop.

[0014] 图8是实施例2中恒温环的电阻布置。 [0014] FIG. 8 is an embodiment of the resistor 2 is disposed in a thermostatic ring.

[0015] 图9是实施例2中恒温控制环的反馈示意图。 [0015] FIG. 9 is a schematic view of a thermostat in Example 2 feedback control loop.

[0016] 图中,1是芯片内部可动结构,1-1是驱动结构,1-2是制动结构,2是衬底,3是恒温隔热环,3-1是丨旦温环,3-1-1是导热基底,3-1-2是加热电阻,3-1-3是测温电阻,3-1-4是温控电阻,3-2是热隔离环。 [0016] FIG, 1 is a chip of the movable structure is driven configuration 1-1, 1-2 is a stop mechanism, 2 is a substrate, 3 is a thermostat isolation rings, 3-1 ring Shu denier temperature, 3-1-1 is a thermally conductive substrate, a heating resistor 3-1-2, 3-1-3 is a resistance temperature detector, a temperature-dependent resistor 3-1-4, 3-2 ring thermally isolated.

具体实施方式 detailed description

[0017] 一种带恒温控制的热式驱动MEMS器件,包括芯片内部可动结构1和衬底2,还包括恒温隔热环3,芯片内部可动结构1通过恒温隔热环3连接到衬底2上,所述恒温隔热环3包括至少一个恒温环3-1和至少两个热隔离环3-2,A热隔离环3-2a和B热隔离环3-2b位于恒温环3-1的两侧,A热隔离环3-2a连接到衬底1上,B热隔离环3-2b连接到芯片内部可动结构1上。 [0017] A tape drive thermostatically controlled heat MEMS device comprising a movable structure within the chip 1 and the substrate 2, further comprising temperature insulation ring 3, the movable structure of the chip 1 by a thermostat connected to the liner insulating ring 3 2 on the bottom, the thermostat includes at least a heat insulating ring 3 and 3-1 ring thermostat at least two thermal spacer ring 3-2, a and B thermal heat isolating ring 3-2a 3-2b spacer ring located 3- thermostat ring the sides 1, a spacer ring 3-2a thermally connected to the substrate 1, B 3-2b thermal isolation ring connected to the internal structure of the chip 1 may be movable.

[0018] 所述恒温环3-1包括导热基底3-1-1、加热电阻3-1-2和测温电阻3-1-3,加热电阻3-1-2和测温电阻3-1-3并排布置在导热基底3-1-1上。 [0018] The thermally conductive substrate comprising 3-1 ring thermostat 3-1-1, 3-1-2 heating resistor and temperature measuring resistor 3-1-3, 3-1-2 heating resistor and temperature measuring resistor 3-1 -3 arranged side by side on a heat conductive substrate 3-1-1.

[0019] 所述恒温环3-1包括导热基底3-1-1和温控电阻3-1-4,该温控电阻3-1-4安装在导热基底3-1-1上。 [0019] The thermally conductive substrate comprising a thermostat ring 3-1 3-1-1 3-1-4 resistance and temperature control, the temperature-dependent resistor is mounted on a thermally conductive substrate 3-1-4 3-1-1.

[0020] 所述导热基底3-1-1是单晶娃。 [0020] The thermally conductive substrate is a single crystal 3-1-1 baby.

[0021] 所述加热电阻3-1-2是金属或者多晶硅材料,所述测温电阻3-1-3是Pt或Ti或多晶娃材料。 [0021] The heating resistor is a metal or polysilicon material 3-1-2, 3-1-3 is a resistance temperature detector Pt or Ti or polycrystalline material baby.

[0022] 所述加热电阻3-1-2采用mW级的电功率驱动。 [0022] The use of the heating resistor 3-1-2 mW power drive stage.

[0023] 所述热隔离环3-2采用Si02或Si3N4。 [0023] The thermally insulating ring 32 using Si02 or Si3N4.

[0024] 所述芯片内部可动结构1包括驱动结构1-1和制动结构1-2,驱动结构1-1位于制动结构1-2的周围。 Internal [0024] The movable structure chip 11-2, the drive structure including a drive and a brake structure 1-1 structure 1-1 structure 1-2 is positioned around the brake.

[0025] 所述驱动结构1-1是热式驱动结构,所述制动结构1-2是质量块、微平台、微透镜、 微光栅、微线圈、微镜或热堆中的一种。 [0025] The drive mechanism drives the thermal structure is 1-1, the 1-2 brake is mass structure, micro-platform, microlenses, gratings, micro-coils, a stack micromirrors or thermally.

