CN106056121A - 基于sift图像特征匹配的卫星装配工件快速识别方法 - Google Patents

基于sift图像特征匹配的卫星装配工件快速识别方法 Download PDF

Info

Publication number
CN106056121A
CN106056121A CN201610362095.0A CN201610362095A CN106056121A CN 106056121 A CN106056121 A CN 106056121A CN 201610362095 A CN201610362095 A CN 201610362095A CN 106056121 A CN106056121 A CN 106056121A
Authority
CN
China
Prior art keywords
workpiece
image
point
satellite
matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610362095.0A
Other languages
English (en)
Inventor
张建畅
李晗
张小俊
孙凌宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201610362095.0A priority Critical patent/CN106056121A/zh
Publication of CN106056121A publication Critical patent/CN106056121A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于SIFT图像特征匹配的卫星装配工件快速识别方法,其主要技术特点包括:采集工件图像并建立标准化图像的工件特征模型库;采用摄像装置对待识别的工件进行拍照;采用SIFT算法对采集到的图像和工件特征模型库中的图像进行快速识别;剔除误匹配特征点获得稳定特征匹配点;完成图像匹配,进而识别出该工件。本发明通过建立多方位图像采集的工件特征模型库并对待识别工件进行拍照,通过SIFT算法的图像特征进行快速匹配并剔除误配点,实现在卫星装配的过程中,对所需工件进行快速、稳定、准确的识别功能,提高了卫星装配过程的自动化程度,具有鲁棒性高、稳定性强、快速正确等特点。

