CN106024584A - Semiconductor structure and method for preparing semiconductor structure - Google Patents

Semiconductor structure and method for preparing semiconductor structure Download PDF

Info

Publication number
CN106024584A
CN106024584A CN201610365952.2A CN201610365952A CN106024584A CN 106024584 A CN106024584 A CN 106024584A CN 201610365952 A CN201610365952 A CN 201610365952A CN 106024584 A CN106024584 A CN 106024584A
Authority
CN
China
Prior art keywords
layer
semiconductor
semiconductor layer
deposition
substrate
Prior art date
Application number
CN201610365952.2A
Other languages
Chinese (zh)
Inventor
王敬
肖磊
王子巍
梁仁荣
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to CN201610365952.2A priority Critical patent/CN106024584A/en
Publication of CN106024584A publication Critical patent/CN106024584A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Abstract

The invention provides a semiconductor structure and a method for preparing the semiconductor structure. Particularly, the method comprises the steps of: (1) providing a substrate; (2) arranging a graphene layer on the upper surface of the substrate; and (3) forming a semiconductor layer on the upper surface of the graphene layer. The semiconductor layer has crystal preferred orientation. Therefore, the preparation cost can be reduced; the preparation technology is simplified; and the semiconductor layer with the crystal preferred orientation is obtained. The semiconductor layer can be induced by the graphene layer to form the crystal preferred orientation under a proper sputtering condition, so that a semiconductor device prepared by the semiconductor layer has good performance.

Description

半导体结构以及制备半导体结构的方法 Preparing a semiconductor structure and semiconductor structure

技术领域 FIELD

[0001]本发明涉及半导体技术以及半导体制造领域,具体而言,本发明涉及半导体结构以及制备半导体结构的方法。 [0001] The present invention relates to semiconductor technology and semiconductor manufacture, and particularly, the present invention relates to a semiconductor structure and a method of manufacturing a semiconductor structure.

背景技术 Background technique

[0002]在半导体技术领域,II1-V族化合物半导体材料占有重要地位,如砷化物系列半导体材料GaAs、InGaAs和AlGaAs,又如锑化物系列半导体材料GaSb、InGaSb和AlGaSb等,这些材料为直接带隙的能带结构,在光电领域具有广泛应用。 [0002] In the field of semiconductor technology, II1-V compound semiconductor material plays an important role, such as arsenide-based semiconductor material is GaAs, InGaAs and AlGaAs, and if antimonide-based semiconductor material GaSb, InGaSb, and AlGaSb, these materials directly with the band gap energy structure, has broad application in the field of optoelectronics. 含有上述材料的半导体器件,如光电转换器件的衬底多为单晶结构,而玻璃或者金属一般为非晶或多晶结构,很少作为半导体器件的衬底。 The semiconductor device containing the material, a photoelectric conversion device such as a multi-substrate single crystal structure, and a metal or glass is generally amorphous or polycrystalline structure, little as a substrate of a semiconductor device. 采用玻璃作为衬底的光电器件,可利用玻璃的透光性,且成本低廉因此具有良好的应用前景;采用金属作为衬底,则可以利用金属导电性能良好的特点提高器件性能,或是利用柔性金属薄膜衬底制备柔性半导体器件。 As the glass substrate, a photovoltaic device, a light-transmitting glass can be used, and thus has a good cost prospect; metal as the substrate, a conductive metal may use the good performance characteristics improve device performance, using a flexible or a flexible metal thin film substrate for preparing a semiconductor device. 然而,对于性能较好的光电器件来说,其中的半导体材料一般要求为单晶或者晶体取向一致性好的多晶,即其中的晶体具有择优取向。 However, for better performance of the photovoltaic device, the semiconductor material which generally require a single crystal or polycrystalline crystal orientation good consistency, in which the crystals have a preferred orientation. 目前可采用外延生长或者溅射沉积的方法获得半导体薄膜材料,这些方法在玻璃或金属表面制备的半导体薄膜或为非晶材料,或为没有晶体择优取向的多晶材料,难以获得晶体择优取向性好的半导体薄膜,难以满足高性能光电器件如太阳能电池或者发光二极管的要求。 Current methods employed or the epitaxial growth of semiconductor thin films sputter deposited material, these methods for preparing a semiconductor thin film of glass or metal surface or amorphous materials, crystalline or polycrystalline material is no preferred orientation, it is difficult to obtain a crystal preferred orientation good semiconductor thin film, it is difficult to meet the high performance optoelectronic devices such as solar cells or light emitting diodes requirements.

[0003]因此,目前基于玻璃或金属衬底制备半导体薄膜材料的半导体技术仍有待改进。 [0003] Accordingly, the present semiconductor technologies based on glass or metal substrate prepared in a semiconductor thin film material could be improved.

发明内容 SUMMARY

[0004]石墨烯作为一种性能独特的二维层状材料,近年来被广泛研究。 [0004] The unique properties of graphene as a two-dimensional layered material, has been extensively studied in recent years. 发明人经过深入研究以及大量实验发现,在半导体结构中引入石墨烯层,同时,通过合适的溅射沉积工艺,利用石墨烯的二维层状结构,能够诱导生产具有晶体择优取向的半导体层。 The inventors have intensively studied and found that a large number of experiments, the graphene layer is introduced in the semiconductor structure, at the same time by a suitable sputter deposition process, using a two-dimensional layered graphene structure, capable of inducing the production of a semiconductor layer having a preferred crystal orientation. 可以在玻璃或是金属衬底上制备出具有晶体择优取向的半导体薄膜,从而可以用于制备高性能的太阳能电池、发光二极管等光伏器件。 Can be prepared having a crystalline semiconductor thin film on the preferred orientation of the glass or metal substrate, can be used for the preparation of high performance solar cells, light-emitting diodes of the photovoltaic device.

[0005]本发明旨在至少在一定程度上解决相关技术中的技术问题之一。 [0005] The present invention to solve at least to some extent, one of the technical issues related to technology. 为此,本发明的一个目的在于提出一种制备半导体结构的方法,该方法采用溅射沉积的方法,通过引入石墨烯层以及对制备条件的控制,能够形成具有晶体择优取向的半导体层。 To this end, an object of the present invention to provide a method for preparing a semiconductor structure, the method of sputter deposition method, and the graphene layer by introducing control of the preparation conditions, capable of forming a crystalline semiconductor layer having a preferred orientation. 该方法具有成本低廉、操作简单等优点的至少之一。 This method has low cost, at least one of the advantages of simple operation.

[0006]在本发明的一个方面,本发明提出了一种制备半导体结构的方法。 [0006] In one aspect of the present invention, the present invention provides a method of making a semiconductor structure. 该方法包括: The method comprising:

(I)提供衬底;(2)在所述衬底上表面设置石墨烯层;以及(3)在所述石墨烯层的上表面形成半导体层,所述半导体层具有晶体择优取向。 (I) providing a substrate; (2) disposed on the substrate surface of the graphene layer; (3) forming a semiconductor layer on a surface of the graphene layer and the semiconductor layer having a preferred crystal orientation. 由此,可以降低制备成本,简化制备工艺,并获得具有晶体择优取向的半导体层。 Accordingly, the production cost can be reduced, simplifying the manufacturing process, and obtain a semiconductor layer having a preferred crystal orientation. 石墨烯层以及适当的溅射条件能够诱导半导体层形成晶体的择优取向,使得利用该半导体层制备的半导体器件具有良好的性能。 Graphene layer and suitable sputtering conditions capable of inducing preferential orientation crystal semiconductor layer is formed, so that a semiconductor device fabricated using the semiconductor layer having a good performance.

[0007]根据本发明的实施例,步骤(3)进一步包括:在所述石墨烯层的上表面形成半导体混合体,对所述半导体混合体进行退火处理,以便获得所述半导体层。 [0007] According to an embodiment of the present invention, the step (3) further comprises: forming a mixture of a semiconductor on the surface of the graphene layer, the semiconductor mixture is annealed so as to obtain the semiconductor layer. 由此,可以进一步简化制备工艺,降低对沉积设备的要求,从而可以进一步降低生产成本。 This can further simplify the manufacturing process, reducing the requirements for a deposition apparatus, the production cost can be further reduced.

[0008] 根据本发明的实施例,所述半导体层含有GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb、S1、Ge以及SiGe的至少之一。 [0008] According to an embodiment of the present invention, the semiconductor layer comprises GaAs, at least one of InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb, S1, Ge and of SiGe. 本领域技术人员可以根据实际需求选择上述材料形成半导体层,由此,可以进一步提高该半导体结构的性能。 Those skilled in the art can form a semiconductor layer according to the actual needs of selecting the material, thus, can further improve the performance of the semiconductor structure.

[0009]根据本发明的实施例,所述衬底是由玻璃或金属形成的。 [0009] According to an embodiment of the present invention, the substrate is formed of glass or metal. 根据本发明实施例的半导体结构可以采用玻璃或者金属作为衬底材料,从而可以利用玻璃衬底制备具有透光性能的半导体结构,或是利用金属衬底较好的导电性获得电学性能良好的半导体结构。 The semiconductor structure according to an embodiment of the present invention may be employed as a glass or metal substrate material, the semiconductor structure can be prepared by using a glass substrate having a light transmitting property, a metal or a conductive substrate is preferably good semiconductor electrical properties structure.

[0010]根据本发明的实施例,所述玻璃上表面具有金属镀层。 [0010] According to an embodiment of the present invention, a metal plating layer having a surface on the glass. 由此,可以直接在金属镀层上通过化学气相沉积的方法形成石墨烯层,从而有利于提高石墨烯层以及玻璃衬底之间的结合质量,进而可以提高该半导体结构的性能。 This can be formed directly on the metal plating layer by chemical vapor deposition of the graphene layer, thus contributing to improve the bonding quality between the glass substrate and the graphene layer, and further improving the performance of the semiconductor structure.

[0011]根据本发明的实施例,所述金属包括高温合金。 [0011] According to an embodiment of the present invention, the metal comprises a superalloy. 由此,一方面可以防止金属衬底在后续的高温过程熔化,另一方面可以缓解衬底金属元素在高温环境中的扩散,进而可以防止衬底中的金属元素扩散而对该半导体结构的性能造成负面影响。 Thus, on the one hand the molten metal substrate can be prevented in the subsequent high-temperature process, on the other hand can relieve diffusion of the substrate metal element in a high temperature environment, and thus possible to prevent diffusion of a metal element substrate and the performance of the semiconductor structure negative impact.