[0026] 所述热式驱动结构由双层材料或多层材料构成,并且各层材料之间的热膨胀系数的不同。 The [0026] heat drive bilayer structure composed of a material or a multilayer material, and the different coefficients of thermal expansion between the layers of material.

[0027] 所述热式驱动结构可集成加热电阻。 The [0027] configuration drives the thermal heating resistor may be integrated.

[0028] 所述双层材料分别为Si02和A1,或Cu和W;所述加热电阻的材料为Pt、Ti、W或多晶。 [0028] The bilayer material and Si02 respectively A1, or Cu and W is; material of the heating resistor of Pt, Ti, W or polycrystalline.

[0029] 恒温隔热环工作原理,加热电阻采用mW级的电功率驱动,使驱动结构的初始温度升到环境变化温度的最高点,作为一种优选方案1,测温电阻,布置在加热电阻周围,监测恒温隔热环的温度,测温电阻和加热电阻形成反馈,改变加热电阻上的驱动功率,使驱动结构的初始温度维持在所需温度点。 [0029] temperature insulation ring working principle, the heating resistors use mW power stage driving the driving mechanism of the initial temperature rose to the highest point of ambient temperature changes, a 1, a preferred embodiment the temperature measuring resistor, a heating resistor disposed around the monitoring the temperature of a thermostatic heat insulating ring, and the heating temperature-measuring resistors form a feedback resistor, changing the driving power of the heating resistor, the temperature of the initial drive mechanism is maintained at the desired temperature point. 作为一种优选方案2,用电阻温度系数大的材料做加热电阻,同时有测温电阻的功能,Pt是一种优选的电阻材料方案。 2 As a preferred embodiment, made with a large resistance temperature coefficient of resistance material is heated, while the resistance temperature detector function, Pt is a preferred embodiment of the resistive material.

[0030] 加热电阻加电时,产生的热功率很快会分别传导到衬底和驱动结构上,这样恒温环上的温度由中间向两边呈温度梯度,中间高,两端低,导致恒温环的温度不均匀,且温度很难升到想要的高温。 [0030] When the power of the heating resistor, the thermal power generated will be transmitted quickly to the substrate, respectively, and the drive structure, so that the temperature on the thermostat to a temperature gradient to both sides of the ring from the intermediate, middle high and low ends, resulting in a thermostatic ring the uneven temperature, and the temperature is hard to rise to the desired temperature. 因此,需要加入热隔离,当加热电阻加电时,由于设置在恒温环两端的热隔离1和热隔离2的热导远小于驱动臂2的热导,使得恒温环上热效应的变化变得均匀, 即恒温环上各个位置的热效应变得均匀。 Thus, the need for thermal insulation, when the heating resistor is powered, since the heat across the thermostat ring spacer 1 and the thermally insulating thermal conductivity 2 is much smaller than the drive arm thermal conductivity of 2, such that the change in thermal effect ring temperature becomes uniform , i.e., the thermostat becomes uniform thermal effect on each ring position. 作为一种优选方案,热隔离1和热隔离2的材料为Si02,为悬臂结构,底下为沟槽。 As a preferred embodiment, the thermal insulating material 1 and 2 for the thermal isolation Si02, a cantilever structure, the bottom of the trench. 热隔离1和热隔离2的热阻为恒温环热阻的3〜10倍,此设计值可以有效的提高恒温环的热响应率,且能够控制恒温环的升降温过程的时间处于可使用的范围内。 1 thermal insulation resistance and thermal isolation for the temperature loop 2 of 3~10 times of the thermal resistance, the design value can effectively improve the thermal response of the thermostat ring and capable of controlling the temperature rise time of the cooling loop may be used in the process range.