Description

基于SIFT图像特征匹配的卫星装配工件快速识别方法
技术领域
本发明属于图像识别技术领域,尤其是一种基于SIFT图像特征匹配的卫星装配工件快速识别方法。
背景技术
在进行卫星装配时,通常采用人工装配方式。人工装配方法不仅效率低下,而且还存在装配速度慢,工人工作强度大等缺陷。虽然,可以采用机械式的装配系统,但是,该方法鲁棒性较差,出错率高,并且还需要工人在旁边实时进行监督修正。
随着图像识别技术的发展,图像匹配己成为物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等图像分析处理领域的关键技术和研究热点。所谓的图像匹配技术是指通过一定的匹配方法两幅或多幅图像之间识别同一个点。图像匹配方法中的SIFT(Scale Invariant Feature Transform)方法是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。提取的SIFT特征向量能够对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。但是,SIFT算法在产生稳定性的匹配点时,还会产生大量的误配点,因此,其图像匹配的正确率还有待进一步提高。
发明内容
本发明的目的在于弥补现有技术的不足之处,提供一种设计合理、鲁棒性高且稳定性强的基于SIFT图像特征匹配的卫星装配工件快速识别方法。
本发明解决其技术问题是采取以下技术方案实现的:
一种基于SIFT图像特征匹配的卫星装配工件快速识别方法,包括以下步骤:
步骤1、采集工件图像并建立标准化图像的工件特征模型库;
步骤2、采用摄像装置对待识别的工件进行拍照;
步骤3、采用SIFT算法对采集到的图像和工件特征模型库中的图像进行快速识别;
步骤4、剔除误匹配特征点获得稳定特征匹配点;
步骤5、完成图像匹配,进而识别出该工件。
所述步骤1的具体实现方法为:采集不同光照条件与不同方位的工件图像,以标准工况的参考图像为基准,构建标准化图像的工件特征模型库。
所述步骤2的具体实现方法为:利用红外装置检测到工件后,由拍摄装置对该待识别工件进行拍照采样,并存储到内存当中。
所述步骤3的具体实现方法包括以下步骤:
步骤⑴、极值点的检测:搜索所有尺度上的图像位置,通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点;
步骤⑵、关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度;
步骤⑶、方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向,所有后面对图像数据的操作都相对于关键点的方向、尺度和位置进行变换;
步骤⑷、关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。
所述步骤4是采用RANSAC算法剔除误匹配特征点并获得稳定特征匹配点。
本发明的优点和积极效果是:
本发明通过建立多方位图像采集的工件特征模型库并对待识别工件进行拍照,通过SIFT算法的图像特征进行快速匹配并剔除误配点,实现在卫星装配的过程中,对所需工件进行快速、稳定、准确的识别功能,提高了卫星装配过程的自动化程度,具有鲁棒性高、稳定性强、快速正确等特点。
附图说明
图1是本发明的处理流程图;
图2是本发明建立的标准图像;
图3是本发明采集的图像;
图4是本发明对图像特征点提取后的图像;
图5是本发明采用SIFT进行图像匹配的结果示意图。
具体实施方式
以下结合附图对本发明实施例做进一步详述:
一种基于SIFT图像特征匹配的卫星装配工件快速识别方法,如图1所示,包括以下步骤:
步骤1,建立基于多个角度、多种光照等不同因素下图像采集的工件特征模型库。
在本步骤中,针对卫星装配中典型工件因光照变化、目标仿射变换和物体干扰、遮挡等导致图像非线性问题,采集不同光照条件与不同方位的工件图像,以标准工况的参考图像为基准,构建标准化图像特征模型库。
步骤2,采用摄像装置对待识别的工件进行拍照。
在本步骤中,利用红外装置检测到工件后,触发拍摄装置,由该拍摄装置对该待识别工件进行拍照采样得到标准图像(如图2所示),并存储到内存当中。
步骤3,采用SIFT算法对采集到的图像和工件特征模型库中的图像进行快速识别。
在本步骤中,针对卫星大部件仪器装配过程存在光照影响、局部遮挡等强非线性问题,采用SIFT算法对模拟图像进行特征的快速匹配。SIFT算法包括如下四个步骤:
(1)极值点的检测:搜索所有尺度上的图像位置,通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。具体方法如下:
对图像进行极值点的检测,需要构建高斯金字塔。将原始图像不断降阶采样,得到高斯金字塔。高斯金字塔的构建分为两部分:①对图像做不同尺度的高斯模糊;②对图像做降采样(隔点采样)。其中,图像的尺度空间L(x,y,σ)定义为一个变化尺度的高斯函数G(x,y,σ)与原函数I(x,y)的卷积:L(x,y,σ)=G(x,y,σ)*I(x,y);其中,
将金字塔分为不同层数,并且,每层又分为几张图片。使用高斯金字塔每组中相邻上下两层图像相减,得到高斯差分图像,得到高斯差分函数DOG。关键点是由DOG空间的局部极值点组成的,关键点的初步探查是通过同一组内各DOG相邻两层图像之间比较完成的。
(2)关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点定位的具体方法为:
关键点的选择依据于它们的稳定程度。通过步骤(1)检测到的极值点是离散空间的极值点,通过拟合三维二次函数来精确确定关键点的位置和尺度,同时去除低对比度的关键点和不稳定的边缘响应点,以增强匹配稳定性、提高抗噪声能力。通过对尺度空间DoG函数进行曲线拟合以提高关键点的稳定性。拟合函数为:其中,X=(x,y,σ)T。求导并让方程等于零,可以得到极值点的偏移量为:对应极值点,方程的值为:
(3)方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。具体方法为:
为了使描述符具有旋转不变性,需要利用图像的局部特征为给每一个关键点分配一个基准方向。使用图像梯度的方法求取局部结构的稳定方向。对于在DOG金字塔中检测出的关键点,梯度的模值和方向为:在完成关键点的梯度计算后,使用直方图统计邻域内像素的梯度和方向。方向直方图的峰值则代表了该特征点处邻域梯度的方向,以直方图中最大值作为该关键点的主方向。
(4)关键点的特征描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度,这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化(如图3所示)。
用一组向量为每个关键点建立一个描述符,使其不随各种变化而改变,比如光照变化、视角变化等等。SIFT描述子是关键点邻域高斯图像梯度统计结果的一种表示。对关键点周围图像区域分块,生成具有独特性的向量,这个向量是该区域图像信息的一种抽象,具有唯一性。其描述子使用在关键点尺度空间内4*4的窗口中计算的8个方向的梯度信息,共4*4*8=128维向量表征。
将关键点附近的邻域划分为4*4个子区域,计算每个子区域的像素的梯度大小:
插值计算每个种子点八个方向的梯度:weight=w*drk*(1-dr)1-k*dcm*(1-dc)1-m*don(1-do)1-n(式中W为上述像素梯度),对上述128个关键点的梯度信息进行归一化处理,归一化后的特征向量为L=(l1,l2,...,l128)则
步骤4,获取稳定的匹配点,剔除误配点。
采用RANSAC算法剔除误匹配特征点获得稳定特征匹配点,建立仿射变换模型估算目标的仿射变换参数和均方根误差RMSE,以均方根误差作为特征点匹配准确率的评价指标,以验证该算法的可行性和准确性。
通过以上步骤完成特征点的提取,得到图像特征点提取后的图像,如图4所示的。
步骤5,当图像匹配完成,进而识别出该工件,如图5所示。
通过以上步骤实现了工件的识别,进而触发预设程序,驱动机械系统对工件进行抓取。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (5)

