CN106054164A - 空间相对位移变化监测系统及方法 - Google Patents

空间相对位移变化监测系统及方法 Download PDF

Info

Publication number
CN106054164A
CN106054164A CN201610332560.6A CN201610332560A CN106054164A CN 106054164 A CN106054164 A CN 106054164A CN 201610332560 A CN201610332560 A CN 201610332560A CN 106054164 A CN106054164 A CN 106054164A
Authority
CN
China
Prior art keywords
ultrasound wave
distance
ultrasonic
time
ultrasonic receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610332560.6A
Other languages
English (en)
Other versions
CN106054164B (zh
Inventor
倪华良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ao Yi Information Technology Co Ltd
Original Assignee
Shanghai Ao Yi Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ao Yi Information Technology Co Ltd filed Critical Shanghai Ao Yi Information Technology Co Ltd
Priority to CN201610332560.6A priority Critical patent/CN106054164B/zh
Publication of CN106054164A publication Critical patent/CN106054164A/zh
Application granted granted Critical
Publication of CN106054164B publication Critical patent/CN106054164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

本发明揭示了一种空间相对位移变化监测系统及方法,监测系统包括设置于第一装置的第一时间同步机构、第一超声波机构,设置于第二装置的第二时间同步机构、至少三个中心不共线的第二超声波机构,距离计算模块,实时位置确定模块;距离计算模块用以计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S;实时位置确定模块包括第一位置确定单元;第一位置确定单元用以根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的位置关系。本发明可精确获取空间内两物体的相对运动和位移变化。