[0031] 实施例1 [0031] Example 1

[0032] 如图1〜图3所示,该带恒温控制的热式驱动MEMS器件,包括芯片内部可动结构I、 衬底2和恒温隔热环3,芯片内部可动结构1包括驱动结构1-1和制动结构1-2,驱动结构1-1 位于制动结构1-2的周围,恒温隔热环3包括一个恒温环3-1和两个热隔离环3-2,A热隔离环3-2a和B热隔离环3-2b位于恒温环3-1的两侧,A热隔离环3-2a连接到衬底2上,B热隔离环3-2b连接到制动结构1-2上。 [0032] As shown in Figure 1 ~, thermal drive of the MEMS device with temperature control, comprising a movable internal chip structure I, 2 and the substrate temperature insulation ring 3, the movable structure within the chip structure 1 comprises a drive 3 1-1 and 1-2 brake structure, the brake driving structure 1-1 structure 1-2 located around the thermostat temperature insulation ring 3 comprises a ring and two thermal spacer ring 3-1 3-2, a heat B and thermally isolating ring 3-2a 3-2b spacer ring located on both sides of the thermostat ring of 3-1, a spacer ring 3-2a thermally connected to the substrate 2, B ring thermal isolation structure 1 is connected to the brake 3-2b -2 on.

[0033] 对于本实施例的恒温隔热环3结构,恒温环3-1和热隔离环3-2是布置在MEMS内部可动结构1的周围,可以布置1个恒温环3-1和2个热隔离3-2,或者是η个恒温环3-1和2n个热隔离3-2,或者是η个恒温环3-1和m个热隔离3-2。 [0033] For the present embodiment, the thermostat 3 insulation ring structure, and thermally isolating the thermostat 3-1 cycloalkyl ring 32 is disposed inside the periphery of the movable MEMS structure 1, may be arranged 3-1 rings and a thermostat 2 thermal isolation 3-2, or 3-1 rings and η a constant thermal isolation 2n 3-2, or 3-1 ring η thermostats and thermal isolation 3-2 m.

[0034] 驱动结构1-1为热式的驱动结构,制动结构1-2可为质量块、微镜、热堆等,若芯片内部可动结构1为MEMS微镜,则制动结构1-2是微镜;若芯片内部可动结构1为传感器的加速度计,则制动结构1-2是质量块;若芯片内部可动结构1为红外热式传感器,则制动结构1-2 是热堆。 [0034] 1-1 is a drive mechanism driving the thermal structure, the brake structures can be 1-2 mass micromirror thermopile, etc., when the chip 1 is movable MEMS mirror structure, the structure of the brake 1 -2 micromirror; if an internal structure of the movable die 1 is an accelerometer sensor, the brake is 1-2 mass structure; if the movable structure within the chip is a thermal type infrared sensors, the brake structure 1-2 It is a thermopile.

[0035] 如图4〜图6所示,恒温环3-1包括导热基底3-1-1、加热电阻3-1-2和测温电阻3-1-3,加热电阻3-1-2和测温电阻3-1-3并排布置在导热基底3-1-1上。 [0035] As shown in FIG 4 ~ 6, comprising a thermally conductive substrate 3-1 ring thermostat 3-1-1, 3-1-2 heating resistor and temperature measuring resistor 3-1-3, 3-1-2 heating resistor and resistance temperature detector are arranged side by side on a thermally conductive substrate 3-1-3 3-1-1. 加热电阻3-1-2优选金属或者多晶硅材料,所述测温电阻3-1-3优选Pt或Ti或多晶硅材料等电阻温度系数高的导电材料。 3-1-2 heating resistor preferably a metal or polysilicon material, the temperature coefficient of resistance high temperature conductive material resistors 3-1-3 preferably Pt or Ti or polysilicon material. Pt具有较高的稳定性和较高的电阻温度系数,所以Pt合适作为测温电阻3-1-3材料, Pt的电阻温度系数为3.9E-3,当测温电阻测试精度为0.1Ω,测温电阻设计为1ΚΩ (@(TC), 测温电阻的温度测试精度可以达到0.025Γ,这样能够有效保证本装置在使用过程中的稳定性以及精确度。 Pt having high stability and high temperature coefficient of resistance, the Pt resistance temperature detector are suitable as materials 3-1-3, Pt resistance temperature coefficient of 3.9E-3, the temperature measuring resistor when the measuring accuracy is 0.1 [Omega], temperature measuring resistor designed as 1ΚΩ (@ (TC), resistance temperature detector temperature measurement accuracy can be achieved 0.025Γ, this can effectively guarantee the stability and accuracy of the present apparatus during use.

[0036] 加热电阻3-1-2采用mW级的电功率驱动,使驱动结构的初始温度升到环境变化温度的最高点。 [0036] 3-1-2 using resistance heating stage mW power driven to drive the initial temperature rose to the highest point of the structure of the ambient temperature changes. 测温电阻3-1-3,布置在加热电阻3-1-2周围,用于监测恒温隔热环的温度.测温电阻3-1-3测得的温度值反馈给加热电阻3-1-2,根据温度值改变加热电阻上的驱动功率,使驱动结构的初始温度维持在所需温度点(环境温度变化的最高点)。 Temperature measuring resistor 3-1-3, 3-1-2 disposed around the heating resistor, for monitoring the temperature of the constant temperature heat insulating ring. 3-1-3 resistance temperature measured temperature value is fed back to the heating resistor 3-1 -2, changing the driving power according to the temperature value of the heating resistor, so that the initial temperature of the drive mechanism to maintain a desired temperature at the point (point of maximum change in ambient temperature).

[0037] 热隔离环3-2采用热导率低的材料,优选Si02、Si3N4等非金属材料。 [0037] The thermally insulating ring 32 using a material of low thermal conductivity, preferably Si02, Si3N4 and other non-metallic materials.

[0038] 如图5所示,恒温隔热环3还可包括四个恒温环3-1和八个热隔离环3_2,A热隔离环3-2a和B热隔离环3-2b位于恒温环3-1的两侧,A热隔离环3-2a连接到衬底1上,B热隔离环3-2b连接到驱动结构1-1上。 [0038] 5, the insulating ring 3 further comprises a thermostat thermostat four and eight thermal isolation ring 3-1 ring 3_2, A and B thermal heat isolating ring 3-2a 3-2b spacer ring is located in the thermostat ring sides 3-1, a spacer ring 3-2a thermally connected to the substrate 1, B 3-2b thermal isolation ring coupled to the driving structure 1-1.

[0039] 如图7所示,本实施例中恒温环3-1工作原理,测温电阻3-1-3电阻材料的电阻温度系数α,其电阻值和环境温度——对应,其对应公式为雇i =趙' …Rs. * &,式中,Δ T为产生的温升,AR为由于温升引起的电阻变化值。 [0039] As shown in FIG 7, in Example 3-1 cycloalkyl thermostat operation of the present embodiment, the resistance temperature coefficient of resistance material 3-1-3 [alpha] temperature measuring resistor, whose resistance value and the ambient temperature - corresponding to, which corresponds to the formula is employed to generate i Δ T is temperature, AR is the resistance change due to the temperature rise value = Zhao '... Rs. * & amp ;, wherein due. 加热电阻为电功率驱动,加入电驱动,产生的电功率为f ^f ,电功率会对周围环境产生一定的温升△ T。 Electrical power driving the heating resistors, is added electric drive, electric power is generated by f ^ f, electric power will produce a certain ambient temperature △ T. 因此我们可以通过测试测温电阻的电阻值就能测试温度,再通过这个温度和所需温度值A TO比较,反馈给加热电阻, 调节加热电阻的电功率,最终使测温电阻的温度达到A T0。 Therefore, we can test the resistance value can test the temperature of the temperature measuring resistor, and then by comparing this temperature and the desired temperature value A TO, the feedback to the heating resistor, the heating resistor regulating the electrical power, eventually reaches a temperature measuring resistor A T0 . 如图7所示,RO为设定温度对应的电阻值,对测温电阻R (3-1-3)和RO比较,输出一个电压,将其加载到加热电阻3-1-2上,改变其电功率,从而改变温度值,最终得到R (3-1-3) =RO,也就能得到所需的温升Δ T0。 7, RO is the resistance value corresponding to the temperature set on the temperature-measuring resistors R (3-1-3) and the RO, and outputs a voltage, which is loaded onto the heating resistor 3-1-2, change electrical power, thereby changing the temperature, to give a final R (3-1-3) = RO, also be able to obtain the desired temperature rise Δ T0. 当环境温度改变时,所测得的R (3-1-3)改变,再通过相同的反馈,将其矫正到所需的温度值Δ T0。 When the ambient temperature changes, the measured R (3-1-3) to change, and then by the same feedback, to correct it to a desired temperature value Δ T0.

[0040] 实施例2 [0040] Example 2

[0041] 恒温隔热环3可以有多种设计结构,可以制作集合加热测温功能于一体的电阻,其间隙可为工艺上的最小刻蚀槽宽,测温电阻可以精确测试加热电阻产生的温升。 [0041] 3 constant insulating ring design may have various structures, resistive heating can produce a set of temperature measurement in one of the functions, which can produce a minimum gap width on the etching process, the temperature measuring resistor can accurately test the heating resistor temperature rise.

[0042] 如图8所示,本实施例中,将加热电阻3-1-2和测温电阻3-1-3合并为一个温控电阻3-1-4,实现加热测温功能。 [0042] As shown in FIG. 8, in this embodiment, the heating resistor and resistance temperature detector 3-1-2 3-1-3 3-1-4 combined into a temperature-dependent resistor, to achieve a heating temperature measuring function.

[0043] 恒温环3-1包括导热基底3-1-1和温控电阻3-1-4,该温控电阻3-1-4安装在导热基底3-1-1上。 [0043] The thermally conductive substrate comprising a thermostat ring 3-1 3-1-1 3-1-4 resistance and temperature control, the temperature-dependent resistor is mounted on a thermally conductive substrate 3-1-4 3-1-1. 导热基底3-1-1优选单晶硅,该温控电阻3-1-4优选具有高的电阻温度系数的材料,可实现加热测温功能。 3-1-1 single-crystal Si substrate is preferably heat conductive, preferably the temperature-dependent resistor 3-1-4 material having a high temperature coefficient of resistance, the heating temperature measuring function can be realized. 导热基底3-1-1优选单晶硅,单晶硅的热导率远大于非金属材料, 因此恒温环3-1的横向、纵向导热速率大于热隔离环的导热速率,能够实现恒温环的温度分布均匀。 3-1-1 thermally conductive substrate is preferably monocrystalline silicon, single crystal silicon is much larger than the thermal conductivity of non-metallic material, and therefore the lateral thermostat ring 3-1, a rate greater than the longitudinal thermal conductivity is thermally isolated thermal conductivity rate of the ring, the ring can be achieved thermostat uniform temperature distribution.

[0044] 温控电阻3-1-4同时有加热电阻和测温电阻的功能。 [0044] The temperature-dependent resistor 3-1-4 function while the heating resistor and resistance temperature detector. 其恒温控制环工作原理,温控电阻3-1-4电阻材料的电阻温度系数α,其电阻值和环境温度一一对应,其对应公式为 Its temperature control loop works, resistance temperature coefficient of resistance material temperature control resistor 3-1-4 [alpha], the ambient temperature and the resistance value correspondence, which corresponds to the formula

Figure CN106064805BD00061

,式中,AT为产生的温升,AR为由于温升引起的电阻变化值。 , Wherein, to produce a temperature rise the AT, AR is the resistance change due to temperature rise value. 温控电阻3-1 -4为电功率驱动,加入电驱动,产生的电功率为 3-1-4 for the temperature-dependent resistor electrical power drive, added electrical drive, electric power is generated

Figure CN106064805BD00062

,电功率会对周围环境产生一定的温升AT。 Electrical power will produce a certain ambient temperature rise AT. 因此我们可以通过测试温控电阻3-1-4的电阻值就能测试温度,再通过这个温度和所需温度值A TO比较,反馈给温控电阻3-1-4,调节加热电阻的电功率,最终使温控电阻3-1-4的温度达到△ T0。 Therefore, we can test the resistance value can be temperature-dependent resistor 3-1-4 test temperature, and then comparing this temperature and the desired temperature value A TO, a temperature control feedback resistor 3-1-4, regulating the electrical power of the heating resistor , so that the final temperature of the temperature-dependent resistor 3-1-4 reaches △ T0. 如图9所示,RO为设定温度对应的电阻值,对温控电阻3-1-4比较,输出一个电压,将其反馈到输入端Vin上,改变其电功率,从而改变温度值,最终得到R (3-1-4) =RO,也就能得到所需的温升Δ T0。 9, the resistance value of the temperature of the RO is set corresponding to the temperature control resistor 3-1-4 comparison, output a voltage, which is fed back to the input Vin, power change, thereby changing the temperature, final to give R (3-1-4) = RO, also be able to obtain the desired temperature rise Δ T0. 当环境温度改变时,所测得的R (3-1-4)改变,再通过相同的反馈,将其矫正到所需的温度值Δ T0。 When the ambient temperature changes, the measured R (3-1-4) to change, and then by the same feedback, to correct it to a desired temperature value Δ T0.

Claims (10)

  1. 1. 一种带恒温控制的热式驱动MEMS器件,包括芯片内部可动结构(1)和衬底(2),其特征在于还包括恒温隔热环(3),芯片内部可动结构(1)通过恒温隔热环(3)连接到衬底(2) 上,所述恒温隔热环(3)包括至少一个恒温环(3-1)和至少两个热隔离环(3-2),A热隔离环(3-2a)和B热隔离环(3-2b)位于恒温环(3-1)的两侧,A热隔离环(3-2a)连接到衬底(2)上,B 热隔离环(3 - 2b)连接到芯片内部可动结构⑴上;所述恒温环(3-1)包括导热基底(3 -1 -1)、 加热电阻(3 -1 - 2)和测温电阻(3 -1 - 3),加热电阻(3 -1 - 2)和测温电阻(3 -1 - 3)都布置在导热基底(3-1-1)上。 Thermal drive MEMS device 1. An oven control, comprising a movable structure within the chip (1) and the substrate (2), characterized by further comprising a ring thermal thermostat (3), the movable structure within the chip (1 ) connected by a thermostat insulating ring (3) to the substrate (2), said thermostat insulating ring (3) comprises a (3-1) and at least one of the at least two heat thermostat ring spacer ring (3-2), a thermal insulation ring (3-2a), and on both sides of thermal insulation ring B (3-2b) located in the thermostat ring (3-1), a thermally insulating ring (3-2a) is connected to the substrate (2), B thermal isolation ring (3 - 2b) is connected to the chip on the movable structure ⑴; the thermostat ring (3-1) comprises a thermally conductive substrate (3-1-1), the heating resistor (3-1--2) and temperature resistance (3-1--3), the heating resistor (3-1--2) and resistance temperature detector (3-1--3) are disposed on a thermally conductive substrate (3-1-1).
  2. 2. 根据权利要求1所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述恒温环(3-1)包括导热基底(3-1-1)和温控电阻(3-1-4),该温控电阻(3-1-4)安装在导热基底(3H)上。 The thermal driving the MEMS device An oven as claimed in claim 1, the control, characterized in that the thermostatic ring (3-1) comprises a thermally conductive substrate (3-1-1) and the temperature-dependent resistor (3- 1-4), the temperature-dependent resistor (3-1-4) mounted on a thermally conductive substrate (3H).
  3. 3. 根据权利要求1或2所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述导热基底(3-1-1)是单晶娃。 The thermal driving An oven MEMS device of claim 12 or claim controlled, characterized in that said heat conductive substrate (3-1-1) is monocrystalline baby.
  4. 4. 根据权利要求1所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述加热电阻(3-1-2)是金属或者多晶硅材料,所述测温电阻(3-1-3)是金属如Pt或Ti,或多晶硅材料。 The thermal drive MEMS device An oven according to claim 1 of the control, characterized in that said heating resistor (3-1-2) is a metal or polysilicon material, said resistance temperature detector (3-1 -3) is a metal such as Pt or Ti, or a polysilicon material.
  5. 5. 根据权利要求1所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述热隔离环(3-2)采用Si02或Si3N4。 The thermal drive MEMS device An oven according to claim 1 of the control, characterized in that the thermal insulation ring (3-2) using the Si02 or Si3N4.
  6. 6. 根据权利要求1所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述芯片内部可动结构(1)包括驱动结构(I -1)和致动结构(1 -2),驱动结构(I -1)位于致动结构(1 -2)的周围。 The thermal drive MEMS device An oven according to claim 1 of the control, characterized in that said movable structure within the chip (1) comprises a driving structure (I -1) and the actuating structure (1-2 ), driving structure (I -1) is located around the actuation structure (1 -2).
  7. 7. 根据权利要求6所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述驱动结构(1-1)是热式驱动结构,所述致动结构(1-2)是质量块、微平台、微透镜、微光栅、微线圈、微镜或热堆中的一种。 The thermal drive MEMS device An oven according to claim 6 controls, characterized in that the drive mechanism (1-1) is a thermal drive structure, said actuation structure (1-2) is mass, micro-platform, microlenses, a micro raster, micro-coils, micromirrors or thermally stack.
  8. 8. 根据权利要求7所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述热式驱动结构由双层材料或多层材料构成,并且各层材料之间的热膨胀系数的不同。 The thermal drive MEMS device An oven according to claim 7 control, wherein said heat drive bilayer structure composed of a material or a multilayer material, and the thermal expansion coefficient between the material layers different.
  9. 9. 根据权利要求8所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述热式驱动结构可集成加热电阻。 According to claim thermal drive MEMS device of claim 8 An oven-controlled, characterized in that the drive mechanism may be integrated thermal heating resistor.
  10. 10. 根据权利要求9所述的一种带恒温控制的热式驱动MEMS器件,其特征在于所述双层材料分别为Si02和Al,或Cu和W;所述加热电阻的材料为Pt、Ti、W或多晶。 10. The thermal drive MEMS device An oven according to claim 9 control, wherein said double layer of material respectively Si02 and Al, or Cu and W is; material of the heating resistors is Pt, Ti , W or polycrystalline.
CN 201510881090 2015-12-03 2015-12-03 Mems device which drives the thermal control of the oven CN106064805B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510881090 CN106064805B (en) 2015-12-03 2015-12-03 Mems device which drives the thermal control of the oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510881090 CN106064805B (en) 2015-12-03 2015-12-03 Mems device which drives the thermal control of the oven

Publications (2)

Publication Number Publication Date
CN106064805A true CN106064805A (en) 2016-11-02
CN106064805B true CN106064805B (en) 2017-08-15

Family

ID=57418993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510881090 CN106064805B (en) 2015-12-03 2015-12-03 Mems device which drives the thermal control of the oven

Country Status (1)

Country Link
CN (1) CN106064805B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277731A (en) * 1997-09-24 2000-12-20 克罗诺斯集成微系统公司 Thermal arched beam microelectromechanical devices and associated fabrication method
CN1295178A (en) * 1999-11-08 2001-05-16 Jds尤尼费斯公司 Thermal actuating miniature electromechanical system with thermal isolation structure
CN101774529A (en) * 2010-01-26 2010-07-14 北京航空航天大学 MEMS atom cavity chip and preparation method thereof
CN103149423A (en) * 2013-03-01 2013-06-12 东南大学 Low-temperature double-layer isolating micro-electromechanical system (MEMS) microwave power sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327526B2 (en) * 2009-05-27 2012-12-11 The Boeing Company Isolated active temperature regulator for vacuum packaging of a disc resonator gyroscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277731A (en) * 1997-09-24 2000-12-20 克罗诺斯集成微系统公司 Thermal arched beam microelectromechanical devices and associated fabrication method
CN1295178A (en) * 1999-11-08 2001-05-16 Jds尤尼费斯公司 Thermal actuating miniature electromechanical system with thermal isolation structure
CN101774529A (en) * 2010-01-26 2010-07-14 北京航空航天大学 MEMS atom cavity chip and preparation method thereof
CN103149423A (en) * 2013-03-01 2013-06-12 东南大学 Low-temperature double-layer isolating micro-electromechanical system (MEMS) microwave power sensor

Also Published As

Publication number Publication date Type
CN106064805A (en) 2016-11-02 application

Similar Documents

Publication Publication Date Title
Dalola et al. Characterization of thermoelectric modules for powering autonomous sensors
Kaltsas et al. Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation
US5054936A (en) Sensor for active thermal detection
Zhang et al. A micro-Pirani vacuum gauge based on micro-hotplate technology
US7297894B1 (en) Method for multi-step temperature control of a substrate
US20040086008A1 (en) Method and system for providing thermal control of superluminescent diodes
Jha et al. Thermal isolation of encapsulated MEMS resonators
US2563931A (en) Rate responsive thermocouple
Klonz et al. Development of thin-film multijunction thermal converters at PTB/IPHT
JP2008076144A (en) Electronic thermometer
US7893387B2 (en) High rate method for stable temperature control of a substrate
CN101609958A (en) Double longitudinal mode laser offset frequency locking method and device based on thermoelectric cooler
JP2005172463A (en) Heat resistance type flow meter
Sosna et al. A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode
Briand et al. Thermal optimization of micro-hotplates that have a silicon island
US20120196759A1 (en) Temperature regulation of measurement arrays
JP2005337750A (en) Heat flux measuring substrate
Ehmann et al. Operation and short-term drift of polysilicon-heated CMOS microstructures at temperatures up to 1200 K
US20130264610A1 (en) Temperature stabilitized mems
Randjelović et al. Multipurpose MEMS thermal sensor based on thermopiles
US20070109091A1 (en) Method for measurement of temperature coefficients of electric circuit components
JP2007286008A (en) Sensor device having membrane and its manufacturing method
Heuberger et al. The extended surface forces apparatus. II. Precision temperature control
US20060018364A1 (en) Digital temperature sensor, and system and method for measuring temperature
Hopcroft et al. Temperature compensation of a MEMS resonator using quality factor as a thermometer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01