1.一种基于SIFT图像特征匹配的卫星装配工件快速识别方法,其特征在于包括以下步骤:
步骤1、采集工件图像并建立标准化图像的工件特征模型库;
步骤2、采用摄像装置对待识别的工件进行拍照;
步骤3、采用SIFT算法对采集到的图像和工件特征模型库中的图像进行快速识别;
步骤4、剔除误匹配特征点获得稳定特征匹配点;
步骤5、完成图像匹配,进而识别出该工件。
2.根据权利要求1所述的一种基于SIFT图像特征匹配的卫星装配工件快速识别方法,其特征在于:所述步骤1的具体实现方法为:采集不同光照条件与不同方位的工件图像,以标准工况的参考图像为基准,构建标准化图像的工件特征模型库。
3.根据权利要求1所述的一种基于图像特征匹配的卫星装配工件快速识别方法,其特征在于:所述步骤2的具体实现方法为:利用红外装置检测到工件后,由拍摄装置对该待识别工件进行拍照采样,并存储到内存当中。
4.根据权利要求1所述的一种基于图像特征匹配的卫星装配工件快速识别方法,其特征在于:所述步骤3的具体实现方法包括以下步骤:
步骤⑴、极值点的检测:搜索所有尺度上的图像位置,通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点;
步骤⑵、关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度;
步骤⑶、方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向,所有后面对图像数据的操作都相对于关键点的方向、尺度和位置进行变换;
步骤⑷、关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。
5.根据权利要求1所述的一种基于图像特征匹配的卫星装配工件快速识别方法,其特征在于:所述步骤4是采用RANSAC算法剔除误匹配特征点并获得稳定特征匹配点。
CN201610362095.0A 2016-05-27 2016-05-27 基于sift图像特征匹配的卫星装配工件快速识别方法 Pending CN106056121A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610362095.0A CN106056121A (zh) 2016-05-27 2016-05-27 基于sift图像特征匹配的卫星装配工件快速识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610362095.0A CN106056121A (zh) 2016-05-27 2016-05-27 基于sift图像特征匹配的卫星装配工件快速识别方法

Publications (1)

Publication Number Publication Date
CN106056121A true CN106056121A (zh) 2016-10-26

Family

ID=57175349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610362095.0A Pending CN106056121A (zh) 2016-05-27 2016-05-27 基于sift图像特征匹配的卫星装配工件快速识别方法

Country Status (1)

Country Link
CN (1) CN106056121A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108229500A (zh) * 2017-12-12 2018-06-29 西安工程大学 一种基于函数拟合的sift误匹配点剔除法
CN109409387A (zh) * 2018-11-06 2019-03-01 深圳增强现实技术有限公司 图像采集设备的采集方向确定方法、装置及电子设备
CN109682414A (zh) * 2019-02-28 2019-04-26 襄阳爱默思智能检测装备有限公司 一种宝石身份的特征表征和识别方法
CN110340634A (zh) * 2019-07-26 2019-10-18 东莞市振亮五金科技有限公司 一种基站天线的装配方法及系统
CN110472643A (zh) * 2019-08-20 2019-11-19 山东浪潮人工智能研究院有限公司 一种基于特征点匹配的光学图像员工卡识别方法
CN112560697A (zh) * 2020-12-17 2021-03-26 合肥高维数据技术有限公司 一种基于局部特征的建盏识别方法、系统及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100310182A1 (en) * 2009-06-04 2010-12-09 Microsoft Corporation Geocoding by image matching
CN104008400A (zh) * 2014-06-16 2014-08-27 河南科技大学 结合sift和bp网络进行物体识别的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100310182A1 (en) * 2009-06-04 2010-12-09 Microsoft Corporation Geocoding by image matching
CN104008400A (zh) * 2014-06-16 2014-08-27 河南科技大学 结合sift和bp网络进行物体识别的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
白丰 等: ""卫星装配中基于强区分性描述子的识别方法"", 《仪器仪表学报》 *
程德志 等: ""基于改进SIFT算法的图像匹配方法"", 《计算机仿真》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108229500A (zh) * 2017-12-12 2018-06-29 西安工程大学 一种基于函数拟合的sift误匹配点剔除法
CN109409387A (zh) * 2018-11-06 2019-03-01 深圳增强现实技术有限公司 图像采集设备的采集方向确定方法、装置及电子设备
CN109409387B (zh) * 2018-11-06 2022-03-15 深圳增强现实技术有限公司 图像采集设备的采集方向确定方法、装置及电子设备
CN109682414A (zh) * 2019-02-28 2019-04-26 襄阳爱默思智能检测装备有限公司 一种宝石身份的特征表征和识别方法
CN110340634A (zh) * 2019-07-26 2019-10-18 东莞市振亮五金科技有限公司 一种基站天线的装配方法及系统
CN110472643A (zh) * 2019-08-20 2019-11-19 山东浪潮人工智能研究院有限公司 一种基于特征点匹配的光学图像员工卡识别方法
CN112560697A (zh) * 2020-12-17 2021-03-26 合肥高维数据技术有限公司 一种基于局部特征的建盏识别方法、系统及存储介质

Similar Documents

Publication Publication Date Title
Prescott et al. Line-based correction of radial lens distortion
CN110009681B (zh) 一种基于imu辅助的单目视觉里程计位姿处理方法
CN106651942B (zh) 基于特征点的三维旋转运动检测与旋转轴定位方法
CN106056121A (zh) 基于sift图像特征匹配的卫星装配工件快速识别方法
CN105205858B (zh) 一种基于单个深度视觉传感器的室内场景三维重建方法
CN104484648B (zh) 基于轮廓识别的机器人可变视角障碍物检测方法
CN103559711B (zh) 基于三维视觉系统图像特征和三维信息的运动估计方法
JP3735344B2 (ja) キャリブレーション装置、キャリブレーション方法、及びキャリブレーション用プログラム
CN111414798A (zh) 基于rgb-d图像的头部姿态检测方法及系统
CN106548462B (zh) 基于薄板样条插值的非线性sar图像几何校正方法
CN111210477B (zh) 一种运动目标的定位方法及系统
CN108921895B (zh) 一种传感器相对位姿估计方法
CN107481315A (zh) 一种基于Harris‑SIFT‑BRIEF算法的单目视觉三维环境重建方法
CN104121902B (zh) 基于Xtion摄像机的室内机器人视觉里程计实现方法
CN105701827A (zh) 可见光相机与红外相机的参数联合标定方法及装置
CN110675453B (zh) 一种已知场景中运动目标的自定位方法
CN101383899A (zh) 一种空基平台悬停视频稳像方法
CN110852213B (zh) 基于模版匹配的指针式仪表多情况自动化读数方法
CN110223355B (zh) 一种基于双重极线约束的特征标志点匹配方法
CN105631872B (zh) 基于多特征点的遥感图像配准方法
CN113506342B (zh) 一种基于多相机全景视觉的slam全向回环校正方法
CN108447092B (zh) 视觉定位标识物的方法及装置
CN106991705A (zh) 一种基于p3p算法的位置参数估计方法
CN116563377A (zh) 一种基于半球投影模型的火星岩石测量方法
CN102096920A (zh) 基于标靶图像的亚像素配准方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026