[0012]根据本发明的实施例,所述金属或所述金属镀层的上表面含有N1、Co、Cu、Fe中的至少之一。 [0012] According to an embodiment of the present invention, the metal or the metal plating layer on the surface containing N1, at least one of Co, Cu, Fe in. 上述金属对形成石墨烯具有较好的催化作用,由此,有利于提高利用化学气相沉积在其上形成的石墨烯层的质量。 The metal has good catalytic effect on the formation of graphene, thereby, help to improve the quality of chemical vapor deposition using a graphene layer formed thereon.

[0013]根据本发明的实施例,所述金属或所述金属镀层的上表面具有织构结构。 [0013] According to an embodiment of the present invention, the upper surface of the metal or the metal plating layer having a textured structure. 由此,可以利用金属或者金属镀层上表面上晶粒的晶体取向分布明显偏离随机分布的织构结构,诱导形成在其上的石墨烯层也具有较为有序的结构,进而可以提高石墨烯层的质量,以便获得具有更好结晶质量的半导体层。 Accordingly, the crystal orientation can be utilized on the surface of the die or the metal plating layer on the metal profile deviates significantly from the random distribution of the textured structure, inducing the formation of the graphene layer thereon also has a more ordered structure, and further improving the graphene layer quality, so as to obtain a semiconductor layer having a better crystal quality.

[0014]根据本发明的实施例,所述石墨烯层含有I〜10层石墨烯单层。 [0014] According to an embodiment of the present invention, the graphene layer contains I~10 single-layer graphene. 由此,薄而且有序排列的石墨烯层能够有效诱导半导体层形成较为有序的晶体择优取向,实现对半导体结构的性能进行调节。 Thereby, thin and ordered graphene layer of the semiconductor layer can be formed more efficiently induce an ordered crystal preferred orientation, to achieve the performance of the semiconductor structure is adjusted.

[0015]根据本发明的实施例,步骤(3)进一步包括:利用溅射沉积或化学气相沉积形成所述半导体层或所述半导体混合体。 [0015] According to an embodiment of the present invention, the step (3) further comprising: forming the semiconductor layer or the semiconductor mixture is deposited by sputtering or chemical vapor deposition. 由此,可以进一步简化制备工艺,降低生产成本。 This can further simplify the manufacturing process, reduce production costs.

[0016]根据本发明的实施例,所述溅射沉积为磁控溅射沉积或离子束溅射沉积。 [0016] According to an embodiment of the present invention, the sputtering deposition beam sputter deposition or magnetron sputter ion deposition. 利用磁控溅射或者离子束溅射可以较好地控制沉积速率以及沉积形成的晶体结构,从而有利于形成具有晶体择优取向的半导体层。 By magnetron sputtering or ion beam sputtering deposition rate can be better controlled and the crystal structure formed by deposition, so as to facilitate the formation of a semiconductor layer having a preferred crystal orientation.

[0017]根据本发明的实施例,所述溅射沉积为脉冲式溅射沉积或离子束辅助溅射沉积。 [0017] According to an embodiment of the present invention, the sputtering deposition is a sputtering deposition, or pulsed ion beam assisted sputter deposition. 由此,可以利用脉冲式溅射沉积或离子束辅助溅射沉积控制沉积的速率,提高获得的半导体层的结晶质量。 Thus, the rate can be pulsed using sputter deposition or ion beam assisted deposition sputter deposition control, to improve the crystal quality of the semiconductor layer is obtained.

[0018]根据本发明的实施例,所述溅射沉积的溅射速率小于10nm/小时。 [0018] According to an embodiment of the present invention, the sputtering deposition sputtering rate is less than 10nm / hr. 当溅射速率小于上述数值时,能够显著提高溅射沉积获得的半导体层的结晶质量,进而可以进一步提高该半导体结构的性能。 When the sputtering rate is smaller than the above value, it can be significantly improved crystal quality of the semiconductor layer is obtained by sputter deposition, and thus can further improve the performance of the semiconductor structure.

[0019]根据本发明的实施例,所述溅射沉积时衬底温度不小于300摄氏度。 [0019] According to an embodiment of the present invention, the substrate temperature when the sputtering deposition is not less than 300 degrees Celsius. 由此,可以简便地通过对衬底进行加热,获得具有晶体择优取向的结构,从而可以降低沉积步骤对设备的要求,简化制备工艺,降低生产成本。 This can be easily performed by heating the substrate, a structure having a preferred crystal orientation, the deposition step can be reduced requirements for equipment, simplifying the manufacturing process and reduce the production cost.

[0020]根据本发明的实施例,所述退火处理的温度为600〜1200摄氏度。 [0020] According to an embodiment of the present invention, the temperature of the annealing treatment is 600~1200 ° C. 由此,可以进一步提尚结晶质量。 This makes it possible to further improve the crystal quality yet.

[0021]在本发明的另一方面,本发明提出了一种半导体结构。 [0021] In another aspect of the present invention, the present invention provides a semiconductor structure. 根据本发明的实施例,该半导体结构包括:衬底;石墨烯层,所述石墨烯层设置在所述衬底的上表面上;和半导体层,所述半导体层形成在所述石墨烯层的上表面,并且所述半导体层具有晶体择优取向。 According to an embodiment of the present invention, the semiconductor structure comprising: a substrate; graphene layer, a graphene layer disposed on the upper surface of the substrate; and a semiconductor layer, the semiconductor layer is formed on the graphene layer the upper surface of the semiconductor layer and having a preferred crystal orientation. 石墨烯层能够诱导半导体层形成晶体的择优取向,而具有晶体择优取向的半导体层能够有效改善在该半导体层中制备的半导体器件的性能。 Graphene layer is capable of inducing semiconductor layer is formed preferentially oriented crystal, the crystal semiconductor layer having a preferred orientation can improve the performance of the semiconductor device produced in the semiconductor layer.

[0022]根据本发明的实施例,所述衬底是由玻璃或金属形成的。 [0022] According to an embodiment of the present invention, the substrate is formed of glass or metal. 根据本发明实施例的半导体结构可以采用玻璃或者金属作为衬底材料,从而可以利用玻璃衬底制备具有透光性能的半导体结构,或是利用金属衬底较好的导电性获得电学性能良好的半导体结构。 The semiconductor structure according to an embodiment of the present invention may be employed as a glass or metal substrate material, the semiconductor structure can be prepared by using a glass substrate having a light transmitting property, a metal or a conductive substrate is preferably good semiconductor electrical properties structure.

[0023]根据本发明的实施例,所述金属包括高温合金。 [0023] According to an embodiment of the present invention, the metal comprises a superalloy. 由此,一方面可以防止金属衬底在后续的高温过程熔化,另一方面可以缓解衬底金属元素在高温环境中的扩散,进而可以防止衬底中的金属元素扩散而对该半导体结构的性能造成负面影响。 Thus, on the one hand the molten metal substrate can be prevented in the subsequent high-temperature process, on the other hand can relieve diffusion of the substrate metal element in a high temperature environment, and thus possible to prevent diffusion of a metal element substrate and the performance of the semiconductor structure negative impact.

[0024]根据本发明的实施例,所述玻璃上表面具有金属镀层。 [0024] According to an embodiment of the present invention, a metal plating layer having a surface on the glass. 由此,可以直接在金属镀层上通过化学气相沉积的方法形成石墨烯层,从而有利于提高石墨烯层以及玻璃衬底之间的结合质量,进而可以提高该半导体结构的性能。 This can be formed directly on the metal plating layer by chemical vapor deposition of the graphene layer, thus contributing to improve the bonding quality between the glass substrate and the graphene layer, and further improving the performance of the semiconductor structure.

[0025]根据本发明的实施例,所述金属以及所述金属镀层的上表面含有N1、Co、Cu、Fe中至少之一。 [0025] According to an embodiment of the present invention, the metal and the metal plating layer on the surface containing N1, at least one of Co, Cu, Fe in. 上述金属对形成石墨烯具有较好的催化作用,由此,有利于提高利用化学气相沉积在其上形成的石墨烯层的质量。 The metal has good catalytic effect on the formation of graphene, thereby, help to improve the quality of chemical vapor deposition using a graphene layer formed thereon.

[0026]根据本发明的实施例,所述金属或所述金属镀层的上表层具有织构结构。 [0026] According to an embodiment of the present invention, the surface layer of the metal or the metal plating layer having a textured structure. 由此,可以利用金属或者金属镀层上表面上晶粒的晶体取向分布明显偏离随机分布的织构结构,诱导形成在其上的石墨烯层也具有较为有序的结构,进而可以提高石墨烯层的质量,以便获得具有更好结晶质量的半导体层。 Accordingly, the crystal orientation can be utilized on the surface of the die or the metal plating layer on the metal profile deviates significantly from the random distribution of the textured structure, inducing the formation of the graphene layer thereon also has a more ordered structure, and further improving the graphene layer quality, so as to obtain a semiconductor layer having a better crystal quality.

[0027] 根据本发明的实施例,所述半导体层含有GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb、S1、Ge以及SiGe的至少之一。 [0027] According to an embodiment of the present invention, the semiconductor layer comprises GaAs, at least one of InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb, S1, Ge and of SiGe. 本领域技术人员可以根据实际需求选择半导体层的具体材料,由此,可以进一步提高该半导体结构的性能。 Those skilled in the art can be selected according to the actual needs of the semiconductor layer, the particular materials, makes it possible to further improve the performance of the semiconductor structure.

[0028]根据本发明的实施例,所述半导体层(004)晶面的XRD衍射峰的半高宽小于5度。 [0028] According to an embodiment of the present invention, the half XRD diffraction peak (004) plane of said semiconductor layer with a high width less than 5 degrees. 上述半导体层晶体结构为立方结构,可以利用X射线衍射(XRD)测量其(004)晶面的半高宽,控制XRD衍射峰的半尚宽有利于提尚半导体层的结晶质量。 The semiconductor layer structure is a cubic crystal structure, X-ray diffraction (XRD) measurement of half width, control the XRD diffraction peak half its (004) crystal face yet still provide beneficial width of the semiconductor layer crystal quality.

[0029]根据本发明的实施例,所述半导体层是通过溅射沉积或化学气相沉积形成的。 [0029] According to an embodiment of the present invention, the semiconductor layer is deposited by sputtering or chemical vapor deposition is formed. 由此,可以在保证半导体层质量的同时,降低制备成本,简化制备工艺。 Thereby, it is possible to ensure the quality of the semiconductor layer while reducing production cost, simplify the manufacturing process.

[0030]根据本发明的实施例,所述半导体层是通过溅射沉积和退火处理形成的。 [0030] According to an embodiment of the present invention, the semiconductor layer is formed by sputter deposition and annealing process is formed. 由此,可以进一步简化溅射沉积过程的制备工艺,降低对沉积设备的要求,从而可以进一步降低生产成本。 This can further simplify the manufacturing process of the sputtering deposition process, reducing the requirements for a deposition apparatus, the production cost can be further reduced.

[0031]根据本发明的实施例,所述溅射沉积为磁控溅射沉积或离子束溅射沉积。 [0031] According to an embodiment of the present invention, the sputtering deposition beam sputter deposition or magnetron sputter ion deposition. 利用磁控溅射或者离子束溅射可以较好地控制沉积速率以及沉积形成的半导体层的晶体结构,从而有利于形成具有晶体择优取向的半导体层。 By magnetron sputtering or ion beam sputtering deposition rate can be better controlled and the crystal structure of the semiconductor layer formed by deposition, thereby facilitating the formation of the semiconductor crystal layer having a preferred orientation.

[0032]根据本发明的实施例,所述溅射沉积为脉冲式溅射沉积或离子束辅助溅射沉积。 [0032] According to an embodiment of the present invention, the sputtering deposition is a sputtering deposition, or pulsed ion beam assisted sputter deposition. 由此,可以利用脉冲式溅射沉积或者离子束辅助溅射沉积控制沉积的速率,提高结晶质量。 Thereby, it is possible using the pulsed ion beam assisted sputter deposition or sputter deposition rate of the deposition control and improve crystal quality.

[0033]根据本发明的实施例,所述溅射沉积时衬底温度大于300摄氏度。 [0033] According to an embodiment of the present invention, when the sputter deposition the substrate temperature is greater than 300 degrees Celsius. 由此,可以简化制备工艺,降低生产成本。 Accordingly, the preparation process can be simplified, reducing production costs.

[0034]根据本发明的实施例,所述溅射沉积的溅射速率小于10nm/小时。 [0034] According to an embodiment of the present invention, the sputtering deposition sputtering rate is less than 10nm / hr. 当溅射速率小于上述数值时,能够显著提高溅射沉积获得的结晶质量,进而可以进一步提高该半导体结构的性能。 When the sputtering rate is smaller than the above value, the quality can be significantly improved crystallinity obtained by sputter deposition, and thus can further improve the performance of the semiconductor structure.

附图说明 BRIEF DESCRIPTION

[0035]图1是根据本发明一个实施例的制备半导体结构的方法的流程图;以及 [0035] FIG. 1 is a flowchart of a method of fabricating a semiconductor structure of an embodiment of the present invention; and

[0036]图2是根据本发明一个实施例的半导体结构的结构示意图。 [0036] FIG. 2 is a schematic structure of a semiconductor structure according to an embodiment of the present invention.

[0037] 附图标记说明: [0037] REFERENCE NUMERALS:

[0038] 100:衬底;200:石墨稀层;300:半导体层。 [0038] 100: a substrate; 200: graphene layer; 300: semiconductor layer.

具体实施方式 Detailed ways

[0039]下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 [0039] Example embodiments of the present invention is described in detail below, exemplary embodiments of the embodiment shown in the accompanying drawings, wherein same or similar reference numerals designate the same or similar elements or elements having the same or similar functions. 下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。 By following with reference to the embodiments described are exemplary, and are intended for explaining the present invention and should not be construed as limiting the present invention.

[0040]在本发明的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。 [0040] In the description of the present invention, it is to be understood that the terms "upper", "lower" indicating the orientation or positional relationship of the position or orientation based on the relationship shown in the drawings, for convenience of description only and the present invention to simplify the description, not indicate or imply that the device or element referred to must have a particular orientation, the orientation of a particular configuration and operation, can not be construed as limiting the present invention.

[0041]在本发明的一个方面,本发明提出了一种制备半导体结构的方法。 [0041] In one aspect of the present invention, the present invention provides a method of making a semiconductor structure. 通常,如要形成晶体择优取向,需要对制备参数进行严格控制。 Typically, such a crystal preferred orientation is to be formed, the need for strict control of the preparation parameters. 发明人经过深入研究以及大量实验发现,通过在衬底之上首先引入石墨烯层结构,利用石墨烯的二维层状结构对半导体层结晶的诱导作用,以及降低溅射速率、调节溅射沉积以及后处理条件,可以有效改善形成的半导体层的结晶质量,获得具有晶体择优取向的半导体层。 The inventors have intensively studied a large number of experiments and found that, by first introducing ethylenically graphite structure over a substrate layer, using the induction of the two-dimensional graphene layered structure of the semiconductor layer is crystallized, sputtering rate and decrease, adjusting sputter deposition and post-processing conditions, can effectively improve the crystalline quality of the semiconductor layer is formed to obtain a semiconductor layer having a preferred crystal orientation. 此过程中利用石墨烯层的二维层状结构,可以对半导体层晶核的形成和生长形成诱导作用,从而在垂直于石墨烯面的方向上易于形成一致的晶向,使得半导体层的晶核具有择优取向,且在高温溅射沉积和退火过程中半导体有明显的晶体再结晶作用,具有择优取向的大晶粒不断长大,使得非择优取向的小晶粒越来越少甚至完全消失。 Crystallization process using a two-dimensional layered graphene layer structure, may be formed in the semiconductor layer formation and growth of nuclei induced, making it easy to form a uniform crystal orientation in a direction perpendicular to the graphene planes, so that the semiconductor layer nuclear have a preferred orientation, and in the high-temperature sputtering deposition and annealing of the semiconductor crystal has significant recrystallization, preferred orientation has fewer large grains continue to grow, so that the non-preferred orientation of grains smaller or even completely disappear . 本发明中,“晶体的择优取向”是指晶体具有择优取向性,即半导体层中一定范围内的晶体取向趋于一致,其中也包括单晶(晶体中各处取向完全一致)ο具体地,根据本发明的实施例,参考图1,该方法包括: In the present invention, "crystal preferred orientation" refers to a crystal having a preferred orientation, i.e., the crystal orientation of the semiconductor layer convergence within a certain range, which also includes a single crystal (crystal orientation around exactly) o In particular, according to an embodiment of the present invention, with reference to FIG. 1, the method comprising:

[0042] SlOO:提供衬底 [0042] SlOO: providing a substrate

[0043]根据本发明的实施例,在该步骤中,提供衬底以便形成半导体结构。 [0043] According to an embodiment of the present invention, in this step, a substrate to form a semiconductor structure. 具体地,衬底可以是由陶瓷、玻璃或金属形成的。 In particular, the substrate may be formed of ceramic, glass or metal. 根据本发明实施例的半导体结构可以采用玻璃或者金属作为衬底材料,从而可以制备具有透光性能的半导体结构,或是利用金属较好的导电性获得电学性能良好的半导体结构。 According to an embodiment of the present invention, the semiconductor structure may be employed as a glass or metal substrate material, so that the semiconductor structure may be prepared having a light transmitting property, good electrical properties or a semiconductor structure using a metal better conductivity.

[0044]具体地,当采用玻璃作为衬底时,玻璃上表面可以具有金属镀层。 [0044] In particular, when using glass as the substrate, on a glass surface may have a metal plating. 由此,可以直接在金属镀层上通过化学气相沉积的方法形成石墨烯层,从而有利于提高石墨烯层以及玻璃衬底之间的结合质量,进而可以提高该半导体结构的性能。 This can be formed directly on the metal plating layer by chemical vapor deposition of the graphene layer, thus contributing to improve the bonding quality between the glass substrate and the graphene layer, and further improving the performance of the semiconductor structure. 根据本发明的实施例,采用金属作为衬底时,可以选择高温合金形成上述衬底。 According to an embodiment of the present invention, as the metal substrate may be selected form the superalloy substrate. 由此,一方面可以防止金属衬底在后续的高温过程熔化,另一方面可以缓解衬底金属元素在高温环境中的扩散,进而可以防止衬底中的金属元素扩散而对该半导体结构的性能造成负面影响。 Thus, on the one hand the molten metal substrate can be prevented in the subsequent high-temperature process, on the other hand can relieve diffusion of the substrate metal element in a high temperature environment, and thus possible to prevent diffusion of a metal element substrate and the performance of the semiconductor structure negative impact.

[0045]根据本发明的实施例,上述金属或金属镀层的上表面可以含有N1、Co、Cu、Fe中的至少之一。 [0045] According to an embodiment of the present invention, the metal surface of the metal plating layer, or may contain N1, at least one of Co, Cu, Fe in. 例如,金属或金属镀层的上表面可以是由含有上述一种或多种元素形成的合金构成的。 For example, a metal or metal alloy plating layer on the surface may be formed by one or more elements comprising the above-described configuration. 含有上述金属元素的合金对形成石墨烯层具有催化作用,由此,有利于提高利用化学气相沉积在其上形成的石墨烯层的质量。 An alloy containing the above metal element having a catalytic effect on the formation of the graphene layer, thereby, help to improve the quality of chemical vapor deposition using a graphene layer formed thereon.

[0046]根据本发明的实施例,上述金属或金属镀层的上表面可以具有织构结构。 [0046] According to an embodiment of the present invention, the metal surface of the metal plating layer, or may have a textured structure. 由此,可以利用金属或者金属镀层上表面上多晶体取向分布明显偏离随机分布的织构结构,诱导形成在其上的石墨烯层也具有较为有序的结构,进而可以提高石墨烯层的质量,以便获得具有更好结晶质量的半导体层。 Thus, the alignment may be utilized on the upper surface of the polycrystalline metal or metal plating distribution deviates significantly from the random distribution of the textured structure, inducing the formation of the graphene layer thereon also has a more ordered structure, and further improving the quality of the graphene layer in order to obtain a semiconductor layer having a better crystal quality. 需要说明的是,形成上述织构结构的具体方法不受特别限制,本领域技术人员可以选择熟悉的方法,在金属衬底或者玻璃衬底上表面的金属镀层上形成织构结构。 Incidentally, a specific method for forming the above-described texture structure is not particularly limited, those skilled in the art can select methods familiar textured structure is formed on the surface of the metal plating layer on a metal substrate or a glass substrate. 例如,根据本发明的实施例,可以通过形变织构,即塑形变形以及退火的方法,形成上表面具有织构结构的金属衬底。 For example, according to embodiments of the present invention, can be textured by deformation, i.e. the deformation and annealing shaping method, is formed on the surface of a metal substrate having a textured structure. 具体地,可以首先对构成衬底的金属材料进行塑形变形,例如,将金属材料乳制成薄片,再通过再结晶退火,在其上表面形成织构结构。 Specifically, first, a metal material constituting the plastic deformation of the substrate is, for example, the milk is made of sheet metal material, and then by recrystallization annealing, a textured structure is formed on the surface thereof. 或者,可以在玻璃衬底上表面通过溅射沉积的方法形成金属镀层,例如通过离子束辅助沉积技术,通过调节溅射沉积的条件,利用溅射沉积时金属镀层生长的各向异性,通过缓慢的沉积速率或者对衬底加热等方法,形成具有织构结构的金属镀层。 Alternatively, the surface may be formed by sputtering a metal plating layer deposited on a glass substrate, e.g., by ion beam assisted deposition, by adjusting the conditions of the sputter deposition, sputter deposition using metal coating anisotropy grown by slow the deposition rate or the like for heating the substrate, forming a metal plating layer having a textured structure.

[0047]本领域技术人员能够理解的是,为了提高制备的半导体结构的质量,在进行后续步骤之前,可以对衬底进行清洗,以便除去衬底表面的油脂、灰尘等杂质,从而可以提高后续步骤的沉积效果。 [0047] Those skilled in the art will appreciate that, in order to improve the quality of the semiconductor structure is prepared, prior to the subsequent step, the substrate may be cleaned to remove grease substrate surface, dust and other impurities, which can improve the follow-up effect of deposition steps.

[0048] S200:设置石墨烯层 [0048] S200: Set graphene layer

[0049]根据本发明的实施例,在该步骤中,在衬底的上表面设置石墨烯层。 [0049] According to an embodiment of the present invention, in this step, the graphene layer disposed on a surface of the substrate. 具体地,石墨烯层可以通过化学气相沉积的方法,直接形成在衬底的上表面;或者,可以利用石墨烯转移技术,将在其他衬底材料表面形成的石墨烯层转移至根据本发明实施例的衬底的上表面上。 Specifically, the graphene layer by chemical vapor deposition, is formed directly on the surface of the substrate; alternatively, may utilize a graphene transfer technology, the graphene layer formed on the other surface of the substrate material is transferred to the embodiment of the present invention on the surface of the substrate of the embodiment. 具体地,可以在金属衬底或者具有金属镀层的玻璃衬底上表面,通过化学气相沉积直接形成石墨烯层。 Specifically, a glass substrate with a surface of the metal plating layer or a metal substrate, a graphene layer formed directly by chemical vapor deposition. 此时,优选金属衬底或者金属镀层的上表面具有织构结构。 In this case, preferably the upper surface of a metal substrate or a metal plating layer having a textured structure. 具有一定晶体取向的织构结构有利于提高形成在其上的石墨烯层的有序程度,进而可以提高后续半导体层的结晶质量。 Textured structure having a certain crystal orientation help to improve the degree of ordering in the formed graphene layer thereon, and further improving the crystalline quality of the subsequent semiconductor layers. 根据本发明的另一些实施例,也可以预先在其他衬底表面形成石墨烯层,然后利用转移技术,将其转移至根据本发明实施例的衬底表面。 According to other embodiments of the present invention, may be formed in advance on the other graphene layer substrate surface, then using the transfer technique, transferred to the substrate surface in accordance with an embodiment of the present invention. 此时,衬底可以为不具有金属镀层的玻璃。 In this case, the substrate may be a glass having no metal plating.

[0050]根据本发明的实施例,石墨烯层可以具有I〜10层的石墨烯单层。 [0050] According to an embodiment of the present invention, the graphene layer may have a single-layered graphene layer I~10. 具体地,根据本发明的实施例,石墨烯层可以具有I〜3层的石墨烯单层。 In particular, according to an embodiment of the present invention, the graphene layer may have a single-layered graphene layer I~3. 薄而有序排列的石墨烯层能够有效诱导半导体层形成较为有序的晶体择优取向,实现对半导体结构的性能进行调节。 Ordered graphene layer thin semiconductor layer can be formed more effective to induce an ordered crystal preferred orientation, to achieve the performance of the semiconductor structure is adjusted. 需要说明的是,在本发明中,术语“石墨烯单层”特指单原子层石墨烯,即石墨烯中仅含有一层有序排列的石墨结构,而术语“石墨烯层”可以为石墨烯单层,也可以为多个石墨烯单原子层组成的多层石墨烯。 Incidentally, in the present invention, the term "graphene monolayer" refers specifically to a single atomic layer graphene, i.e. graphene layer containing only a graphite structure is ordered, the term "graphene layer" may be graphite alkenyl monolayer of graphene may be a plurality of single atomic layer graphene layers.

[0051 ] S300:设置半导体层 [0051] S300: a semiconductor layer disposed

[0052]根据本发明的实施例,在该步骤中,在石墨烯层的上表面通过溅射沉积,形成半导体层。 [0052] According to an embodiment of the present invention, in this step, on the surface of the graphene layer is deposited by sputtering, forming a semiconductor layer. 由此,可以降低制备成本,简化制备工艺,并获得具有晶体择优取向的半导体层。 Accordingly, the production cost can be reduced, simplifying the manufacturing process, and obtain a semiconductor layer having a preferred crystal orientation.

[0053]下面根据本发明的具体实施例对溅射沉积过程进行详细描述。 [0053] Next, the sputter deposition process is described in detail according to specific embodiments of the present invention.

[0054] 根据本发明的实施例,半导体层可以含有GaAs、InGaAs、AIGaAs、GaSb、InGaSb、AlGaSb、S1、Ge以及SiGe的至少之一。 [0054] According to an embodiment of the present invention, the semiconductor layer may include GaAs, at least one of InGaAs, AIGaAs, GaSb, InGaSb, AlGaSb, S1, Ge and of SiGe. 上述材料形成的半导体层具有良好的物化性能,适于制备半导体光电器件。 Forming a semiconductor layer of the material having good physical and chemical properties, suitable for preparation of semiconductor optoelectronic device. 例如,根据本发明的实施例,当该半导体层中含有Si时,获得的半导体结构可以用于制备太阳能电池;当该半导体层中含有II1-V元素时,例如,当半导体层中含有GaAs、InGaAs、AlGaAs等成分时,该半导体结构可以应用于太阳能电池。 For example, according to embodiments of the present invention, when the semiconductor layer containing Si, a semiconductor structure obtained may be used for the preparation of a solar cell; when the semiconductor layer comprises II1-V elements, for example, when the semiconductor layer comprises GaAs, when component InGaAs, AlGaAs, etc., may be applied to the semiconductor structure of the solar cell. 发明人经过深入研究发现,上述材料多数为立方晶系,因此采用常规的溅射沉积或者化学气相沉积工艺在玻璃或者金属衬底上不易形成晶体的择优取向。 The inventors found through in-depth study, the majority of the above materials is a cubic system, thus using a conventional sputter deposition or chemical vapor deposition process is difficult to form a preferred orientation of crystals on a glass or metal substrate. 如前所述,石墨烯层具有二维层状结构,诱导半导体层在垂直于石墨烯层的方向上形成规则的排列,即具有择优取向,且石墨烯为电、热的良导体,因此,在石墨烯层上形成半导体层,不仅可以利用石墨烯层的二维层状结构诱导半导体层的形成,使上述材料形成的半导体层也具有择优取向,且石墨烯层的引入还可以进一步提高半导体结构的性能。 As previously described, the graphene layer has a two-dimensional layered structure, inducing semiconductor layer are arranged in a direction perpendicular to the graphene layer form a regular, i.e., have a preferred orientation, and the graphene is electrically and thermally good conductor, and therefore, two-dimensional layered structure forming a semiconductor layer on the graphene layer, not only the graphene layer may be utilized to induce formation of the semiconductor layer, the semiconductor layer formed above materials also have a preferred orientation, and the introduction of the graphene layer can be further improved semiconductor performance of the structure.

[0055]根据本发明的实施例,可以采用溅射沉积或化学气相沉积形成半导体层。 [0055] According to an embodiment of the present invention, sputter deposition or chemical vapor deposition layer is formed using a semiconductor. 由于半导体层是形成在石墨烯层上方,因此在利用上述方法制备半导体层时,可以利用石墨烯层对半导体层的诱导作用,降低上述制备方法对合成条件以及生产设备的要求,从而有利于降低利用该方法生产半导体结构的生产成本。 Since the semiconductor layer is formed over the graphene layer, so when using the above-described method of making a semiconductor layer, using the induction of the graphene layer of the semiconductor layer is reduced by the above preparation method requires the synthesis conditions and manufacturing equipment, thereby facilitating a reduction produced by the method of the production cost of the semiconductor structure. 具体地,可以采用磁控溅射沉积或离子束溅射沉积形成半导体层。 Specifically, the semiconductor layer may be formed by magnetron sputtering deposition or ion beam sputter deposition. 发明人经过大量实验发现,不仅石墨烯层能够诱导半导体层形成晶体的择优取向,溅射沉积的速率对形成的半导体层的晶体结构也具有重要影响。 After many experiments the inventors found that not only is capable of inducing the graphene layer is formed preferentially oriented crystal semiconductor layer, the rate of sputter deposition also has an important influence on the crystal structure of the semiconductor layer formed. 溅射沉积速度慢有利于形成具有晶体择优取向的半导体层。 Slow sputter deposition facilitates the formation of a semiconductor layer having a preferred crystal orientation. 利用磁控溅射或者离子束溅射可以较好地控制沉积速率,从而可以控制沉积的半导体层的晶体结构,形成具有晶体择优取向而非混乱排布的多晶的半导体层。 By magnetron sputtering or ion beam sputtering deposition rate can be better controlled, thereby controlling the crystal structure of the semiconductor layer is deposited, forming a polycrystalline semiconductor layer having a preferred crystal orientation rather chaotic arrangement. 根据本发明的实施例,溅射沉积还可以为脉冲式溅射沉积或离子束辅助溅射沉积。 According to an embodiment of the present invention, the sputter deposition may also be pulsed ion beam assisted sputter deposition or sputter deposition. 脉冲式溅射沉积由于采用了脉冲电源代替直流电源进行溅射沉积,可以有效控制沉积速度,增强沉积原子的迀移,促进晶体择优取向的形成;采用离子束辅助溅射沉积,利用离子束辅助轰击沉积基片(即陶瓷、金属或玻璃衬底),可以提高沉积凝聚粒子的能量以及稳定性,同时消除沉积表面的缺陷及非择优取向的晶粒,有利于提高沉积形成的半导体层的质量,形成具有择优取向的半导体层。 Since the pulse sputter deposition using a DC power supply pulse power supply in place of sputtering deposition, can effectively control the deposition rate, the deposition enhancing Gan shift atoms, promote the formation of crystals of preferred orientation; ion beam assisted sputter deposition, ion beam assisted bombardment deposition substrate (i.e., ceramic, metal or glass substrate), can increase the deposition energy of the aggregated particles and stability, while eliminating crystal defects and non-preferred orientation of the deposition surface, it helps improve the quality of the semiconductor layer is formed by deposition forming a semiconductor layer having a preferred orientation. 具体地,根据本发明的实施例,可以控制溅射沉积的溅射速率小于10nm/小时;根据本发明的另一些实施例,可以控制溅射沉积的溅射速率小于30nm/小时。 In particular, according to an embodiment of the present invention can be controlled sputter deposition sputtering rate is less than 10nm / hr; according to other embodiments of the present invention, sputter deposition sputtering rate can be controlled less than 30nm / hr. 发明人经过大量实验发现,当溅射速率小于上述数值时,能够形成结晶质量较高的半导体层,沉积速率越低,则获得的晶体的择优取向越好。 After many experiments the inventors found that, when the sputtering rate than indicated above, capable of forming a high quality crystalline semiconductor layer, the lower the deposition rate, the better the preferred orientation of the crystals is obtained. 对于半导体层为GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb、S1、Ge或SiGe这些材料时,其晶体结构为立方结构,可以利用X射线衍射(XRD)测量其(004)晶面的半高宽,在上述条件下形成的半导体层(004)晶面的XRD衍射峰的半高宽可以小于5度。 The semiconductor layer is a GaAs, InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb, S1, when Ge or SiGe these materials, the crystal structure is a cubic structure, can be measured (004) plane by X-ray diffraction (XRD) of the half-height wide, XRD diffraction peaks of (004) crystal surface of the semiconductor layer formed under the above conditions FWHM can be less than 5 degrees. 由此,可以利用脉冲式溅射沉积或者离子束辅助溅射沉积提高获得的半导体层的结晶质量。 Thereby, it is possible using the pulsed ion beam assisted sputter deposition or sputter deposition to improve the crystal quality of the semiconductor layer is obtained. 发明人经过大量实验发现,对于常规的磁控溅射来说,沉积半导体层时其沉积速率很容易达到100nm/小时甚至更高,此时很难获得具有择优取向的半导体层,往往需要利用脉冲磁控溅射或者离子束辅助溅射沉积工艺,将其沉积速率大幅度降低至10nm/小时以下,则能够获得具有择优取向的半导体层。 The inventors have found through a lot of experiments, for a conventional magnetron sputtering, the deposited semiconductor layer deposition rate easily reached 100nm / h or even higher, it is difficult at this time to obtain a semiconductor layer having a preferred orientation, often requires the use of pulse magnetron sputtering or ion beam assisted sputter deposition process, the deposition rate significantly decreased to 10nm / hr or less, it is possible to obtain a semiconductor layer having a preferred orientation.

[0056]根据本发明的实施例,在该步骤中,可以通过在溅射过程中对衬底进行加热,形成具有晶体择优取向的半导体层。 [0056] According to an embodiment of the present invention, in this step, the substrate may be heated by the sputtering process, a semiconductor layer having a preferred crystal orientation. 发明人经过大量实验发现,溅射沉积的衬底温度越高,则晶体的择优取向性越好。 After many experiments the inventors found that the higher the temperature of the substrate is sputter deposited, the better the preferred orientation of the crystal. 具体地,可以通过加热使溅射沉积时衬底温度不小于300摄氏度。 Specifically, by heating sputter deposited upon the substrate temperature is not less than 300 degrees Celsius. 发明人经过深入研究以及大量实验发现,对于半导体层,当沉积时衬底温度低于300摄氏度时,形成的半导体层多为没有晶体择优取向的多晶结构。 The inventors have intensively studied and found that a large number of experiments, the semiconductor layer, when the substrate temperature during deposition is below 300 degrees Celsius, a semiconductor layer formed mostly no crystal preferred orientation polycrystalline structure. 当衬底温度升高至300〜500摄氏度时,有利于使形成的晶体具有择优取向。 When the substrate temperature was raised to 300~500 ° C, favor formation of crystals having a preferred orientation. 并且,在上述加热温度下进行溅射沉积,也不会对金属或是玻璃衬底造成影响。 Further, sputtering deposition at the heating temperature, will not affect a metal or glass substrate. 而上述温度的加热不仅不会对衬底之上的石墨烯层造成影响,而且可以除去石墨烯层之中吸附的部分有机杂质,或是在化学气相沉积制备石墨烯的过程中形成的无定形结构,从而可以进一步提高石墨烯层的有序程度。 Heating up the temperature will not affect only the graphene layer over a substrate, and the graphene layer can be removed in the adsorbing part of the organic impurities, amorphous or formed during the preparation of graphene chemical vapor deposition structure, the degree of ordering can be further improved graphene layer. 由此,可以简便地通过对衬底进行加热,获得半导体层,从而可以降低沉积步骤对设备的要求,简化制备工艺,降低生产成本。 Thereby, it is possible simply by heating the substrate, a semiconductor layer is obtained, which can reduce the deposition step of the equipment required, simplifying the manufacturing process and reduce the production cost.

[0057]根据本发明的另一些实施例,在该步骤中,也可以通过在常温下对靶材进行溅射沉积或者化学气相沉积,例如,进行衬底不加热的磁控溅射沉积或者沉积温度较低的化学气相沉积,在石墨烯层的上表面沉积形成具有多晶或非晶结构的半导体混合体。 [0057] According to other embodiments of the present invention, in this step, may be deposited by sputtering a target, or chemical vapor deposition at room temperature, e.g., a substrate is not heated magnetron sputtering deposition or low temperature chemical vapor deposition, on the surface of the graphene layer is deposited mixture is formed having a semiconductor polycrystalline or amorphous structure. 本领域技术人员能够理解的是,前面所述的“衬底加热”,即是对衬底进行加热处理,而由于形成在其上的石墨烯层只含有I〜10层单层石墨烯,且石墨烯为热的良导体,因此对衬底进行加热,即也包含对形成在衬底上表面的石墨烯层进行加热。 Those skilled in the art will appreciate that the aforementioned "substrate heating", i.e. the substrate is subjected to heat treatment, and because the graphene layer formed thereon contains only I~10 graphene layer, and graphene is a good conductor of heat, thus heating the substrate, i.e. also comprising graphene layer formed on the substrate surface is heated. 需要说明的是,在本发明中,术语“半导体混合体”特指常温或低温下对靶材进行溅射沉积形成的、具有多晶结构,但无较好的择优取向,即晶格取向不趋于一致的结构。 Incidentally, in the present invention, the term "semiconductor mixture" are specific for the target sputtering deposition is formed at normal or low temperature, it has a polycrystalline structure, but preferably no preferred orientation, i.e. the orientation of the crystal lattice is not It tends to be consistent structure. 然后,对形成的半导体混合体进行退火处理,使其转化为具有择优取向的晶体结构,从而可以提高半导体混合体的结晶质量,获得根据本发明实施例的半导体层。 Then, the semiconductor mixture formed is annealed to convert it to have a preferred orientation of the crystal structure, which can improve the crystalline quality of the semiconductor mixture obtained a semiconductor layer according to embodiments of the present invention. 发明人经过大量实验发现,退火的时间越长,则半导体层的晶体质量越好。 The inventors have found through a lot of experiments, the longer the annealing time, the better the crystalline quality of the semiconductor layer. 由此,可以简便地通过退火获得半导体层,有利于进一步降低沉积步骤对设备的要求,简化制备工艺,降低生产成本。 This can easily be obtained by annealing the semiconductor layer, it helps to further reduce the equipment requirements deposition step, simplifying the manufacturing process and reduce the production cost. 根据本发明的再一些实施例,在该步骤中,还可以通过在高温下对靶材进行溅射沉积,例如,在磁控溅射的过程中对衬底加热,可以使衬底温度为300-500摄氏度左右,在石墨烯层的上表面沉积形成具有晶体择优取向的半导体层,随后对形成的半导体层进行退火处理,从而可以进一步改善半导体层的结晶质量,获得高质量的具有晶体择优取向甚至高质量的单晶结构的半导体层。 According to another embodiment of the present invention to some embodiments, this step may also be deposited by sputtering a target at an elevated temperature, e.g., heating the substrate in the process of magnetron sputtering, it is possible that the substrate temperature is 300 about -500 degrees Celsius, on the surface of the graphene layer is deposited forming a semiconductor layer having a preferred crystal orientation, a semiconductor layer formed subsequent annealing treatment, thereby further improving the crystalline quality of the semiconductor layer, high-quality crystal having a preferred orientation even a high-quality single crystal semiconductor layer structure. 具体的,退火处理的温度可以为600〜1200摄氏度。 Specifically, the temperature of the annealing treatment may be 600~1200 ° C. 根据本发明的另一些实施例,退火处理的温度还可以为800〜1000摄氏度。 According to other embodiments of the invention, the temperature of the annealing treatment may also be 800~1000 ° C. 由此,可以进一步提高半导体层的结晶质量。 Thereby, it is possible to further improve the crystalline quality of the semiconductor layer. 本领域技术人员能够理解的是,当需要对半导体层进行退火处理时,需要使用耐高温的金属作为衬底。 Those skilled in the art will appreciate that when the semiconductor layer needs an annealing process is necessary to use high temperature resistant metal as the substrate.

[0058]在本发明的另一方面,本发明提出了一种半导体结构。 [0058] In another aspect of the present invention, the present invention provides a semiconductor structure. 根据本发明的实施例,参考图2,该半导体结构包括:衬底100、石墨稀层200以及半导体层300。 According to an embodiment of the present invention 2, the semiconductor structure with reference to FIG comprising: 100, 200 and the graphene layer of the substrate 300 of the semiconductor layer. 其中,石墨稀层200形成在衬底100的上表面上,半导体层300形成在石墨烯层200的上表面,且半导体层300具有晶体择优取向。 Wherein the graphene layer 200 formed on the upper surface of the substrate 100, the semiconductor layer 300 is formed on the surface of the graphene layer 200, and the semiconductor layer 300 has a preferred crystal orientation. 具有晶体择优取向的半导体层有利于后续利用该半导体结构构成半导体器件。 Crystalline semiconductor layer having a preferred orientation facilitates the subsequent use of the semiconductor device of a semiconductor structure.

[0059]具体地,衬底100可以是由陶瓷、玻璃或金属形成的。 [0059] Specifically, the substrate 100 may be formed of ceramic, glass or metal. 具体地,当采用玻璃作为衬底100时,玻璃上表面可以具有金属镀层。 In particular, when using glass as the substrate 100, the glass surface may have metal plating. 由此,可以直接在金属镀层上通过化学气相沉积的方法形成石墨烯层200,从而有利于提高石墨烯层200以及玻璃衬底之间的结合质量,进而可以提高该半导体结构的性能。 This can be formed directly on the metal plating layer by chemical vapor deposition of the graphene layer 200, thus help to improve the quality of binding between the graphene layer 200, and a glass substrate, and further improving the performance of the semiconductor structure. 根据本发明的实施例,采用金属作为衬底100时,可以选择高温合金形成上述衬底。 According to an embodiment of the present invention, as the metal substrate 100 may be selected to form the superalloy substrate. 由此,一方面可以防止金属衬底在后续的高温过程熔化,另一方面可以缓解衬底金属元素在高温环境中的扩散,进而可以防止衬底中的金属元素扩散而对该半导体结构的性能造成负面影响。 Thus, on the one hand the molten metal substrate can be prevented in the subsequent high-temperature process, on the other hand can relieve diffusion of the substrate metal element in a high temperature environment, and thus possible to prevent diffusion of a metal element substrate and the performance of the semiconductor structure negative impact. 根据本发明的实施例,上述金属或金属镀层的上表面可以含有附、0)、01、? According to an embodiment of the present invention, the metal surface of the metal plating layer, or may contain attached, 0), 01 ,? 6中的至少之一。 6 At least one. 具体的,金属或金属镀层的上表面可以为含有附、0)、Cu、Fe中的一种或多种形成的合金。 Specifically, a metal or a metal plating layer on the surface may contain attached, 0), Cu, or an Fe alloy is formed more. 含有上述金属元素的合金对形成石墨烯层具有催化作用,由此,有利于提高利用化学气相沉积在其上形成的石墨烯层200的质量。 An alloy containing the above metal element having a catalytic effect on the formation of the graphene layer, thereby, help to improve the quality of chemical vapor deposition using the graphene layer 200 formed thereon. 根据本发明的实施例,上述金属或金属镀层的上表面可以具有织构结构。 According to an embodiment of the present invention, the metal surface of the metal plating layer, or it may have a textured structure. 由此,可以利用金属或者金属镀层上表面上多晶体取向分布明显偏离随机分布的织构结构,诱导形成在其上的石墨烯层200也具有较为有序的结构,进而可以提高石墨烯层200的质量,以便获得具有更好结晶质量的半导体层300。 Thus, the alignment may be utilized on the upper surface of the polycrystalline metal or metal plating distribution deviates significantly from the random distribution of the textured structure, inducing the formation thereof on the graphene layer 200 also has a more ordered structure, and further improving the graphene layer 200 quality, so as to obtain a semiconductor layer 300 having a better crystal quality. 形成上述织构结构的方法可以与前面描述的制备半导体结构的方法中形成织构结构的方法具有相同的特征以及优点,在此不再赘述。 The method of forming the textured structure of the method of textured structure may be formed to have the same features and advantages of the method of making a semiconductor structure previously described, are not repeated here.

[0060]需要说明的是,石墨烯层200可以具有与前面描述的制备半导体结构的方法中的石墨烯层相同的特征以及优点,在此不再赘述。 [0060] Incidentally, the graphene layer 200 may have features and methods of making a semiconductor structure as previously described in the graphene layer, and the same advantages are not repeated here. 由此,可以利用石墨烯层200具有的有序结构,诱导形成在其上的半导体层300形成具有晶体择优取向的结构,从而可以提高该半导体结构的性能。 Accordingly, the graphene layer 200 may be utilized with ordered structure, induces the formation of crystals having a preferred orientation structure is formed in which the semiconductor layer 300, thereby improving the performance of the semiconductor structure.

[0061]根据本发明的实施例,半导体层300的具体组成可以具有与前面描述的制备半导体结构的方法中的半导体层相同的特征以及优点,在此不再赘述。 [0061] According to an embodiment of the present invention, the specific composition of the semiconductor layer 300 may have a method of making a semiconductor structure with the previously described features of the semiconductor layer, and the same advantages are not repeated here. 例如,半导体层300可以含有GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb、S1、Ge 以及SiGe 的至少之一。 For example, the semiconductor layer 300 may include GaAs, at least one of InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb, S1, Ge and of SiGe. 通常,具有立方晶系结构的上述半导体层300,很难实现晶体的择优取向,如要实现晶体的择优取向,则对制备条件具有较高要求。 Typically, the semiconductor layer 300 has a cubic crystal structure, is difficult to achieve preferential orientation of the crystals, such as to achieve preferential orientation of the crystals, have a high requirement for the preparation conditions. 发明人经过深入研究以及大量实验发现,将半导体层300设置在石墨烯层200的上表面上,可以有效利用石墨烯层200的二维层状结构,诱导半导体层300的形成,从而可以在较为温和的制备条件下,获得具有晶体择优取向的半导体层300。 The inventors have intensively studied and found that a large number of experiments, the upper surface of the graphene layer 200, semiconductor layer 300 can be effectively utilized is provided a two-dimensional layered structure of the graphene layer 200, induce the formation of semiconductor layer 300, it can be in the more prepared under mild conditions to obtain a crystal semiconductor layer 300 having a preferred orientation. 例如,半导体层300可以是通过溅射沉积或者化学气相沉积形成的。 For example, semiconductor layer 300 may be formed by sputter deposition or chemical vapor deposition. 根据本发明的实施例,除了可以通过石墨烯层200对半导体层300的诱导作用提高半导体层300的结晶质量,还可以通过降低溅射速率、提高溅射时衬底温度等方式,或者通过后续退火处理,改善溅射形成的半导体层的结晶质量。 According to an embodiment of the present invention, in addition to improve the crystal quality of the semiconductor layer 300 by the induction of the graphene layer 200, the semiconductor layer 300, but also by reducing the rate of sputtering, the substrate temperature increase during sputtering, etc., or by subsequent annealing treatment, to improve the crystal quality of the semiconductor layer is formed by sputtering. 由此,可以在保证半导体层质量的同时,降低制备成本,简化制备工艺。 Thereby, it is possible to ensure the quality of the semiconductor layer while reducing production cost, simplify the manufacturing process. 例如,可以采用磁控溅射沉积或离子束溅射沉积形成半导体层300。 For example, magnetron sputtering or ion beam sputtering deposition semiconductor layer 300 is formed may be employed. 发明人经过大量实验发现,溅射沉积的速率对形成的氮化物半导体的晶体结构具有重要影响。 The inventors have found through a lot of experiments, the rate of sputter deposition has a significant impact on the crystal structure of the nitride semiconductor is formed. 溅射沉积速度慢有利于形成半导体层300。 Slow sputter deposition facilitates the formation of semiconductor layer 300. 利用磁控溅射或者离子束溅射可以较好地控制沉积速率,从而可以形成具有晶体择优取向的半导体层300。 By magnetron sputtering or ion beam sputtering deposition rate can be better controlled, thereby forming a semiconductor layer 300 having a preferred crystal orientation. 具体地,根据本发明的实施例,可以控制溅射沉积的溅射速率小于10nm/小时;根据本发明的另一些实施例,可以控制溅射沉积的溅射速率小于30nm/小时。 In particular, according to an embodiment of the present invention can be controlled sputter deposition sputtering rate is less than 10nm / hr; according to other embodiments of the present invention, sputter deposition sputtering rate can be controlled less than 30nm / hr. 发明人经过大量实验发现,当溅射速率小于上述数值时,能够形成结晶质量较高的半导体层,沉积速率越低,则获得的晶体的择优取向越好。 After many experiments the inventors found that, when the sputtering rate than indicated above, capable of forming a high quality crystalline semiconductor layer, the lower the deposition rate, the better the preferred orientation of the crystals is obtained. 根据本发明的实施例,溅射沉积还可以为脉冲式溅射沉积或离子束辅助溅射沉积。 According to an embodiment of the present invention, the sputter deposition may also be pulsed ion beam assisted sputter deposition or sputter deposition. 脉冲式溅射沉积由于采用了脉冲电源代替直流电源进行溅射沉积,可以有效控制沉积速度,增强沉积原子的迀移,促进晶体择优取向的形成;采用离子束辅助溅射沉积,利用离子束辅助轰击沉积基片(即衬底100),可以提高沉积凝聚粒子的能量以及稳定性,同时消除沉积表面的缺陷及非择优取向的晶粒,有利于提高沉积形成的半导体层300的质量。 Since the pulse sputter deposition using a DC power supply pulse power supply in place of sputtering deposition, can effectively control the deposition rate, the deposition enhancing Gan shift atoms, promote the formation of crystals of preferred orientation; ion beam assisted sputter deposition, ion beam assisted bombardment deposition substrate (i.e., substrate 100), the deposition quality can be improved and the stability of the energy of the aggregated particles, while eliminating the defects of non-preferred oriented grains and the deposition surface, to improve the deposition of the semiconductor layer 300 is formed. 由此,可以利用脉冲式溅射沉积或者离子束辅助溅射沉积提高获得的半导体层300的结晶质量。 Thereby, it is possible using the pulsed ion beam assisted sputter deposition or sputter deposition to improve the crystal quality of the semiconductor layer 300 is obtained. 发明人经过大量实验发现,对于常规的磁控溅射来说,沉积半导体层时其沉积速率很容易达到100nm/小时甚至更高,此时很难获得具有择优取向的半导体层,往往需要利用脉冲磁控溅射或者离子束辅助溅射沉积工艺,将其沉积速率大幅度降低至10nm/小时以下,则能够获得具有择优取向的半导体层。 The inventors have found through a lot of experiments, for a conventional magnetron sputtering, the deposited semiconductor layer deposition rate easily reached 100nm / h or even higher, it is difficult at this time to obtain a semiconductor layer having a preferred orientation, often requires the use of pulse magnetron sputtering or ion beam assisted sputter deposition process, the deposition rate significantly decreased to 10nm / hr or less, it is possible to obtain a semiconductor layer having a preferred orientation.

[0062]根据本发明的实施例,可以在溅射沉积时对衬底进行加热,使衬底100的温度大于300摄氏度。 [0062] According to an embodiment of the present invention, the substrate is heated during sputtering deposition, the temperature of substrate 100 is greater than 300 degrees Celsius. 由此,可以提高半导体层300的结晶质量。 Thereby, it is possible to improve the crystalline quality of the semiconductor layer 300. 此处衬底100的温度与前面描述的制备半导体结构的方法中对衬底进行加热的温度相同,关于溅射沉积时对衬底进行加热的温度,前面已经进行了详细的描述,在此不再赘述。 The method of preparing the same temperature and the temperature of the semiconductor structure of the front substrate 100 will be described herein in the substrate is heated, the temperature for heating on the substrate during sputter deposition, have already been described in detail, which is not then repeat. 或者,根据本发明的另一些实施例,半导体层300可以通过溅射沉积和退火处理形成的。 Alternatively, according to other embodiments of the present invention, the semiconductor layer 300 can be formed by sputter deposition and annealing process. 具体地,可以在室温下,利用溅射沉积或是化学气相沉积形成半导体混合体,然后通过退火处理,改善半导体混合体的结晶质量,从而可以获得具有晶体择优取向的半导体层300。 Specifically, at room temperature, is deposited by sputtering or chemical vapor deposition semiconductor mixture, and then the annealing process, to improve the quality of the semiconductor crystal of the mixture, can be obtained crystal semiconductor layer 300 having a preferred orientation. 根据本发明的一些实施例,退火处理的温度可以为600〜1200摄氏度。 According to some embodiments of the present invention, the temperature of the annealing treatment may be 600~1200 ° C. 根据本发明的另一些实施例,退火处理的温度还可以为800〜1000摄氏度。 According to other embodiments of the invention, the temperature of the annealing treatment may also be 800~1000 ° C. 由此,可以进一步提高半导体层的结晶质量。 Thereby, it is possible to further improve the crystalline quality of the semiconductor layer.

[0063]根据本发明的实施例,半导体层300的(004)晶面的XRD衍射峰的半高宽小于5度。 [0063] According to an embodiment of the present invention, the half XRD diffraction peak (004) crystal surface of the semiconductor layer 300 is a high width less than 5 degrees. 对于半导体层为GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb、S1、Ge或SiGe等材料时,其晶体结构为立方结构,可以利用X射线衍射(XRD)测量其(004)晶面的半高宽。 The semiconductor layer is a GaAs, when InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb, S1, Ge, or the like SiGe material, the crystal structure is a cubic structure, can be measured (004) plane by X-ray diffraction (XRD) of the half-height width. 由此,可以保证半导体层300具有较好的结晶质量,从而可以降低形成的半导体层300中的缺陷,有利于提高利用该半导体结构制备的各类半导体器件的使用功能。 Thereby, it is possible to ensure the semiconductor layer 300 has good crystal quality, which can reduce defects in the semiconductor layer 300 formed in, help to improve the utilization of various types of functions using a semiconductor device prepared using the semiconductor structure.

[0064]需要说明的是,本发明前面描述的半导体结构可以应用于制备电子器件。 [0064] Incidentally, the semiconductor structure described earlier in this disclosure may be applied to making an electronic device. 由于该电子器件中含有前面描述的半导体结构,因此该电子器件具有前面描述的半导体结构的全部特征以及优点,在此不再赘述。 Since the electronic device comprises the semiconductor structure described above, so that the electronic device having all of the features and advantages of the semiconductor structure described above, are not repeated here. 简单来说,该电子器件具有制备方法简便、成本低廉、无需高昂的设备等优点。 Briefly, the method of preparing an electronic device having a simple, low cost, without significant advantage of the apparatus and the like. 并且,该电子器件的半导体结构中具有含有晶体择优取向的半导体层,从而可以提高该电子器件的整体器件性能。 Further, the structure of the semiconductor electronic device having a semiconductor layer containing a crystal preferred orientation, thereby improving the overall performance of the device of the electronic device. 需要说明的是,在本发明中,电子器件的具体种类不受特别限制,本领域技术人员可以根据半导体结构中的具体组成进行选择。 Incidentally, in the present invention, the specific type of the electronic device is not particularly limited, those skilled in the art can be selected according to the specific composition of the semiconductor structure. 例如,当半导体层中含有II1-V族化合物半导体材料时,如GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb等成分时,该半导体结构可以应用于太阳能电池或发光二极管等光电器件;当半导体层中含有S1、Ge、SiGe等材料时,可以应用于太阳能电池等器件。 For example, when the II1-V group compound semiconductor layer contains a semiconductor material, such as components GaAs, InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb or the like, the semiconductor structure may be applied to a solar cell photovoltaic device or a light emitting diode; when the semiconductor layer when contained in S1, Ge, SiGe and other materials, it may be applied to a solar cell device.

[0065]下面通过具体实施例对本发明进行说明,需要说明的是,下面的具体实施例仅仅是用于说明的目的,而不以任何方式限制本发明的范围,另外,如无特殊说明,则未具体记载条件或者步骤的方法均为常规方法,所采用的试剂和材料均可从商业途径获得。 [0065] carried out by the following specific examples illustrate the present invention, it is noted that the following specific examples are merely for illustrative purposes, not in any way limit the scope of the present invention, further, if no special instructions, the the method steps not specifically described or conditions are conventional methods, the reagents and materials employed are available from commercial sources. 其中,生长设备使用为LAB18磁控溅射仪。 Wherein the growth apparatus used for the LAB18 magnetic sputtering.

[0066]实施例:镍基高温合金衬底上生长石墨稀层和GaAs半导体层 Graphene layer grown on nickel-based superalloy substrate and a GaAs semiconductor layer: Example [0066] Embodiment

[0067]采用镍基高温合金(GH3536)作为衬底,通过乳制和1000摄氏度氮气氛下退火2小时,形成具有织构的高温合金薄片。 [0067] The nickel-based superalloy (GH3536) as a substrate, by annealing at 1000 degrees Celsius and dairy a nitrogen atmosphere for 2 hours to form a sheet having a high temperature alloy texture. 对该薄片清洗后烘干。 Drying the sheet after washing.

[0068]首先制备石墨烯层:将该高温合金薄片放入化学气相沉积系统中,加热到1000摄氏度,气压200Torr,甲烷流量50ml/min,氩气流量500ml/min,然后迅速降温到室温,降温是氩气流量2000ml/min,氢气流量500ml/min,降温速度10度/秒。 [0068] was first prepared graphene layer: the high temperature alloy flakes into a chemical vapor deposition system, heated to 1000 ° C, pressure of 200 Torr, the methane flow rate of 50ml / min, argon flow rate of 500ml / min, then rapidly cooled to room temperature, cooling argon flow rate of 2000ml / min, hydrogen flow rate of 500ml / min, cooling rate of 10 degrees / sec. 降温后在高温合金薄片表面获得石墨烯层。 Obtaining a graphene layer superalloy sheet surface after cooling.

[0069]然后利用磁控溅射沉积GaAs半导体层,选择脉冲磁控溅射,GaAs粉末压制块为靶材,溅射功率200W,脉冲电源的占空比为0.05,真空度IE—7torr,溅射氩气压1mtorr,衬底温度450摄氏度,控制生长速度30nm/h左右。 [0069] and then use a GaAs semiconductor layer is deposited by magnetron sputtering, magnetron sputtering selection pulse, GaAs pressed powder target block is the duty cycle, a sputtering power of 200W, a pulse power of 0.05, the degree of vacuum IE-7torr, splash exit 1 mTorr argon pressure, substrate temperature 450 degrees Celsius, controlling the growth rate is about 30nm / h. 获得氮化物半导体层厚度为30nm。 Obtaining a nitride semiconductor layer having a thickness of 30nm. 随后,对溅射获得的薄膜进行氮气氛下退火处理,退火温度800摄氏度,退火时间2小时。 Subsequently, the film obtained by sputtering is annealed under a nitrogen atmosphere, 800 ° C annealing temperature, the annealing time of 2 hours.

[0070] 通过对获得的GaAs的XRD分析表明,其(004)峰的半高宽为3.5度,说明GaAs具有较好的晶体择优取向。 [0070] of the GaAs obtained by XRD analysis showed that the (004) peak width at half maximum is 3.5 degrees, indicating good crystal GaAs having a preferred orientation.

[0071]在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。 [0071] In the description of the present specification, reference to the term "one embodiment," "some embodiments", "an example", "a specific example", or "some examples" means that a description of the exemplary embodiment or embodiments described a particular feature, structure, material, or characteristic is included in at least one embodiment of the present invention, embodiments or examples. 在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。 In the present specification, a schematic representation of the above terms must not be the same for the embodiment or exemplary embodiments. 而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。 Furthermore, the particular features, structures, materials, or characteristics described may be in any one or more embodiments or examples combined in suitable manner. 此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。 Furthermore, different embodiments or examples and embodiments or features of different exemplary embodiments without conflicting, those skilled in the art described in this specification can be combined and the combination thereof.

[0072]此外,在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。 [0072] In the present invention, the terms "first", "second" are used to indicate or imply relative number of features of importance or implicitly specify the indicated purpose of description and should not be understood. 由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。 Thus, there is defined "first", "second" features may be explicitly or implicitly include at least one of the feature.

[0073] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。 [0073] Although the above has been illustrated and described embodiments of the present invention, it is understood that the above embodiments are exemplary and are not to be construed as limiting the present invention, within the scope of the invention to those of ordinary skill in the art It may be variations of the above embodiments, modifications, alternatives, and modifications.

Claims (19)

1.一种制备半导体结构的方法,其特征在于,包括: (1)提供衬底; (2)在所述衬底上表面设置石墨烯层;以及(3)在所述石墨烯层的上表面形成半导体层,所述半导体层具有晶体择优取向。 A method of preparing a semiconductor structure, characterized by comprising: (1) providing a substrate; (2) the surface of the graphene layer disposed on said substrate; and (3) on the graphene layer formed on the surface of the semiconductor layer, the semiconductor layer has a crystal preferred orientation.
2.根据权利要求1所述的方法,其特征在于,步骤(3)进一步包括: 在所述石墨烯层的上表面形成半导体混合体,对所述半导体混合体进行退火处理,以便获得所述半导体层。 2. The method according to claim 1, wherein step (3) further comprises: forming a mixture of a semiconductor on the surface of the graphene layer, the semiconductor mixture is annealed so as to obtain said The semiconductor layer.
3.根据权利要求1或2所述的方法,其特征在于,所述半导体层含有GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb、S1、Ge 以及SiGe 的至少之一。 3. The method of claim 1 or claim 2, wherein said semiconductor layer contains at least one of GaAs, InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb, S1, Ge and of SiGe.
4.根据权利要求1所述的方法,其特征在于,所述衬底是由玻璃或金属形成的。 4. The method according to claim 1, wherein the substrate is formed of glass or metal.
5.根据权利要求4所述的方法,其特征在于,所述玻璃上表面具有金属镀层。 The method according to claim 4, characterized in that the surface has a metal coating on the glass.
6.根据权利要求4所述的方法,其特征在于,所述金属包括高温合金。 6. The method as claimed in claim 4, wherein said metal comprises a superalloy.
7.根据权利要求4或5所述的方法,其特征在于,所述金属或所述金属镀层的上表面含有N1、Co、Cu、Fe中的至少之一。 The method according to claim 4 or claim 5, characterized in that the surface of the metal or the metal plating layer containing N1, at least one of Co, Cu, Fe in.
8.根据权利要求4或5所述的方法,其特征在于,所述金属或所述金属镀层的上表层具有织构结构。 8. The method according to claim 4 or claim 5, wherein the metal or the metal plating layer on the surface layer having a textured structure.
9.根据权利要求1或2所述的方法,其特征在于,所述石墨烯层含有I〜10层石墨烯单层。 9. The method of claim 1 or claim 2, wherein said graphene layer containing a single-layer graphene I~10.
10.根据权利要求2所述的方法,其特征在于,步骤(3)进一步包括:利用溅射沉积或化学气相沉积形成所述半导体层或所述半导体混合体; 任选地,所述溅射沉积为磁控溅射沉积或离子束溅射沉积。 10. The method according to claim 2, wherein the step (3) further comprising: forming the semiconductor layer or the semiconductor mixture is deposited by sputtering or chemical vapor deposition; Optionally, the sputtering as magnetron sputtering deposition or ion beam sputter deposition.
11.根据权利要求10所述的方法,其特征在于,所述溅射沉积为脉冲式溅射沉积或离子束辅助溅射沉积; 任选地,所述溅射沉积的溅射速率小于10nm/小时。 11. The method according to claim 10, characterized in that the sputtering deposition is a pulsed ion beam assisted sputter deposition or sputter deposition; Optionally, the sputter deposition sputtering rate is less than 10nm / hour.
12.根据权利要求10所述的方法,其特征在于,所述溅射沉积或所述化学气相沉积时衬底温度不小于300摄氏度。 12. The method according to claim 10, wherein, when the sputter deposition or chemical vapor deposition, the substrate temperature is not less than 300 degrees Celsius.
13.根据权利要求2所述的方法,其特征在于,所述退火处理的温度为600〜1200摄氏度。 13. The method according to claim 2, characterized in that the temperature of the annealing treatment is 600~1200 ° C.
14.一种半导体结构,其特征在于,包括: 衬底; 石墨烯层,所述石墨烯层设置在所述衬底的上表面上;和半导体层,所述半导体层形成在所述石墨烯层的上表面,并且所述半导体层具有晶体择优取向。 14. A semiconductor structure comprising: a substrate; graphene layer, a graphene layer disposed on the upper surface of the substrate; and a semiconductor layer, the semiconductor layer is formed on the graphene an upper surface layer, and the semiconductor layer having a preferred crystal orientation.
15.根据权利要求14所述的半导体结构,其特征在于,所述衬底是由玻璃或金属形成的; 任选地,所述金属包括高温合金; 任选地,所述玻璃上表面具有金属镀层; 任选地,所述金属以及所述金属镀层的上表面含有N1、Co、Cu、Fe中的至少之一; 任选地,所述金属或所述金属镀层的上表层具有织构结构。 15. The semiconductor structure according to claim 14, wherein the substrate is formed of glass or metal; optionally, the metal comprising a superalloy; optionally, the glass surface with a metal coating; optionally, the metal surface of the metal plating layer and containing N1, at least one of Co, Cu, Fe is; optionally, the metal or the metal plating layer on a surface layer having a textured structure .
16.根据权利要求14所述的半导体结构,其特征在于,所述半导体层含有GaAs、InGaAs、AlGaAs、GaSb、InGaSb、AlGaSb、S1、Ge 以及SiGe 的至少之一。 16. The semiconductor structure according to claim 14, wherein said semiconductor layer contains at least one of GaAs, InGaAs, AlGaAs, GaSb, InGaSb, AlGaSb, S1, Ge and of SiGe.
17.根据权利要求16所述的半导体结构,其特征在于,所述半导体层(004)晶面的XRD衍射峰的半高宽小于5度。 17. The semiconductor structure according to claim 16, characterized in that the half XRD diffraction peak (004) plane of said semiconductor layer with a high width less than 5 degrees.
18.根据权利要求14所述的半导体结构,其特征在于,所述半导体层是通过溅射沉积或化学气相沉积形成的; 任选地,所述半导体层是通过溅射沉积和退火处理形成的; 任选地,所述半导体层是通过化学气相沉积和退火处理形成的。 18. The semiconductor structure according to claim 14, wherein the semiconductor layer is formed by sputtering deposition or chemical vapor deposition; optionally, by processing the semiconductor layer is formed by sputter deposition and annealing ; optionally, the semiconductor layer is formed by chemical vapor deposition and annealing process is formed.
19.根据权利要求18所述的半导体结构,其特征在于,所述溅射沉积为磁控溅射沉积或离子束溅射沉积; 任选地,所述溅射沉积为脉冲式溅射沉积或离子束辅助溅射沉积; 任选地,所述溅射沉积时衬底温度大于300摄氏度; 任选地,所述溅射沉积的溅射速率小于10nm/小时。 19. The semiconductor structure according to claim 18, wherein said sputtering is a magnetron sputtering deposition or ion beam sputtering deposition; Optionally, the sputtering deposition is a sputtering deposition, or pulsed sputtering, ion beam assisted deposition; optionally, when the sputtering deposition the substrate temperature is greater than 300 degrees Celsius; optionally, the sputter deposition sputtering rate is less than 10nm / hr.
CN201610365952.2A 2016-05-27 2016-05-27 Semiconductor structure and method for preparing semiconductor structure CN106024584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610365952.2A CN106024584A (en) 2016-05-27 2016-05-27 Semiconductor structure and method for preparing semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610365952.2A CN106024584A (en) 2016-05-27 2016-05-27 Semiconductor structure and method for preparing semiconductor structure

Publications (1)

Publication Number Publication Date
CN106024584A true CN106024584A (en) 2016-10-12

Family

ID=57091357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610365952.2A CN106024584A (en) 2016-05-27 2016-05-27 Semiconductor structure and method for preparing semiconductor structure

Country Status (1)

Country Link
CN (1) CN106024584A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924020A (en) * 2009-06-16 2010-12-22 宋健民 Semiconductor devices and methods of making thereof
US20120161126A1 (en) * 2010-12-28 2012-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN104009130A (en) * 2013-02-22 2014-08-27 Lg电子株式会社 Growth substrate, nitride semiconductor device and method of manufacturing the same
CN104916527A (en) * 2015-05-15 2015-09-16 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
US20150349185A1 (en) * 2014-05-30 2015-12-03 Klaus Y.J. Hsu Photosensing device with graphene
CN105244416A (en) * 2015-10-27 2016-01-13 合肥工业大学 Low-temperature deposition process of copper-antimony-selenium solar cell light absorption layer film
US20160079333A1 (en) * 2014-09-12 2016-03-17 Semiconductor Energy Laboratory Co., Ltd. Display Device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924020A (en) * 2009-06-16 2010-12-22 宋健民 Semiconductor devices and methods of making thereof
US20120161126A1 (en) * 2010-12-28 2012-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN104009130A (en) * 2013-02-22 2014-08-27 Lg电子株式会社 Growth substrate, nitride semiconductor device and method of manufacturing the same
US20150349185A1 (en) * 2014-05-30 2015-12-03 Klaus Y.J. Hsu Photosensing device with graphene
US20160079333A1 (en) * 2014-09-12 2016-03-17 Semiconductor Energy Laboratory Co., Ltd. Display Device
CN104916527A (en) * 2015-05-15 2015-09-16 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
CN105244416A (en) * 2015-10-27 2016-01-13 合肥工业大学 Low-temperature deposition process of copper-antimony-selenium solar cell light absorption layer film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李青年: "《薄膜制品设计生产加工新工艺与应用新技术实务全书 (第一卷)》", 30 April 2004 *
赵祥敏,赵文海: "《氧化锌和氮化铝薄膜制备与表征实例》", 30 June 2015 *
马勇等: "《ZnO薄膜的择优取向生长》", 《材料导报》 *

Similar Documents

Publication Publication Date Title
CN101719483B (en) The substrate for growing a wurtzite type crystal, and a method for manufacturing a semiconductor device
CN102634849B (en) GaN single crystal growth method, method of preparing the GaN substrate, the GaN-based element was prepared and a GaN-based element
US20160293790A1 (en) Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
US8802187B2 (en) Solar cell and process for producing the same
Son et al. Direct growth of graphene pad on exfoliated hexagonal boron nitride surface
Kim et al. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition
JP2002329877A (en) Cu(Ga AND/OR In)Se2 THIN FILM LAYER, Cu(InGa)(S, Se)2 THIN FILM LAYER, SOLAR BATTERY AND METHOD FOR FORMING Cu(Ga AND/OR In)Se2 THIN FILM LAYER
Orofeo et al. Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni
CN102120574A (en) Method for preparing large-scale two-dimensional nanomaterial graphite
Kumagai et al. Polarity dependence of AlN {0 0 0 1} decomposition in flowing H2
EP2047501A1 (en) Deposition of group iii-nitrides on ge
KR20130063410A (en) Hexagonal boron nitride sheet, process for preparing the sheet and electronic device comprising the sheet
JP2007073672A (en) Semiconductor light emitting element and its manufacturing method
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
JP4833616B2 (en) The method of manufacturing Iii Nitride semiconductor
Zhou et al. One-step synthesis of Cu (In, Ga) Se2 absorber layers by magnetron sputtering from a single quaternary target
CN104538526B (en) Nitride-based epitaxial wafer led to the copper substrate structure and method of preparation
WO2011136016A1 (en) Epitaxial film formation method, vacuum treatment device, method for producing semiconductor light-emitting element, semiconductor light-emitting element, lighting device
AU2011313917B2 (en) Ordered organic-organic multilayer growth
JP2002234799A (en) Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure
Shy et al. Characterization of CuAlO2 thin film prepared by rapid thermal annealing of an Al2O3/Cu2O/sapphire structure
US8216869B2 (en) Group III nitride semiconductor and a manufacturing method thereof
Teplin et al. Heteroepitaxial film crystal silicon on Al 2 O 3: new route to inexpensive crystal silicon photovoltaics
US20190112703A1 (en) Method of manufacturing oxide crystal thin film
JPWO2008108381A1 (en) Method for producing Iii Nitride Crystal

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination