CN106048537A - 胶体球自组装与离子溅射镀膜结合制备sers基底的方法 - Google Patents

胶体球自组装与离子溅射镀膜结合制备sers基底的方法 Download PDF

Info

Publication number
CN106048537A
CN106048537A CN201610478260.9A CN201610478260A CN106048537A CN 106048537 A CN106048537 A CN 106048537A CN 201610478260 A CN201610478260 A CN 201610478260A CN 106048537 A CN106048537 A CN 106048537A
Authority
CN
China
Prior art keywords
substrate
sers substrate
ion
sers
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610478260.9A
Other languages
English (en)
Inventor
徐宗伟
王李阳
房丰洲
李康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610478260.9A priority Critical patent/CN106048537A/zh
Publication of CN106048537A publication Critical patent/CN106048537A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Abstract

本发明涉及一种胶体球自组装与离子溅射镀膜结合制备SERS基底的方法,步骤如下:对Si基片进行清洗和亲水处理;配制聚苯乙烯纳米球溶液,将配置好的纳米球溶液置于基片上;在温度20‑25℃,湿度40%‑60%下进行自组装,自组装完成后在基片上形成密排纳米球阵列;将基片放入离子蒸发镀膜设备,在密排微球表面沉积贵族金属活性层,并以此作为表面增强SERS基底。本发明简便易行、对设备要求底,在节省成本的同时能够提供非常良好的拉曼活性,为SERS基底的范围推广和实际应用提供更大可能性。

Description

胶体球自组装与离子溅射镀膜结合制备SERS基底的方法
技术领域
[0001 ]本发明涉及一种微纳加工方法,更具体而言,涉及一种结合自组装技术与离子蒸发镀膜技术制备SERS基底的微纳加工方法,该方法可用于分子检测、生物化学分析传感、考古分析等领域。
背景技术
[0002]表面增强拉曼散射技术是一种非接触式的能够提供待测物单分子水平信息的无损检测技术,并且随着局域表面等离子体共振(LSPR)现象的发现和研究得到了快速展开和发展。但到了近几十年,SERS技术在实际生活中的应用没有得到应有的推广,究其原因,其中一个很大的限制因素就是SERS活性基底制备的繁琐工序和昂贵的成本问题。同时,SERS技术在应用过程中对待测物质本身和环境设备都与一定的要求,进一步阻碍了这一特征技术的应用和推广。
发明内容
[0003]本发明的目的在于,克服现有SERS基底制备过程中工艺繁琐、成本高昂和实际应用难度大等问题,提供一种具有可靠、简便和稳定的SERS基底制备方法。同时利用本发明提出的方法制备的SERS基底,具有显著的SERS增强效果。
[0004]本发明的技术方案为:
[0005] —种胶体球自组装与离子溅射镀膜结合制备SERS基底的方法,步骤如下:
[0006] (I)对Si基片进行清洗和亲水处理;
[0007] (2)配制聚苯乙烯纳米球溶液,将配置好的纳米球溶液置于基片上;
[0008] (3)在温度20-25 °C,湿度40%-60%下进行自组装,自组装完成后在基片上形成密排纳米球阵列;
[0009] (4)将基片放入离子蒸发镀膜设备,在密排微球表面沉积贵族金属活性层,并以此作为表面增强SERS基底。
[0010]作为优选实施方式,(4)中,控制离子电流强度为8-12mA、蒸镀时间为2-25分钟,在基底上蒸镀Au ο最终制备呈增强效果良好的SERS基底。
[0011]贵族金属活性层的厚度需要依据纳米球直径选取,控制范围为5nm〜Ium0
[0012]贵族金属为金、银、铜或络等。
[0013]本发明提供的SERS基底制备方法充分利用贵族金属蒸镀过程中的颗粒和间隙结构,简便易行、对设备要求底,在节省成本的同时能够提供非常良好的拉曼活性,为SERS基底的范围推广和实际应用提供更大可能性。
附图说明
[0014]图1为纳米微球自组装技术与离子蒸发镀膜工艺结合制备SERS基底的基本原理图,其中:(a)基片上纳米微球自组装过程(b)自组装形成支撑结构(C)密排微球表面进行镀膜。
[0015]图2不同镀膜厚度后,PS纳米球的微观形貌变化。(a)图金膜厚度为1nm,镀金纳米球仍未球形。(b)图厚度为SOnm,镀金后纳米球形状改变为准正六边形,球与球之间的间隙密度增大,尺寸减小,显著增加了拉曼增强衬底的热点密度;同时球体上集成了丰富的纳米金颗粒,增加了基底的比表面积。
[0016]伴随PS球表面金膜厚度的调控,基底表面的金颗粒及球体间隙g发生规律形貌变化。H = I Onm ± 5nm时,球体间除相切的位置有连接,其余部位存在较大空隙g,俯视图为正圆的密排阵列。当Au膜厚逐渐增加至h = 80nm±5nm时,球体表面的金颗粒生长变大,轮廓清晰。球体间生成较均勾的间隙g,经测量g = 10nm-30nm,俯视图可以看到微球由球体向六边形变化,成为不相切的圆角六边形密排阵列。图2(b)图是镀金膜厚度为SOnm后的微球表面轮廓结果图,对比左右两张图,可以很清晰的看出球体形状的规则变化。
[0017]图3为基底表面温度随金膜厚度变化曲线。金膜沉积形成活性层的过程中,受离子溅射撞击的金颗粒及团簇同时,也将热量带入基底表面并逐渐积累。离子溅射镀膜时间的加长会使金膜厚度成正比增加,基底表面温度也随之逐渐上升,在金膜厚度达到10nm时,其表面温度逐渐稳定在95°C左右。在这个温度范围之内,聚苯乙烯微球发生了形态的改变。作为高分子聚合物,聚苯乙烯材料的玻璃化转变温度Tg在80°C_105°C之间,热变形温度为70°C-8(TC。而处于这个状态下的聚苯乙烯微球极易受表面金膜重力作用发生形变,因为周围球体的塑性变形、相互挤压,聚合物球体形状将逐渐转变为多边形。
[0018]图4采用本发明自组装技术与镀膜技术相结合制备的SERS基底的拉曼散射光谱对比,三条光谱依次为支撑层微球直径A= 151.3nm、B = 414.2nm的SERS基底和平整金膜表面C的拉曼光谱;
[0019]附图标记说明如下:I亲水处理的硅基底;2纳米微球溶液;3自组装密排结构;4贵金属薄膜。
具体实施方式
[0020]下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。其中直径151.3nm纳米球溶液浓度w/v = 5%,直径414.3nm纳米球溶液浓度w/v = 5%, H2O2溶液浓度为30%、浓氨水浓度为25%、浓H2SO4浓度为98%。
[0021]聚苯乙烯自组装与离子蒸镀工艺结合制备的SERS基底,其方法和步骤如下:
[0022] 1.基底清洗及亲水处理:
[0023] 利用无水乙醇将平整基底进行初步清洁后,配置食人鱼洗液(浓H2S04:H202 = 3:1)。将基片放入食人鱼洗液在超声机内超声清洗,去除载体上的有机残留物和进行初步的亲水处理;完成后将基片放入浓氨水和过氧化氢混合溶液(H2O: NH4OH: 30 % H2O2 = 5:1:1)¾声,进行进一步亲水处理;完成后用大量去离子水清洗,得到极具亲水性的洁净基片。
[0024] 2.纳米球溶液配置:
[0025]利用微量移液器取定量纳米球溶液和去离子水进行混合,得到不同溶液配比的纳米微球溶液。放入超声机内进行加热超声,使纳米微球在溶液中混合均匀,呈悬浮状态,准备下一步进行自组装。
[0026] 3.基片上的纳米微球自组装;
[0027]利用微量移液器取定量配置好的纳米微球溶液,滴在I中亲水处理过的基片,控制环境条件中的温度、湿度(温度20-25°C,湿度40%-60%)因素,纳米微球会在基片表面自行完成密排过程,形成支撑层。
[0028] 4.金属活性层沉积:
[0029]将步骤I制备所得的基底放入真空热蒸发镀膜系统,蒸发源选用纯度为99.999%的金粑,抽真空至约2 X 1-Vbar后控制电流的速率蒸发沉积金膜,在密排纳米微球的支撑层上方均匀沉积一层的贵族金属薄膜膜。贵族金属薄膜厚度要根据纳米微球尺寸和SERS基底增强原理需求从Inm-1um范围内灵活选择。
[0030] 5.制备基底表征:
[0031] 将制备基底浸泡在浓度为I X lO-Vol/L的罗丹明6G溶液中浸泡2h,放入雷尼绍拉曼光谱仪进行拉曼表征。光谱仪选择50X倍镜和633nm的激光波长,最终的拉曼表征结果如图4所示。
[0032] 通过以上步骤可制备出增强效应优异的SERS基底。
[0033] 实施例1:
[0034]将平整Si基片放入配置好的食人鱼洗液,超声处理30分钟后取出,用大量去离子水冲洗干净。之后将基片浸入体积比为1:1的氨水溶液中继续超声40分钟,完成后取出,用大量去离子水清洗,放置于空气空自然风干,待用;按照微球溶液:去离子水体积比=1:3配置直径为151.3nm的聚苯乙烯微球溶液,放入超声机超声40分钟后取出;用微量移液器移取2ul聚苯乙烯溶液滴在亲水处理好的Si基片上,控制周围环境温度使其能顺利完成独立自组装;完成自组装后的基底放置于离子镀膜仪中,控制真空度为2 X 10—Vbar、离子电流强度为10mA、蒸镀时间选择3分钟,在基底上蒸镀Au。最终制备呈增强效果良好的SERS基底,其表面形貌如图2(a)所示,最终拉满增强光谱如图4的A曲线所示。
[0035] 实施例2
[0036]将平整Si基片放入配置好的食人鱼洗液,超声处理30分钟后取出,用大量去离子水冲洗干净。之后将基片浸入体积比为1:1的氨水溶液中继续超声40分钟,完成后取出,用大量去离子水清洗,放置于空气空自然风干,待用;按照微球溶液:去离子水体积比=1:8配置直径为414.2nm的聚苯乙烯微球溶液,放入超声机超声50分钟后取出;用微量移液器移取2ul聚苯乙烯溶液滴在亲水处理好的Si基片上,控制周围环境温度使其能顺利完成独立自组装;完成自组装后的基底放置于离子镀膜仪中,控制真空度为2 X 10—Vbar、离子电流强度为10mA、蒸镀时间为20分钟,在基底上蒸镀Au。最终制备呈增强效果良好的SERS基底,其表面形貌如图2(b)所示,最终拉满增强光谱如图4的B曲线所示。

Claims (4)

1.一种胶体球自组装与离子溅射镀膜结合制备SERS基底的方法,步骤如下: (1)对Si基片进行清洗和亲水处理; (2)配制聚苯乙烯纳米球溶液,将配置好的纳米球溶液置于基片上; (3)在温度20-25 0C,湿度40 % -60 %下进行自组装,自组装完成后在基片上形成密排纳米球阵列; (4)将基片放入离子蒸发镀膜设备,在密排微球表面沉积贵族金属活性层,并以此作为表面增强SERS基底。
2.根据权利要求1所述的制备SERS基底的方法,其特征在于,(4)中,控制离子电流强度为8-12mA、蒸镀时间为2-25分钟,在基底上蒸镀Au。最终制备呈增强效果良好的SERS基底。
3.根据权利要求1所述的制备SERS基底的方法,其特征在于,贵族金属活性层的厚度需要依据纳米球直径选取,控制范围为5nm〜lum。
4.根据权利要求1所述的制备SERS基底的方法,其特征在于,贵族金属为金、银、铜或络等。
CN201610478260.9A 2016-06-22 2016-06-22 胶体球自组装与离子溅射镀膜结合制备sers基底的方法 Pending CN106048537A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610478260.9A CN106048537A (zh) 2016-06-22 2016-06-22 胶体球自组装与离子溅射镀膜结合制备sers基底的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610478260.9A CN106048537A (zh) 2016-06-22 2016-06-22 胶体球自组装与离子溅射镀膜结合制备sers基底的方法

Publications (1)

Publication Number Publication Date
CN106048537A true CN106048537A (zh) 2016-10-26

Family

ID=57165793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610478260.9A Pending CN106048537A (zh) 2016-06-22 2016-06-22 胶体球自组装与离子溅射镀膜结合制备sers基底的方法

Country Status (1)

Country Link
CN (1) CN106048537A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064101A (zh) * 2017-03-15 2017-08-18 东南大学 一种检测链霉菌菌丝的增强拉曼基底及其制备和使用方法
CN107704140A (zh) * 2017-11-10 2018-02-16 业成科技(成都)有限公司 具奈米金属阵列的可挠式触控感测器及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285629A (zh) * 2011-05-05 2011-12-21 厦门大学 一种表面增强拉曼光谱活性基底的制备方法
CN103398996A (zh) * 2013-08-07 2013-11-20 苏州扬清芯片科技有限公司 一种具有正三角锥形sers活性基片的快速制备方法
CN103512875A (zh) * 2013-09-23 2014-01-15 武汉大学 一种表面增强拉曼光谱复合基底的制备方法
CN103668463A (zh) * 2013-12-18 2014-03-26 曲阜师范大学 纳米腔诱导共振磁光克尔效应晶体材料的制备方法
CN103938158A (zh) * 2014-04-03 2014-07-23 天津大学 一种自组装球型阵列的sers基底及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285629A (zh) * 2011-05-05 2011-12-21 厦门大学 一种表面增强拉曼光谱活性基底的制备方法
CN103398996A (zh) * 2013-08-07 2013-11-20 苏州扬清芯片科技有限公司 一种具有正三角锥形sers活性基片的快速制备方法
CN103512875A (zh) * 2013-09-23 2014-01-15 武汉大学 一种表面增强拉曼光谱复合基底的制备方法
CN103668463A (zh) * 2013-12-18 2014-03-26 曲阜师范大学 纳米腔诱导共振磁光克尔效应晶体材料的制备方法
CN103938158A (zh) * 2014-04-03 2014-07-23 天津大学 一种自组装球型阵列的sers基底及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064101A (zh) * 2017-03-15 2017-08-18 东南大学 一种检测链霉菌菌丝的增强拉曼基底及其制备和使用方法
CN107064101B (zh) * 2017-03-15 2020-03-31 东南大学 一种检测链霉菌菌丝的增强拉曼基底及其制备和使用方法
CN107704140A (zh) * 2017-11-10 2018-02-16 业成科技(成都)有限公司 具奈米金属阵列的可挠式触控感测器及其制作方法

Similar Documents

Publication Publication Date Title
Ai et al. Advanced colloidal lithography beyond surface patterning
Sau et al. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution
Huang et al. Controlled replication of butterfly wings for achieving tunable photonic properties
Teng et al. Synthesis of platinum multipods: an induced anisotropic growth
Schönenberger et al. Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology
JP6198957B2 (ja) 表面増強ラマン分光用基板及びその製造方法
Gao et al. Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process
Mistark et al. Block-copolymer-based plasmonic nanostructures
Dickey et al. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation
Wang et al. Advanced colloidal lithography: From patterning to applications
De Angelis et al. Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies
Tang et al. Photoinduced shape conversion and reconstruction of silver nanoprisms
Xia et al. Use of electroless silver as the substrate in microcontact printing of alkanethiols and its application in microfabrication
Kosiorek et al. Shadow nanosphere lithography: simulation and experiment
Garrod et al. Mimicking a Stenocara Beetle's back for microcondensation using plasmachemical patterned superhydrophobic− superhydrophilic surfaces
Zahr et al. Solution phase gold nanorings on a viral protein template
CN107490570B (zh) 表面增强拉曼散射基底的制备方法
Yang et al. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications
Chen et al. Two‐and Three‐Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating
CN102914500B (zh) 一种石墨烯/金表面增强拉曼光谱基片的制备方法
CN104986724B (zh) 一种柔性薄膜表面微纳米结构及其应用
Rakers et al. Influence of the evaporation rate on the packing order of polydisperse latex monofilms
Wang et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays
US20190339200A1 (en) Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
Tessier et al. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026