Description

空间相对位移变化监测系统及方法
技术领域
本发明属于电子信息技术领域,涉及一种位移变化监测系统,尤其涉及一种空间相对位移变化监测系统。
背景技术
随着科学技术的飞速发展,电子产品的种类日渐丰富。电子产品的控制方式通常是利用遥控器控制。
近年来,虚拟现实、动作感应技术出现在了一些游戏设备中;现有的控制方式通常采用机器视觉做姿态和位移检测;此类方法在虚拟现实中的应用较广,但存在诸多缺点,例如采用3D摄像头和结构光的机器视觉方案,其硬件成本高,功耗高,并对使用场合的光线,场所的大小,是否有遮挡,检测的距离等都有要求,这些要求限制了此种技术的普及。其他例如飞鼠,体感枪,在不借助外置摄像头时,只能由内部的运动传感器做旋转角度变化的检测,由于无法解决位移计算的误差累积,而不能做位移运动时的距离量化跟踪,此类方法对于有位移要求的姿态检测,无法很好的解决问题。
有鉴于此,如今迫切需要设计一种空间相对位移变化的感知方式,以便克服现有感知方式存在的上述缺陷。
发明内容
本发明所要解决的技术问题是:提供一种空间相对位移变化监测系统,可精确获取空间内两物体的相对运动。
为解决上述技术问题,本发明采用如下技术方案:
一种空间相对位移变化监测系统,所述监测系统包括:设置于第一装置的第一电脉冲机构、第一超声波机构,设置于第二装置的第二电脉冲机构、至少三个中心不共线的第二超声波机构,时序控制模块,距离计算模块,实时位置确定模块,转动角度获取模块;其中,第一装置或/和第二装置为移动装置;时序控制模块用来控制电脉冲信号和超声波信号的时序关系;
所述第一电脉冲机构为电脉冲发生器,第二电脉冲机构为电脉冲接收器;或者,所述第一电脉冲机构为电脉冲接收器,第二电脉冲机构为电脉冲发生器;
所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器;或者,所述第一超声波机构为超声波接收器,第二超声波机构为超声波发生器;
所述超声波接收器连接计时器,时序控制模块控制超声波发生器和电脉冲发生器,在超声波发生器发送超声波脉冲时,或发送前设定短时间内,电脉冲发生器发送同步用电脉冲,以同步各个超声波接收器的计时器;电脉冲接收器在收到电脉冲后,在时序控制模块控制下,清零计时器,同时启动计时,在接收到超声波脉冲后停止计时器,通过获得计时器的计时值、即时间T;
所述距离计算模块用以计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
所述实时位置确定模块包括第一位置确定单元、第二位置确定单元;
所述第一位置确定单元用以根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的初步位置关系;
所述第二位置确定单元包括第三超声波机构、第三电脉冲机构、计时器,第三超声波机构的中心与上述至少三个第二超声波机构中心不共面;第三超声波机构与第一超声波机构配合,通过距离计算模块获取第三超声波机构与第一超声波机构之间的距离;从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系;
所述第二装置还设有至少一个辅助超声波机构;所述辅助超声波机构为超声波接收器;
在存在无法参与距离计算的第二超声波机构时,将辅助超声波机构代替对应无法参与距离计算的第二超声波机构参与距离计算;利用部分第二超声波机构及辅助超声波机构确定第一装置与第二装置之间的位置关系,参与距离计算的第二超声波机构与辅助超声波机构的数量大于等于3;或者仅利用至少三个辅助超声波机构确定第一装置与第二装置之间的位置关系;
所述转动角度获取模块设置于移动装置,用以通过运动传感器通过融合算法获得移动装置的角度旋转信息。
一种空间相对位移变化监测系统,所述监测系统包括:设置于第一装置的第一时间同步机构、第一超声波机构,设置于第二装置的第二时间同步机构、至少三个中心不共线的第二超声波机构,距离计算模块,实时位置确定模块;其中,第一装置或/和第二装置为移动装置;
所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器;或者,所述第一超声波机构为超声波接收器,第二超声波机构为超声波发生器;
所述超声波接收器连接计时器,用以在时间同步后记录超声波发生器从发出超声波到对应超声波接收器接收相应超声波的时间T;
所述距离计算模块用以计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
所述实时位置确定模块包括第一位置确定单元;所述第一位置确定单元用以根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的位置关系。
作为本发明的一种优选方案,所述监测系统还包括转动角度获取模块;所述转动角度获取模块设置于移动装置,用以通过运动传感器通过融合算法获得移动装置的角度旋转信息;所述的转动角度获取模块也可分别设置于第一装置和第二装置,用以分别获得他们的角度旋转信息。
作为本发明的一种优选方案,所述实时位置确定模块包括第二位置确定单元;所述第二位置确定单元包括第三超声波机构、第三电脉冲机构、第三计时器;第三超声波机构的中心与上述至少三个第二超声波机构中心不共面;
所述第三超声波机构为超声波发生器,第一超声波机构为超声波接收器;或者,所述第三超声波机构为超声波接收器,第一超声波机构为超声波发生器;
所述第三超声波机构与第一超声波机构配合,通过距离计算模块获取第三超声波机构与第一超声波机构之间的距离;从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系。
作为本发明的一种优选方案,所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器;第一时间同步机构为电脉冲发生器,第二时间同步机构为电脉冲接收器。
作为本发明的一种优选方案,所述第一超声波机构为超声波接收器,第二超声波机构为超声波发生器;第一时间同步机构为电脉冲接收器,第二时间同步机构为电脉冲发生器。
作为本发明的一种优选方案,所述第二装置还设有至少一个辅助超声波机构;所述辅助超声波机构为超声波接收器;
在存在无法参与距离计算的第二超声波机构时,将辅助超声波机构代替对应无法参与距离计算的第二超声波机构参与距离计算;利用部分第二超声波机构及辅助超声波机构确定第一装置与第二装置之间的位置关系,参与距离计算的第二超声波机构与辅助超声波机构的数量大于等于3;或者仅利用至少三个辅助超声波机构确定第一装置与第二装置之间的位置关系。
作为本发明的一种优选方案,三个第二超声波机构的中心分别记为A、B、C,形成三角形ABC,顶点分别为A、B、C,三角形ABC相应边为a,b,c;以顶点C在坐标原点,将顶点A设定在X轴上:
a^2=b^2+c^2-2bc*cos(A);
b^2=c^2+a^2-2ac*cos(B);
c^2=a^2+b^2-2ab*cos(C);
继续推导获得:
cos(C)=(a^2+b^2–c^2)/(2*a*b);
B点坐标:
Bx=a*cos(C);
By=a*sin(C),By有正负两种可能值,通过其他约束条件(第二位置确定单元)进行结果的进一步过滤;
在此二维平面中,设置如下方程式来获得B点坐标:
(Bx-0)^2+(By-0)^2=a^2;
(Bx-b)^2+(By-0)^2=c^2;
第一超声波机构为超声波发生器,发出同步电脉冲的同时发出超声波脉冲;超声波发生器对应三角体顶点O,三个第二超声波机构分别记为超声波接收器A、超声波接收器B、超声波接收器C,超声波发生器发出的超声波到达超声波接收器A经历时间为Toa;超声波发生器发出的超声波到达超声波接收器B经历时间为Tob;超声波发生器发出的超声波到达超声波接收器C经历时间为Toc;
计算获得超声波发生器和超声波接收器A距离Soa为346米/秒*Ta;计算获得超声波发生器和超声波接收器B距离Sob为346米/秒*Tb;计算获得超声波发生器和超声波接收器C距离Soc为346米/秒*Tc;通过余玄定律可知,三角形顶点超声波接收器A和超声波接收器B间距离Sab已知;三角形顶点超声波接收器A和超声波接收器C间距离Sac已知;三角形顶点超声波接收器B和超声波接收器C间距离Sbc已知;
在此三维空间中,顶点A,B,C的坐标已知,分别为A(Ax,Ay,Az),B(Bx,By,Bz),C(Cx,Cy,Cz);设置顶点O坐标为待求值O(x,y,z),成立如下方程式组获得顶点O坐标(x,y,z):
(x-Ax)^2+(y-Ay)^2+(z-Az)^2=Soa^2;
(x-Bx)^2+(y-By)^2+(z-Bz)^2=Sob^2;
(x-Cx)^2+(y-Cy)^2+(z-Cz)^2=Soc^2。
一种上述空间相对位移变化监测系统的监测方法,所述监测方法包括如下步骤:
在超声波发生器发送超声波脉冲时,或发送前设定短时间内,电脉冲发生器发送同步用电脉冲,以同步各个超声波接收器的计时器;
电脉冲接收器在收到电脉冲后,清零计时器,同时启动计时,在接收到超声波脉冲后停止计时器,通过获得计时器的计时值、即时间T;
距离计算模块计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
第一位置确定单元根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的初步位置关系;
第二位置确定单元获取第三超声波机构与第一超声波机构之间的距离;从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系;
转动角度获取模块设置于移动装置,通过运动传感器通过融合算法获得移动装置的角度旋转信息;运动传感器包括加速度计、陀螺仪、磁场计中的一种或多种。
一种空间相对位移变化监测方法,所述监测方法包括如下步骤:
通过第一时间同步机构、第二时间同步机构做时间同步;
超声波发生器发出超声波,超声波接收器对应的计时器记录超声波发生器从发出超声波到对应超声波接收器接收相应超声波的时间T;
计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的位置关系。
本发明的有益效果在于:本发明提出的空间相对位移变化监测系统,可精确获取空间内两物体的相对运动以及由此产生的位移信息。
附图说明
图1为本发明空间相对位移变化监测系统的原理示意图。
图2为本发明系统中距离计算模块的原理示意图。
图3为本发明系统中时间同步的原理示意图。
图4为本发明系统中第二位置确定单元的原理示意图。
图5为本发明系统中时间同步的原理示意图(五路信号)。
图6为利用余玄定律计算示意图。
图7为本发明系统中距离计算的原理示意图。
图8为本发明系统中时间同步的原理示意图(四路信号)。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例一
请参阅图1,本发明揭示了一种空间相对位移变化监测系统,所述监测系统包括:设置于第一装置103的第一电脉冲机构、第一超声波机构,设置于第二装置101的第二电脉冲机构、至少三个中心不共线的第二超声波机构,时序控制模块,距离计算模块,实时位置确定模块,转动角度获取模块;其中,第一装置或/和第二装置为移动装置。时序控制模块用来控制电脉冲信号和超声波信号的时序关系。时序控制模块、转动角度获取模块可以设置于第一装置,当然,第二装置也可以设置时序控制模块、转动角度获取模块。
本实施例中,所述第二电脉冲机构为电脉冲接收器,第一电脉冲机构为电脉冲发生器;所述第二超声波机构为超声波接收器102-a、102-b、102-c,第一超声波机构为超声波发生器104。如,第二装置可以为VR头显,相应地,第一装置为人机交互输入控制器(第一装置、第二装置均运动,接收、发送端均运动)。
所述超声波接收器连接计时器,在时序控制器模块的控制下,在超声波发生器发送超声波脉冲时,或发送前设定的固定短时间内,电脉冲发生器发送同步用电脉冲(包括但不限于无线电波、可见光、不可见光,不可见光例如红外光线),以同步各个超声波接收器的计时器;电脉冲接收器在收到电脉冲后,在时序控制模块的控制下,清零计时器,同时启动计时,在接收到超声波脉冲后停止计时器,通过获得计时器的计时值、即时间T。计时器的计数值达到设定的特定阈值数值后将不再计数,此设定值用以表示超声波接收器由于某些原因没有成功检测到超声波脉冲,计时器的计时值为无效值,此路超声波接收器在此次检测工作为无效。
所述距离计算模块用以计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T。
超声波在25摄氏度空气中的传播速度V近似于346米/秒。空气中音速与温度的关系式:V=331×根号(1+T/273)(m/S);其中,T:是摄氏温度;V:在T℃时的音速。由于测量的距离在几米内,速度随温度的变化对整体精度的影响可以忽略。
所述实时位置确定模块包括第一位置确定单元、第二位置确定单元。所述第一位置确定单元用以根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的初步位置关系。
请参阅图2、图3,声音在25摄氏度空气中传播速度约为346米每秒的常量,电信号在空气中传播速度约为30万公里每秒的常量;电信号由装载有超声波发生器104的第一装置103到达第二装置101的超声波接收器102-a和超声波接收器102-b位置的时间为纳秒级别,由于两者的放置距离较近,产生的时间差接近为0,在此发明中对精度的影响微乎其微,可忽略;本发明中第二装置101仅需装载一路同步电脉冲接收器。
超声波发生器104发出同步电脉冲(电信号包括但不限于无线电波、可见光、非可见光,非可见光例如红外光线)的同时发出超声波脉冲;超声波发生器104发出的超声波到达超声波接收器102-a(三角形顶点)经历时间为Ta;超声波发生器104发出的超声波到达超声波接收器102-b(三角形顶点)经历时间为Tb;计算获得超声波发生器104(三角形顶点)和超声波接收器102-a距离Sa为346米/秒*Ta;计算获得超声波发生器104和超声波接收器102-b距离Sb为346米/秒*Tb;三角形顶点超声波接收器102-a和超声波接收器102-b间距离Sab已知;通过三角形的余玄定律,三角形顶点超声波发生器104的在二维平面的坐标可以计算获得。
所谓“余玄定律”请参阅图6,图6中三角形ABC,由顶点A,B,C,简称为角A,B,C,和相应对边a,b,c构成;以顶点C在坐标原点,顶点A在X轴上为例,有如下关系:
a^2=b^2+c^2-2bc*cos(A);
b^2=c^2+a^2-2ac*cos(B);
c^2=a^2+b^2-2ab*cos(C)。
继续推导可获得:
cos(C)=(a^2+b^2–c^2)/(2*a*b);
B点坐标:
X=a*cos(C);
Y=a*sin(C),Y有正负两种可能值,可通过其他约束条件进行结果的进一步过滤。
在此二维平面中,也可设置如下方程式来获得B点坐标:
(X-0)^2+(Y-0)^2=a^2;
(X-b)^2+(Y-0)^2=c^2;
得到和上述余玄定律同样的结果。
请参阅图7、图8,超声波发生器104发出同步电脉冲(电信号)的同时发出超声波脉冲;超声波发生器104(三角体顶点O)发出的超声波到达超声波接收器102-a(三角体顶点A)经历时间为Toa;超声波发生器104发出的超声波到达超声波接收器102-b(三角体顶点B)经历时间为Tob;超声波发生器104发出的超声波到达超声波接收器102-c(三角体顶点C)经历时间为Toc;计算获得超声波发生器104(三角体顶点O)和超声波接收器102-a距离Soa为346米/秒*Ta;计算获得超声波发生器104和超声波接收器102-b距离Sob为346米/秒*Tb;计算获得超声波发生器104和超声波接收器102-c距离Soc为346米/秒*Tc;通过余玄定律可知,三角形顶点超声波接收器102-a和超声波接收器102-b间距离Sab已知;三角形顶点超声波接收器102-a和超声波接收器102-c间距离Sac已知;三角形顶点超声波接收器102-b和超声波接收器102-c间距离Sbc已知;
在此三维空间中,顶点A,B,C的坐标已知,分别为A(Ax,Ay,Az),B(Bx,By,Bz),C(Cx,Cy,Cz);设置顶点O坐标为待求值O(x,y,z),可成立如下方程式组获得顶点O坐标(x,y,z):
(x-Ax)^2+(y-Ay)^2+(z-Az)^2=Soa^2
(x-Bx)^2+(y-By)^2+(z-Bz)^2=Sob^2
(x-Cx)^2+(y-Cy)^2+(z-Cz)^2=Soc^2
通过此方程式组可得到2组坐标结果,分别位于由顶点A,B,C构成的平面的两侧;或者是一组坐标,位于A,B,C构成的平面上。通过其他约束条件,例如实际应用中如若不存在某一种可能,可对结果进行进一步过滤以获得最终的坐标值。
请参阅图4、图5,所述第二位置确定单元包括第三超声波机构、第三电脉冲机构、第三计时器(计时方式与上述超声波接收器接收方式类似),第三超声波机构的中心与上述至少三个第二超声波机构中心不共面;第三超声波机构与第一超声波机构配合,通过距离计算模块获取第三超声波机构与第一超声波机构之间的距离(此处,第一超声波机构是超声波发生器,对应图4的标记O;第二超声波机构为超声波接收器,对应图4中的A、B、C;D表示第二位置确定单元,第二位置确定单元的第三超声波机构也为超声波接收器);从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系。由于通过第一位置确定单元确认的点有两个,分别位于三个超声波接收器中心所在平面的两侧,通过第二位置确定单元可以确定是哪一面。
实际应用中存在两种方式做物体位移的检测:1、检测单元静止,例如放置在桌上的检测设备,去跟踪游戏柄的移动,此种情况只需要一个运动检测单元,在被监测物内(游戏手柄);检测单元和参考坐标是重叠的。
2、检测单元本身也在移动或者转动,例如头盔和游戏手柄,这时需要两个运动检测单元,分别放置在头盔和手柄中;这个情况下需要有第三个静止的坐标系作为参考(也可以通过相对位置的变化来计算),具体计算方式可参照上述描述。
所述第二装置还设有至少一个辅助超声波机构;所述辅助超声波机构为超声波接收器。在存在无法参与距离计算的第二超声波机构时(计时器对应的计时值为无效值,此路超声波接收器在此次检测工作为无效),将辅助超声波机构代替对应无法参与距离计算的第二超声波机构参与距离计算;利用部分第二超声波机构及辅助超声波机构确定第一装置与第二装置之间的位置关系,参与距离计算的第二超声波机构与辅助超声波机构的数量大于等于3;或者仅利用至少三个辅助超声波机构确定第一装置与第二装置之间的位置关系。
所述转动角度获取模块设置于移动装置,用以通过运动传感器通过融合算法获得移动装置的角度旋转信息。
本发明在揭示上述系统的同时,还揭示一种上述空间相对位移变化监测系统的监测方法,所述监测方法包括如下步骤:
【步骤S1】在超声波发生器发送超声波脉冲时,或发送前设定短时间内,电脉冲发生器发送同步用电脉冲,以同步各个超声波接收器的计时器;
【步骤S2】电脉冲接收器在收到电脉冲后,清零计时器,同时启动计时,在接收到超声波脉冲后停止计时器,通过获得计时器的计时值、即时间T;
【步骤S3】距离计算模块计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
【步骤S4】第一位置确定单元根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的初步位置关系;
【步骤S5】第二位置确定单元获取第三超声波机构与第一超声波机构之间的距离;从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系。本步骤与以上步骤可以同时进行,本步骤原理与步骤S1至步骤S3的流程类似,通常可以与上述步骤同时进行。
【步骤S6】转动角度获取模块设置于移动装置,通过运动传感器通过融合算法获得移动装置的角度旋转信息;运动传感器包括加速度计、陀螺仪、磁场计中的一种或多种。
此外,所述监测方法中,如果检测单元本身也在移动或者转动,例如头盔和游戏手柄,这时需要两个运动检测单元,分别放置在头盔和手柄中;这个情况下需要有第三个静止的坐标系作为参考(也可以通过相对位置的变化来计算),具体计算方式可参照上述描述。
实施例二
本实施例与实施例一的区别在于,本实施例中,所述第一电脉冲机构为电脉冲发生器,第二电脉冲机构为电脉冲接收器;所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器。
实施例三
本实施例与实施例一的区别在于,本实施例中,第一装置可以为电视,第二装置可以为遥控设备(第一装置不动,第二装置运动;接收端不动,发送端运动);第一装置也可以为遥控装置,第二装置为电视(第一装置运动,第二装置不动;接收端运动,发送端不动)。
实施例四
本实施例与实施例一的区别在于,本实施例中,所述监测系统包括:第一装置、第二装置、第三装置(甚至可以包括第四装置、第五装置等等)。
第一装置用于发出同步电脉冲、超声波(第一装置设置电脉冲发生器、超声波发生器);第二装置用于接收电脉冲和超声波,并计算得到和第一装置的空间相对位置。第三装置和第二装置一样原理,通过接收同步电脉冲和超声波,获得和第一装置的空间相对位置(第二装置、第三装置分别设置电脉冲接收器、超声波接收器、距离计算模块)。
例如VR案例,固定设置(可以固定设置于墙上、桌子上,当然也可以不固定)的第一装置设有发射模块,头盔(对应实施例一的第二装置)上有超声波接收模块,手柄(对应实施例一的第三装置)上同样安装接收模块,以分别获得头盔和手柄的位置,甚至是两个手柄的位置(通过设置第四装置实现)。
此实例的目的是当空间中需要对多个移动装置做位置检测时,只需要一个发射源。
实施例五
一种空间相对位移变化监测系统,所述监测系统包括:设置于第一装置的第一时间同步机构、至少三个中心不共线的第一超声波机构,设置于第二装置的第二时间同步机构、第二超声波机构,距离计算模块,实时位置确定模块;其中,第一装置或/和第二装置为移动装置。
所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器;或者,所述第一超声波机构为超声波接收器,第二超声波机构为超声波发生器。
所述超声波接收器连接计时器,在时间同步后记录超声波发生器从发出超声波到对应超声波接收器接收相应超声波的时间T。
所述距离计算模块用以计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T。
所述实时位置确定模块包括第一位置确定单元;所述第一位置确定单元用以根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的位置关系。
本发明还揭示一种空间相对位移变化监测方法,所述监测方法包括如下步骤:
通过第一时间同步机构、第二时间同步机构做时间同步;
超声波发生器发出超声波,超声波接收器对应的计时器记录超声波发生器从发出超声波到对应超声波接收器接收相应超声波的时间T;
计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的位置关系。
综上所述,本发明提出的空间相对位移变化监测系统,可精确获取空间内两物体的相对运动。
这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (10)

1.一种空间相对位移变化监测系统,其特征在于,所述监测系统包括:设置于第一装置的第一电脉冲机构、第一超声波机构,设置于第二装置的第二电脉冲机构、至少三个中心不共线的第二超声波机构,时序控制模块,距离计算模块,实时位置确定模块,转动角度获取模块;其中,第一装置或/和第二装置为移动装置;时序控制模块用来控制电脉冲信号和超声波信号的时序关系;
所述第一电脉冲机构为电脉冲发生器,第二电脉冲机构为电脉冲接收器;所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器;
所述超声波接收器连接计时器;时序控制模块控制超声波发生器和电脉冲发生器,在超声波发生器发送超声波脉冲时,或发送前设定短时间内,电脉冲发生器发送同步用电脉冲,以同步各个超声波接收器的计时器;电脉冲接收器在收到电脉冲后,在时序控制模块控制下,清零计时器,同时启动计时,在接收到超声波脉冲后停止计时器,通过获得计时器的计时值、即时间T;计时器的计数值达到设定的特定阈值数值后将不再计数,此设定的特定阈值用以表示超声波接收器由于设定原因没有成功检测到超声波脉冲,计时器的计时值为无效值,该超声波接收器在此次检测工作为无效,无法参与距离计算;
所述距离计算模块用以计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
所述实时位置确定模块包括第一位置确定单元、第二位置确定单元;
所述第一位置确定单元用以根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的初步位置关系;
所述第二位置确定单元包括第三超声波机构、第三电脉冲机构、计时器,第三超声波机构的中心与上述至少三个第二超声波机构中心不共面;第三超声波机构与第一超声波机构配合,通过距离计算模块获取第三超声波机构与第一超声波机构之间的距离;从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系;
所述第二装置还设有至少一个辅助超声波机构;所述辅助超声波机构为超声波接收器;
在存在无法参与距离计算的第二超声波机构时,将辅助超声波机构代替对应无法参与距离计算的第二超声波机构参与距离计算;利用部分第二超声波机构及辅助超声波机构确定第一装置与第二装置之间的位置关系,参与距离计算的第二超声波机构与辅助超声波机构的数量大于等于3;或者仅利用至少三个辅助超声波机构确定第一装置与第二装置之间的位置关系;
所述转动角度获取模块设置于移动装置,用以通过运动传感器通过融合算法获得移动装置的角度旋转信息;运动传感器包括加速度计、陀螺仪、磁场计中的一种或多种。
2.一种空间相对位移变化监测系统,其特征在于,所述监测系统包括:设置于第一装置的第一时间同步机构、第一超声波机构,设置于第二装置的第二时间同步机构、至少三个中心不共线的第二超声波机构,距离计算模块,位置确定模块;
所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器;或者,所述第一超声波机构为超声波接收器,第二超声波机构为超声波发生器;
所述超声波接收器连接计时器,用以在时间同步后记录超声波发生器从发出超声波到对应超声波接收器接收相应超声波的时间T;
所述距离计算模块用以计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
所述位置确定模块包括第一位置确定单元;所述第一位置确定单元用以根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的位置关系。
3.根据权利要求2所述的空间相对位移变化监测系统,其特征在于:
所述监测系统还包括转动角度获取模块;所述转动角度获取模块设置于移动装置,用以通过运动传感器通过融合算法获得移动装置的角度旋转信息。
4.根据权利要求2所述的空间相对位移变化监测系统,其特征在于:
所述位置确定模块包括第二位置确定单元;所述第二位置确定单元包括第三超声波机构、第三电脉冲机构、第三计时器;第三超声波机构的中心与上述至少三个第二超声波机构中心不共面;
所述第三超声波机构为超声波发生器,第一超声波机构为超声波接收器;或者,所述第三超声波机构为超声波接收器,第一超声波机构为超声波发生器;
所述第三超声波机构与第一超声波机构配合,通过距离计算模块获取第三超声波机构与第一超声波机构之间的距离;从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系。
5.根据权利要求2所述的空间相对位移变化监测系统,其特征在于:
所述第一超声波机构为超声波发生器,第二超声波机构为超声波接收器;第一时间同步机构为电脉冲发生器,第二时间同步机构为电脉冲接收器。
6.根据权利要求2所述的空间相对位移变化监测系统,其特征在于:
所述第一超声波机构为超声波接收器,第二超声波机构为超声波发生器;第一时间同步机构为电脉冲接收器,第二时间同步机构为电脉冲发生器。
7.根据权利要求2所述的空间相对位移变化监测系统,其特征在于:
所述第二装置还设有至少一个辅助超声波机构;所述辅助超声波机构为超声波接收器;
在存在无法参与距离计算的第二超声波机构时,将辅助超声波机构代替对应无法参与距离计算的第二超声波机构参与距离计算;利用部分第二超声波机构及辅助超声波机构确定第一装置与第二装置之间的位置关系,参与距离计算的第二超声波机构与辅助超声波机构的数量大于等于3;或者仅利用至少三个辅助超声波机构确定第一装置与第二装置之间的位置关系。
8.根据权利要求2所述的空间相对位移变化监测系统,其特征在于:
三个第二超声波机构的中心分别记为A、B、C,形成三角形ABC,顶点分别为A、B、C,三角形ABC相应边为a,b,c;以顶点C在坐标原点,将顶点A设定在X轴上:
a^2=b^2+c^2-2bc*cos(A);
b^2=c^2+a^2-2ac*cos(B);
c^2=a^2+b^2-2ab*cos(C);
继续推导可获得:
cos(C)=(a^2+b^2–c^2)/(2*a*b);
B点坐标:
Bx=a*cos(C);
By=a*sin(C),By有正负两种可能值,通过其他约束条件进行结果的进一步过滤;
在此二维平面中,设置如下方程式来获得B点坐标:
(Bx-0)^2+(By-0)^2=a^2;
(Bx-b)^2+(By-0)^2=c^2;
第一超声波机构为超声波发生器,发出同步电脉冲的同时发出超声波脉冲;超声波发生器对应三角体顶点O,三个第二超声波机构分别记为超声波接收器A、超声波接收器B、超声波接收器C,超声波发生器发出的超声波到达超声波接收器A经历时间为Toa;超声波发生器发出的超声波到达超声波接收器B经历时间为Tob;超声波发生器发出的超声波到达超声波接收器C经历时间为Toc;
计算获得超声波发生器和超声波接收器A距离Soa为346米/秒*Ta;计算获得超声波发生器和超声波接收器B距离Sob为346米/秒*Tb;计算获得超声波发生器和超声波接收器C距离Soc为346米/秒*Tc;通过余玄定律可知,三角形顶点超声波接收器A和超声波接收器B间距离Sab已知;三角形顶点超声波接收器A和超声波接收器C间距离Sac已知;三角形顶点超声波接收器B和超声波接收器C间距离Sbc已知;
在此三维空间中,顶点A,B,C的坐标已知,分别为A(Ax,Ay,Az),B(Bx,By,Bz),C(Cx,Cy,Cz);设置顶点O坐标为待求值O(x,y,z),成立如下方程式组获得顶点O坐标(x,y,z):
(x-Ax)^2+(y-Ay)^2+(z-Az)^2=Soa^2;
(x-Bx)^2+(y-By)^2+(z-Bz)^2=Sob^2;
(x-Cx)^2+(y-Cy)^2+(z-Cz)^2=Soc^2。
9.一种权利要求1所述空间相对位移变化监测系统的监测方法,其特征在于,所述监测方法包括如下步骤:
在超声波发生器发送超声波脉冲时,或发送前设定短时间内,电脉冲发生器发送同步用电脉冲,以同步各个超声波接收器的计时器;
电脉冲接收器在收到电脉冲后,清零计时器,同时启动计时,在接收到超声波脉冲后停止计时器,通过获得计时器的计时值、即时间T;
距离计算模块计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
第一位置确定单元根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的初步位置关系;
第二位置确定单元获取第三超声波机构与第一超声波机构之间的距离;从而进一步确认第一装置在三个第二超声波机构所呈平面的哪一侧,具体确定第一装置与第二装置之间的位置关系;
转动角度获取模块设置于移动装置,通过运动传感器通过融合算法获得移动装置的角度旋转信息;运动传感器包括加速度计、陀螺仪、磁场计中的一种或多种。
10.一种空间相对位移变化监测方法,其特征在于,所述监测方法包括如下步骤:
通过第一时间同步机构、第二时间同步机构做时间同步;
超声波发生器发出超声波,超声波接收器对应的计时器记录超声波发生器从发出超声波到对应超声波接收器接收相应超声波的时间T;
计算各个第二超声波机构与第一超声波机构之间的距离,通过各个计时器获取的时间T乘以超声波在空气中的传播速度V,得到超声波接收器和超声波发生器之间的距离S,距离S=速度V*时间T;
根据各第二超声波机构与第一超声波机构之间的距离、三个第二超声波机构的位置,确定第一装置与第二装置之间的位置关系。
CN201610332560.6A 2016-05-18 2016-05-18 空间相对位移变化监测系统及方法 Active CN106054164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610332560.6A CN106054164B (zh) 2016-05-18 2016-05-18 空间相对位移变化监测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610332560.6A CN106054164B (zh) 2016-05-18 2016-05-18 空间相对位移变化监测系统及方法

Publications (2)

Publication Number Publication Date
CN106054164A true CN106054164A (zh) 2016-10-26
CN106054164B CN106054164B (zh) 2018-10-26

Family

ID=57177843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610332560.6A Active CN106054164B (zh) 2016-05-18 2016-05-18 空间相对位移变化监测系统及方法

Country Status (1)

Country Link
CN (1) CN106054164B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646480A (zh) * 2016-11-04 2017-05-10 乐视控股(北京)有限公司 一种密闭空间中的定位系统以及相关方法和装置
CN106680827A (zh) * 2016-11-04 2017-05-17 乐视控股(北京)有限公司 一种密闭空间中的定位系统以及相关方法和装置
CN109828675A (zh) * 2019-03-27 2019-05-31 京东方科技集团股份有限公司 一种vr/ar装置及其防撞方法、vr/ar装置系统
CN110779989A (zh) * 2019-11-04 2020-02-11 北京理工大学 一种超声波三维重建的物料监测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69515471T2 (de) * 1994-04-14 2000-09-14 Acoustic Positioning Research Inc., Edmonton Dreidimensionale bewegung eines körpers mit rechnerschnittstelle
EP2287632A1 (en) * 2004-07-23 2011-02-23 Bjorn A. J. Angelsen Ultrasound imaging using non-linear manipulation of forward propagation properties of a pulse
CN104240422A (zh) * 2014-08-22 2014-12-24 电子科技大学 基于距离像的超声波空间采样方法、监测防盗装置及方法
CN105116406A (zh) * 2015-09-30 2015-12-02 长沙开山斧智能科技有限公司 一种复合测距仪及其测距方法
CN205799552U (zh) * 2016-05-18 2016-12-14 上海傲意信息科技有限公司 空间相对位移变化监测装置及扫地机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69515471T2 (de) * 1994-04-14 2000-09-14 Acoustic Positioning Research Inc., Edmonton Dreidimensionale bewegung eines körpers mit rechnerschnittstelle
EP2287632A1 (en) * 2004-07-23 2011-02-23 Bjorn A. J. Angelsen Ultrasound imaging using non-linear manipulation of forward propagation properties of a pulse
CN104240422A (zh) * 2014-08-22 2014-12-24 电子科技大学 基于距离像的超声波空间采样方法、监测防盗装置及方法
CN105116406A (zh) * 2015-09-30 2015-12-02 长沙开山斧智能科技有限公司 一种复合测距仪及其测距方法
CN205799552U (zh) * 2016-05-18 2016-12-14 上海傲意信息科技有限公司 空间相对位移变化监测装置及扫地机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘焱等: "位移传感器的技术发展现状与发展趋势", 《自动化技术与应用》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646480A (zh) * 2016-11-04 2017-05-10 乐视控股(北京)有限公司 一种密闭空间中的定位系统以及相关方法和装置
CN106680827A (zh) * 2016-11-04 2017-05-17 乐视控股(北京)有限公司 一种密闭空间中的定位系统以及相关方法和装置
CN109828675A (zh) * 2019-03-27 2019-05-31 京东方科技集团股份有限公司 一种vr/ar装置及其防撞方法、vr/ar装置系统
CN109828675B (zh) * 2019-03-27 2022-05-17 京东方科技集团股份有限公司 一种vr/ar装置及其防撞方法、vr/ar装置系统
CN110779989A (zh) * 2019-11-04 2020-02-11 北京理工大学 一种超声波三维重建的物料监测系统及方法

Also Published As

Publication number Publication date
CN106054164B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN106054164A (zh) 空间相对位移变化监测系统及方法
EP3109667B1 (en) Radar axis displacement amount calculation device and radar axis displacement calculation method
CN105371871B (zh) 井下采煤机捷联惯导系统的组合初始对准系统及对准方法
Shi et al. Anchor self-localization algorithm based on UWB ranging and inertial measurements
US6409687B1 (en) Motion tracking system
Foxlin et al. Constellation: A wide-range wireless motion-tracking system for augmented reality and virtual set applications
CN113124856B (zh) 基于uwb在线锚点的视觉惯性紧耦合里程计及计量方法
EP4155873A1 (en) Multi-sensor handle controller hybrid tracking method and device
JP6419986B2 (ja) 航空機の制御方法及び装置
CN101750060A (zh) 利用感测元件的定位与检测的系统与方法
WO2014124483A1 (en) Position sensing apparatus and method
CN114608561B (zh) 一种基于多传感器融合的定位与建图方法及系统
CN108037768A (zh) 无人机避障控制系统、避障控制方法和无人机
CN107450069A (zh) 移动物体检测装置、程序及记录介质
CN110763238A (zh) 基于uwb、光流和惯性导航的高精度室内三维定位方法
CN110044357A (zh) 一种室内高精度三维无线定位方法
CN111811462A (zh) 极端环境下大构件便携式视觉测距系统及方法
CN111782064B (zh) 一种运动式无线定位的6dof追踪系统
CN112697131A (zh) 基于视觉和惯性导航系统的井下移动装备定位方法及系统
CN105387818A (zh) 一种基于一维图像序列的大尺度三维形貌测量方法
CN205799552U (zh) 空间相对位移变化监测装置及扫地机器人
CN103592632B (zh) 一种适用于月球着陆过程的测距测速波束指向确定方法
CN109732601A (zh) 一种自动标定机器人位姿与相机光轴垂直的方法和装置
CN108927807A (zh) 一种基于点特征的机器人视觉控制方法
CN117075495A (zh) 一种基于多航天器姿态控制的地面半物理仿真系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant