CN106017440A - Portable combined zero-setting, high-frequency response and large-working distance auto-collimation apparatus and method thereof - Google Patents

Portable combined zero-setting, high-frequency response and large-working distance auto-collimation apparatus and method thereof Download PDF

Info

Publication number
CN106017440A
CN106017440A CN201610638926.2A CN201610638926A CN106017440A CN 106017440 A CN106017440 A CN 106017440A CN 201610638926 A CN201610638926 A CN 201610638926A CN 106017440 A CN106017440 A CN 106017440A
Authority
CN
China
Prior art keywords
reflecting mirror
feedback
imageing sensor
driver
quadrant detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610638926.2A
Other languages
Chinese (zh)
Other versions
CN106017440B (en
Inventor
谭欣然
王超
谭久彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610638926.2A priority Critical patent/CN106017440B/en
Publication of CN106017440A publication Critical patent/CN106017440A/en
Application granted granted Critical
Publication of CN106017440B publication Critical patent/CN106017440B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors

Abstract

The invention belongs to the technical field of precise measurement and the field of optical engineering, and concretely relates to a portable combined zero-setting, high-frequency response and large-working distance auto-collimation apparatus and a method thereof. The apparatus is composed of a light source, a collimating mirror, a reflector and a feedback imaging system. The method comprises the following steps: the reflector is adjusted to make reflected light beams return to the center of the image plane of the feedback imaging system, and an angle deflection measuring device is used to obtain the angle change of the surface of a measured object. The reflector is arranged on a traditional auto-collimation angle measurement apparatus, so the problem of unable measurement caused by deviation of the reflected lights of the measured object from the measurement system is avoided, thereby the auto-collimation working range is greatly increased under a same working distance, or the working distance is substantially increased under a same auto-collimation working range. The concrete design of the collimating mirror, the feedback imaging system and the reflector makes the apparatus have the advantages of small size, portability and high measurement precision; and the apparatus and the method have very high measurement speed.

Description

Portable combined zeroing high frequency sound big working distance autocollimation and method
Technical field
The invention belongs to Technology of Precision Measurement field and optical engineering field, be specifically related to portable combined zeroing high frequency sound Big working distance autocollimation and method.
Background technology
In Technology of Precision Measurement field, optical engineering field, the most advanced branches of science experiment field and high-end precision assembly manufacture neck In territory, urgent needs carries out wide working range, high-precision laser auto-collimation technology under big working distance.It supports above-mentioned field Technology and the development of instrument and equipment.
At Technology of Precision Measurement and instrument field, Laser Autocollimator combines with Circular gratings, can carry out any line angle degree Measure;Laser auto-collimation technology combines with polygon, can carry out face angular surveying and circular division is measured;Maximum functional distance From several meters to rice up to a hundred;Resolving power is from 0.1 rad to 0.001 rad.
Field, two round light that Laser Autocollimator is the most vertical with bidimensional are tested in optical engineering field and the most advanced branches of science Grid combine, and can carry out the measurement of space angle;Formed position reference by two-way Laser Autocollimator, optical axis two-by-two can be carried out Angle or the measurement of collimation.Angle working range tens rads to tens jiaos points.
Manufacture field at most advanced branches of science experimental provision and high-end precision assembly, use Laser Autocollimator can measure tip Scientific experiments device and the angle rotating accuracy of high-end precision assembly gyration benchmark, measure the space line of linear motion benchmark The depth of parallelism of precision and two-by-two motion benchmark and perpendicularity.
Laser auto-collimation technology has the advantages such as noncontact, certainty of measurement are high, easy to use, has wide in above-mentioned field General application.
Tradition autocollimator is as it is shown in figure 1, this system includes light source 1, transmission-type collimating mirror 21 and feedback imaging system 6;The light beam of light source 1 outgoing, after transmission-type collimating mirror 21 is collimated into collimated light beam, incides the reflecting surface of measured object 5;From The light beam of measured object 5 reflective surface, is gathered imaging by feedback imaging system 6.Under this structure, only from measured object 5 surface The nearly backtracking of light beam of reflection, could be gathered imaging by feedback imaging system 6, and then realize effectively measuring.This Jin Yuan road The condition returned limits so that the following two aspect shortcomings of this system existence:
The first, measurand 5 mirror surface normal can not be too big with the scope of Laser Autocollimator optical axis included angle, otherwise can Cause the entrance pupil of reflection BEAM SQUINT Laser Autocollimator optical system, and then cause realizing auto-collimation and the survey of micro-angle Amount;
The second, measurand 5 mirror surface range measurement Laser Autocollimator entrance pupil must not be too far away, if otherwise reflection light Axle and autocollimator optical axis deviation minute angle will result in the entrance pupil of reflection BEAM SQUINT Laser Autocollimator optical system, enter And cause realizing auto-collimation and micro-angular surveying.
Two above problem, makes tradition auto-collimation instrument can only be limited under low-angle, little operating distance use.
Summary of the invention
For two problems existing for tradition autocollimator, the invention discloses a kind of portable combined zeroing high frequency sound Big working distance autocollimation and method, compared with tradition autocollimator, have and dramatically increase autocollimatic under identical operating distance Straight working range, or under identical auto-collimation working range, dramatically increase the technical advantage of operating distance.
The object of the present invention is achieved like this:
Portable combined zeroing high frequency sound big working distance autocollimation, including light source, reflective collimating mirror, reflecting mirror, And feedback imaging system, described reflecting mirror is provided with angle adjustment measurement apparatus;The light beam of light source outgoing, through reflective After collimating mirror is collimated into collimated light beam, then reflected by reflecting mirror, incide the surface of measured object;Light from the reflection of measured object surface Bundle, then after reflecting mirror reflects, feedback imaging system gather imaging;
Described feedback imaging system is in following two form:
The first, feedback imaging system includes imageing sensor imaging system and 4 quadrant detector imaging system;
Described imageing sensor imaging system includes the first feedback spectroscope and is arranged on reflective collimating mirror focal point Imageing sensor;From the light beam of measured object surface reflection, then after reflecting mirror reflects, successively throw through reflective collimating mirror Penetrate, first feedback dichroic mirror, gathered imaging by imageing sensor;Under conditions of measured object surface is vertical with optical axis, figure As sensor is become a picture in image plane center position;
Or
Described imageing sensor imaging system includes the first feedback spectroscope, the first feedback object lens and is arranged on the first feedback Imageing sensor at object focal point;From the light beam of measured object surface reflection, then after reflecting mirror reflects, successively through first Feed back dichroic mirror, the first feedback object lens transmission, gathered imaging by imageing sensor;Vertical with optical axis on measured object surface Under the conditions of, imageing sensor is become a picture in image plane center position;
Described 4 quadrant detector imaging system includes the second feedback spectroscope and is arranged on reflective collimating mirror focal point 4 quadrant detector;From the light beam of measured object surface reflection, then after reflecting mirror reflects, successively through reflective collimating mirror Projection, first feedback dichroic mirror, gathered imaging by 4 quadrant detector;In the condition that measured object surface is vertical with optical axis Under, 4 quadrant detector is become a picture in image plane center position;
Or
Described 4 quadrant detector imaging system includes the second feedback spectroscope, the second feedback object lens and to be arranged on second anti- 4 quadrant detector at feedback object focal point;From the light beam of measured object surface reflection, then after reflecting mirror reflects, successively pass through Second feedback dichroic mirror, second feedback object lens transmission, gathered imaging by 4 quadrant detector;At measured object surface and optical axis Under conditions of Chui Zhi, 4 quadrant detector is become a picture in image plane center position;
The second, feedback imaging system includes the first feedback spectroscope and the imageing sensor carried by guide rail and four-quadrant Limit detector, described guide rail has two stall position, and a stall position makes imageing sensor image plane center correspondence reflective The focal position of collimating mirror, another stall position makes the focus position of the corresponding reflective collimating mirror of 4 quadrant detector image plane center Put;
Or
Feedback imaging system includes the first feedback spectroscope, the first feedback object lens and the image sensing carried by guide rail Device and 4 quadrant detector, described guide rail has two stall position, and a stall position makes imageing sensor image plane center position In the focal position of the first feedback object lens, another stall position makes 4 quadrant detector image plane center be positioned at the first feedback object lens Focal position;
Described angle adjustment measurement apparatus includes arranging angular adjustment apparatus on the mirror, dress is measured in angular deflection Putting and universal drive shaft, angular adjustment apparatus includes the first driver and the second driver;Angular deflection measurement apparatus includes first Reflecting mirror, the second reflecting mirror, the first laser interferometer of corresponding first reflector position and corresponding second reflector position Second laser interferometer;First driver, the first reflecting mirror and universal drive shaft are point-blank, the second driver, second anti- Penetrate mirror and universal drive shaft point-blank, and the first driver second driver vertical with the line of universal drive shaft is with universal The line of axle.
Realize on above-mentioned portable portable combined zeroing high frequency sound big working distance autocollimation is portable portable Formula combination zeroing high frequency sound big working distance auto-collimation method, comprises the following steps:
Step a, some bright light source, imageing sensor imaging, according to a picture deviation image plane center direction, utilize the first driver Adjust mirror angle with the second driver, make a picture return to imageing sensor image plane center region;
Step b, 4 quadrant detector imaging, obtain some picture deviation 4 quadrant detector image plane center position after step a terminates Put Δ x and Δ y, utilize the first driver and the second driver to adjust mirror angle, make a picture return to 4 quadrant detector picture Center, face;
Step c, read the change in displacement Δ x1 that the first laser interferometer obtains, and the position that the second laser interferometer obtains Move changes delta x2, be reconverted into reflecting mirror angle changes delta θ andAnd then obtain measured object surface angle changes delta α and Δβ;Wherein, Δ θ=f1 (Δ x1, Δ x2),Withf1、f2、 F3, f4 represent 4 functions.
Above-mentioned portable combined zeroing high frequency sound big working distance autocollimation, also includes that Wavefront detecting system and wavefront are mended Repay system;
Described Wavefront detecting system includes Wavefront detecting spectroscope and air agitation wave front detector and reflecting mirror deformation At least one in wave front detector;Described Wavefront detecting spectroscope is arranged between reflecting mirror and measured object, air agitation ripple Front detector is arranged on the spectroscopical reflected light path of Wavefront detecting, and reflecting mirror deformation wave front detector is arranged on the two of reflecting mirror In secondary reflection light path;
Described wavefront compensation system includes compensatory light, compensates collimating mirror and transmission liquid crystal spatial light modulator;Mend Repay the light beam of light source outgoing, after overcompensation collimating mirror is collimated into collimated light beam, then adjusted by transmission liquid crystal spatial light modulator System, incides on Wavefront detecting spectroscope.
Realize on above-mentioned portable portable combined zeroing high frequency sound big working distance autocollimation is portable portable Formula combination zeroing high frequency sound big working distance auto-collimation method, it is desirable to Wavefront detecting system only includes Wavefront detecting spectroscope and air Disturbance wave front detector;
Comprise the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source, be individually positioned in operating position A and nearly operating position B by the reference substance selected by step a, Air agitation wave front detector respectively obtains two groups of data of GA and GB;
Step c, G1=GA-GB, obtain the wavefront variation that air agitation causes;
Step d, according to f5 (G1) adjust transmission liquid crystal spatial light modulator parameter, light compensatory light, make-up air Disturbance;
Step e, imageing sensor imaging, according to a picture deviation image plane center direction, utilize the first driver and second to drive Dynamic device adjusts mirror angle, makes a picture return to imageing sensor image plane center region;
Step f, 4 quadrant detector imaging, obtain some picture deviation 4 quadrant detector image plane center position after step a terminates Put Δ x and Δ y, utilize the first driver and the second driver to adjust mirror angle, make a picture return to 4 quadrant detector picture Center, face;
Step g, read the change in displacement Δ x1 that the first laser interferometer obtains, and the position that the second laser interferometer obtains Move changes delta x2, be reconverted into reflecting mirror angle changes delta θ andAnd then obtain measured object surface angle changes delta α and Δβ;Wherein, Δ θ=f1 (Δ x1, Δ x2),Withf1、f2、 F3, f4 represent 4 functions.
Realize on above-mentioned portable portable combined zeroing high frequency sound big working distance autocollimation is portable portable Formula combination zeroing high frequency sound big working distance auto-collimation method, it is desirable to Wavefront detecting system only includes Wavefront detecting spectroscope and reflection Mirror deformation wave front detector;
Comprise the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source, be individually positioned in operating position A and nearly operating position B by the reference substance selected by step a, Reflecting mirror deformation wave front detector respectively obtains two groups of data of GC and GD;
Step c, G2=GC-GD, obtain air agitation and wavefront variation that reflecting mirror deformation causes jointly;
Step d, according to f5 (G2) adjust transmission liquid crystal spatial light modulator parameter, light compensatory light, make-up air Disturbance and reflecting mirror deformation;
Step e, imageing sensor imaging, according to a picture deviation image plane center direction, utilize the first driver and second to drive Dynamic device adjusts mirror angle, makes a picture return to imageing sensor image plane center region;
Step f, 4 quadrant detector imaging, obtain some picture deviation 4 quadrant detector image plane center position after step a terminates Put Δ x and Δ y, utilize the first driver and the second driver to adjust mirror angle, make a picture return to 4 quadrant detector picture Center, face;
Step g, read the change in displacement Δ x1 that the first laser interferometer obtains, and the position that the second laser interferometer obtains Move changes delta x2, be reconverted into reflecting mirror angle changes delta θ andAnd then obtain measured object surface angle changes delta α and Δβ;Wherein, Δ θ=f1 (Δ x1, Δ x2),Withf1、f2、 F3, f4 represent 4 functions.
Realize on above-mentioned portable portable combined zeroing high frequency sound big working distance autocollimation is portable portable Formula combination zeroing high frequency sound big working distance auto-collimation method, it is desirable to Wavefront detecting system includes Wavefront detecting spectroscope, sky simultaneously Gas disturbance wave front detector and reflecting mirror deformation wave front detector;
Comprise the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source, be individually positioned in operating position A and nearly operating position B by the reference substance selected by step a, Air agitation wave front detector respectively obtains two groups of data of GA and GB, and reflecting mirror deformation wave front detector respectively obtains GC and GD two Group data;
Step c, G1=GA-GB, obtain the wavefront variation that air agitation causes;G2=GC-GD, obtains air agitation with anti- Penetrate the wavefront variation that mirror deformation causes jointly;G=G2-G1, obtains the wavefront variation that reflecting mirror deformation causes;
Step d,
Adjust transmission liquid crystal spatial light modulator parameter according to f5 (G1), light compensatory light, make-up air disturbance;
Or
Adjust transmission liquid crystal spatial light modulator parameter according to f5 (G2), light compensatory light, make-up air disturbance and Reflecting mirror deformation;
Or
Adjust transmission liquid crystal spatial light modulator parameter according to f5 (G), light compensatory light, compensatory reflex mirror deformation;
Step e, imageing sensor imaging, according to a picture deviation image plane center direction, utilize the first driver and second to drive Dynamic device adjusts mirror angle, makes a picture return to imageing sensor image plane center region;
Step f, 4 quadrant detector imaging, obtain some picture deviation 4 quadrant detector image plane center position after step a terminates Put Δ x and Δ y, utilize the first driver and the second driver to adjust mirror angle, make a picture return to 4 quadrant detector picture Center, face;
Step g, read the change in displacement Δ x1 that the first laser interferometer obtains, and the position that the second laser interferometer obtains Move changes delta x2, be reconverted into reflecting mirror angle changes delta θ andAnd then obtain measured object surface angle changes delta α and Δβ;Wherein, Δ θ=f1 (Δ x1, Δ x2),Withf1、f2、 F3, f4 represent 4 functions.
Beneficial effect:
Compared with tradition autocollimator, invention increases reflecting mirror and angle adjustment measurement on the mirror is set Device, this structure is arranged, it is possible to has bigger drift angle or there is relatively larger transverse position between measured object incident illumination and reflection light In the case of shifting, adjust reflecting mirror attitude by angle adjustment measurement apparatus, it is ensured that reflection light backtracking is also fed back imaging System receives, and then is prevented effectively from measured object reflection light deviation measurement system and causes the problem that cannot measure, and then makes this Invent to have under identical operating distance, dramatically increase auto-collimation working range, or significantly increase under identical auto-collimation working range Add the technical advantage of operating distance.
In addition, the present invention also has following a few technical advantage:
The first, reflective collimating mirror is selected, although add manufacture difficulty, improve cost of manufacture, but this structure There are the following three irreplaceable technical advantages of aspect: the most reflective collimating mirror is conducive to instrument miniaturization, makes portable Instrument;Secondly reflective collimating mirror no color differnece, light source frequency range is the widest, and the advantage of its certainty of measurement is the most obvious;3rd is by plating Membrane technology, it is possible to the heat absorption realizing reflective collimating mirror is far smaller than transmission-type, is prevented effectively from sending out of collimating mirror thermal deformation problem Raw, this not only enables whole system mate high power light source, and is also beneficial to ensure the measuring precision;
The second, select imageing sensor and 4 quadrant detector collectively as the image device in feedback imaging system, knot Close the advantage that image area sensor is big and 4 quadrant detector position resolution is high;Wherein, imageing sensor can be true Protecting in the case of measured object reflection light and incident illumination drift angle are relatively big, reflection light still is able to enter the entrance pupil of optical system, will not Beyond range of receiving;On this basis, recycling reflecting mirror realizes the quickly return compensation in real time of reflection light, is adjusted to by reflection light 4 quadrant detector position, can obtain higher angle according to the high position resolution advantage of 4 quadrant detector again and survey Accuracy of measurement;Therefore, imageing sensor and 4 quadrant detector are combined, not only make auto-collimation working range of the present invention or work Greatly extended as distance, and be conducive to improving angle-measurement accuracy;
3rd, select laser interferometer as angular deflection measurement apparatus so that the present invention can in high sample frequency ( High energy reaches 2000Hz) under complete angular surveying, i.e. there is the highest measuring speed;If the first reflecting mirror and the second reflecting mirror Use prism of corner cube, it is also possible to the optical characteristics utilizing prism of corner cube inclined for incident ray turnback to be returned, make the angle of the present invention Degree measurement scope is greatly enhanced, i.e. the present invention has very while high measurement speed, also has the technology of wide-angle range Advantage;
4th, the present invention additionally uses techniques below: the first driver, the first reflecting mirror and universal drive shaft are straight at one article On line, the second driver, the second reflecting mirror and universal drive shaft point-blank, and the company of the first driver and universal drive shaft Vertical second driver of line and the line of universal drive shaft;The orthogonal two dimension of this two lines is arranged so that different line sides To data non-interference, it is not necessary to decoupling computing, so can conveniently demarcate, simplify calculating process, improve measuring speed.
Accompanying drawing explanation
Fig. 1 is the structural representation of tradition auto-collimation angle measurement system.
Fig. 2 is that the structure of portable combined of the present invention zeroing high frequency sound big working distance autocollimation specific embodiment one is shown It is intended to.
Fig. 3 is the structural representation of angle adjustment measurement apparatus.
Fig. 4 is the second structural representation of imageing sensor imaging system.
Fig. 5 is the second structural representation of 4 quadrant detector imaging system.
Fig. 6 is the first of portable combined of the present invention zeroing high frequency sound big working distance autocollimation specific embodiment two Structural representation.
Fig. 7 is the second of portable combined of the present invention zeroing high frequency sound big working distance autocollimation specific embodiment two Structural representation.
Fig. 8 is that the structure of portable combined of the present invention zeroing high frequency sound big working distance autocollimation specific embodiment three is shown It is intended to.
Fig. 9 is that the structure of portable combined of the present invention zeroing high frequency sound big working distance autocollimation specific embodiment four is shown It is intended to.
Figure 10 is the structure of portable combined of the present invention zeroing high frequency sound big working distance autocollimation specific embodiment five Schematic diagram.
In figure: 1 light source, 22 reflective collimating mirrors, 3 reflecting mirrors, 4 angle adjustment measurement apparatus, 411 first drivers, 412 Second driver, 425 first reflecting mirrors, 426 second reflecting mirrors, 427 first laser interferometer, 428 second laser interferometer, 43 Universal drive shaft, 5 measured objects, 6 feedback imaging systems, 61 first feedback spectroscopes, 62 second feedback spectroscopes, 63 first feedback things Mirror, 64 second feedback object lens, 65 imageing sensors, 66 4 quadrant detectors, 68 guide rails, 7 Wavefront detecting systems, 71 Wavefront detectings Spectroscope, 72 air agitation wave front detectors, 73 reflecting mirror deformation wave front detectors, 8 wavefront compensation system, 81 compensatory lights, 82 compensate collimating mirror, 83 transmission liquid crystal spatial light modulators.
Specific embodiment
Below in conjunction with the accompanying drawings the specific embodiment of the invention is described in further detail.
Specific embodiment one
The present embodiment is portable combined zeroing high frequency sound big working distance autocollimation embodiment.
The portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment, structural representation is as shown in Figure 2. This autocollimation includes light source 1, reflective collimating mirror 22, reflecting mirror 3 and feedback imaging system 6, on described reflecting mirror 3 It is provided with angle adjustment measurement apparatus 4;The light beam of light source 1 outgoing, after reflective collimating mirror 22 is collimated into collimated light beam, then Reflected by reflecting mirror 3, incide the surface of measured object 5;From the light beam of measured object 5 surface reflection, then reflect through reflecting mirror 3 After, feedback imaging system 6 gather imaging;
Described feedback imaging system 6 includes imageing sensor imaging system and 4 quadrant detector imaging system;
Described imageing sensor imaging system includes the first feedback spectroscope 61 and is arranged on transmission-type collimating mirror 21 focus The imageing sensor 65 at place;From the light beam of measured object 5 surface reflection, then after reflecting mirror 3 reflects, successively through transmission-type quasi Straight mirror 21 projects, the first feedback spectroscope 61 reflects, gathered imaging by imageing sensor 65;Hang down with optical axis on measured object 5 surface Under conditions of Zhi, imageing sensor 65 is become a little as in image plane center position;
Described 4 quadrant detector imaging system includes that the second feedback spectroscope 62, second feeds back object lens 64 and is arranged on the The 4 quadrant detector 66 of two feedback object lens 64 focal point;From the light beam of measured object 5 surface reflection, then reflect through reflecting mirror 3 After, successively through second feedback spectroscope 62 reflect, second feedback object lens 64 transmission, gathered imaging by 4 quadrant detector 66; Under conditions of measured object 5 surface is vertical with optical axis, 4 quadrant detector 66 is become a little as in image plane center position;
Described angle adjustment measurement apparatus 4 includes that dress is measured in the angular adjustment apparatus being arranged on reflecting mirror 3, angular deflection Putting and universal drive shaft 43, angular adjustment apparatus includes the first driver 411 and the second driver 412;Angular deflection measurement apparatus Including first reflecting mirror the 425, second reflecting mirror 426, the first laser interferometer 427 of corresponding first reflecting mirror 425 position and Second laser interferometer 428 of corresponding second reflecting mirror 426 position;First driver the 411, first reflecting mirror 425 and universal Axle 43 point-blank, second driver the 412, second reflecting mirror 426 and universal drive shaft 43 point-blank, and One driver 411, second driver 412 vertical with the line of universal drive shaft 43 and the line of universal drive shaft 43;As shown in Figure 3.
It should be understood that
The first, in the present embodiment, imageing sensor imaging system can also select following structure: includes that the first feedback is divided Light microscopic 61, first feeds back object lens 63 and is arranged on the imageing sensor 65 of the first feedback object lens 63 focal point;From measured object 5 surface Reflection light beam, then through reflecting mirror 3 reflect after, successively through first feedback spectroscope 61 reflect, first feedback object lens 63 saturating Penetrate, gathered imaging by imageing sensor 65;Under conditions of measured object 5 surface is vertical with optical axis, the become point of imageing sensor 65 As in image plane center position;As shown in Figure 4, in the figure, 4 quadrant detector imaging system is eliminated.
The second, in the present embodiment, 4 quadrant detector imaging system can also select following structure: includes the second feedback Spectroscope 62 and the 4 quadrant detector 66 being arranged on transmission-type collimating mirror 21 focal point;From the light beam of measured object 5 surface reflection, Again through reflecting mirror 3 reflect after, successively project through transmission-type collimating mirror 21, first feedback spectroscope 61 reflect, by four-quadrant Detector 66 gathers imaging;Under conditions of measured object 5 surface is vertical with optical axis, 4 quadrant detector 66 is become a little as in image planes Center;As it is shown in figure 5, in the figure, imageing sensor imaging system is eliminated.
Specific embodiment two
The present embodiment is portable combined zeroing high frequency sound big working distance autocollimation embodiment.
The portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment, different from specific embodiment one It is to feed back the structure of imaging system 6;The structure of the present embodiment feedback imaging system 6 is the one in following two form:
The first, feedback imaging system 6 includes the first feedback spectroscope 61 and the imageing sensor 65 carried by guide rail 68 With 4 quadrant detector 66, as shown in Figure 6;Described guide rail 68 has two stall position, and a stall position makes image sensing The focal position of the corresponding reflective collimating mirror 22 of device 65 image plane center, another stall position makes in 4 quadrant detector 66 image planes The focal position of the corresponding reflective collimating mirror 22 of the heart;
The second, feedback imaging system 6 includes that the first feedback spectroscope 61, first feeds back object lens 63 and held by guide rail 68 The imageing sensor 65 carried and 4 quadrant detector 66, as shown in Figure 7;Described guide rail 68 has two stall position, and one is stopped Position makes imageing sensor 65 image plane center be positioned at the focal position of the first feedback object lens 63, and another stall position makes four-quadrant Limit detector 66 image plane center is positioned at the focal position of the first feedback object lens 63.
Specific embodiment three
The present embodiment is portable combined zeroing high frequency sound big working distance autocollimation embodiment.
The portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment, structural representation is as shown in Figure 8. On the basis of specific embodiment one, the portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment also sets up There are Wavefront detecting system 7 and wavefront compensation system 8;
Described Wavefront detecting system 7 includes Wavefront detecting spectroscope 71 and air agitation wave front detector 72;Described wavefront Detection spectroscope 71 is arranged between reflecting mirror 3 and measured object 5, and air agitation wave front detector 72 is arranged on Wavefront detecting light splitting On the reflected light path of mirror 71, reflecting mirror deformation wave front detector 73 is arranged in the secondary reflection light path of reflecting mirror 3;
Described wavefront compensation system 8 includes compensatory light 81, compensates collimating mirror 82 and transmission liquid crystal spatial light modulation Device 83;The light beam of compensatory light 81 outgoing, after overcompensation collimating mirror 82 is collimated into collimated light beam, then by transmission liquid crystal space Photomodulator 83 is modulated, and incides on Wavefront detecting spectroscope 71.
Specific embodiment four
The present embodiment is portable combined zeroing high frequency sound big working distance autocollimation embodiment.
The portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment, structural representation is as shown in Figure 9. On the basis of specific embodiment one, the portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment also sets up There are Wavefront detecting system 7 and wavefront compensation system 8;
Described Wavefront detecting system 7 includes Wavefront detecting spectroscope 71 and reflecting mirror deformation wave front detector 73;Described ripple Front detection spectroscope 71 is arranged between reflecting mirror 3 and measured object 5, and air agitation wave front detector 72 is arranged on Wavefront detecting and divides On the reflected light path of light microscopic 71, reflecting mirror deformation wave front detector 73 is arranged in the secondary reflection light path of reflecting mirror 3;
Described wavefront compensation system 8 includes compensatory light 81, compensates collimating mirror 82 and transmission liquid crystal spatial light modulation Device 83;The light beam of compensatory light 81 outgoing, after overcompensation collimating mirror 82 is collimated into collimated light beam, then by transmission liquid crystal space Photomodulator 83 is modulated, and incides on Wavefront detecting spectroscope 71.
Specific embodiment five
The present embodiment is portable combined zeroing high frequency sound big working distance autocollimation embodiment.
The portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment, structural representation such as Figure 10 institute Show.On the basis of specific embodiment one, the portable combined zeroing high frequency sound big working distance autocollimation of the present embodiment is also It is provided with Wavefront detecting system 7 and wavefront compensation system 8;
Described Wavefront detecting system 7 includes Wavefront detecting spectroscope 71, air agitation wave front detector 72 and reflecting mirror shape Become wave front detector 73;Described Wavefront detecting spectroscope 71 is arranged between reflecting mirror 3 and measured object 5, and air agitation wavefront is visited Surveying device 72 to be arranged on the reflected light path of Wavefront detecting spectroscope 71, reflecting mirror deformation wave front detector 73 is arranged on reflecting mirror 3 Secondary reflection light path on;
Described wavefront compensation system 8 includes compensatory light 81, compensates collimating mirror 82 and transmission liquid crystal spatial light modulation Device 83;The light beam of compensatory light 81 outgoing, after overcompensation collimating mirror 82 is collimated into collimated light beam, then by transmission liquid crystal space Photomodulator 83 is modulated, and incides on Wavefront detecting spectroscope 71.
For above autocollimation embodiment, also following three points needs to illustrate:
The first, the first driver 411 and the second driver 412 in described angular adjustment apparatus, both can select to drive The motor of speed or motor servo driver, can select again the piezoelectric ceramic actuator driving precision higher, also Motor or motor servo driver can be used in mixed way with piezoelectric ceramic actuator;Those skilled in the art can basis It is actually needed and rationally selects.
Although the second specific embodiment three, specific embodiment four and specific embodiment five, it is all at specific embodiment Wavefront detecting system 7 and wavefront compensation system 8 are set on the basis of one, but wavefront is set on the basis of specific embodiment two Detection system 7 and wavefront compensation system 8, also set up.Those skilled in the art can in conjunction with specific embodiments system described in Difference between system described in specific embodiment two, arranges wavefront by these three easily on the basis of specific embodiment two The system building of detection system 7 and wavefront compensation system 8 out, therefore no longer describes in detail herein.
3rd, in all above autocollimation embodiment, it is anti-that angular deflection measurement apparatus all only includes two pairs of planes Penetrating the combination of mirror and laser interferometer, this design acquiescence reflecting mirror 3 does not the most produce translation and makes;As Fruit produces translation at work in view of reflecting mirror 3 and affects certainty of measurement, can place the 3rd in universal drive shaft 43 position right Plane mirror and the combination of laser interferometer, to offset the identical translation that three laser interferometer produce, it is ensured that certainty of measurement.
Specific embodiment six
The present embodiment is on portable combined zeroing high frequency sound big working distance autocollimation described in specific embodiment one The portable combined zeroing high frequency sound big working distance auto-collimation embodiment of the method realized.
The portable combined zeroing high frequency sound big working distance auto-collimation method of the present embodiment, comprises the following steps:
Step a, some bright light source 1, imageing sensor 65 imaging, according to a picture deviation image plane center direction, utilize first to drive Dynamic device 411 and the second driver 412 adjust reflecting mirror 3 angle, make a picture return to imageing sensor 65 image plane center region;
Step b, 4 quadrant detector 66 imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector 66 image planes Heart position Δ x and Δ y, utilizes the first driver 411 and the second driver 412 to adjust reflecting mirror 3 angle, makes a picture return to four-quadrant Limit detector 66 image plane center position;
Step c, read the change in displacement Δ x1 that the first laser interferometer 427 obtains, and the second laser interferometer 428 The change in displacement Δ x2 arrived, be reconverted into reflecting mirror 3 angle changes delta θ andAnd then the angle obtaining measured object 5 surface becomes Change Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
If it should be noted that the present embodiment is the method realized in system described in specific embodiment two, then After point is as returning to imageing sensor 65 image plane center region, guide rail 68 is adjusted to another stall position from a stall position, Make the focal position of 4 quadrant detector 66 image plane center correspondence transmission-type collimating mirror 21, then make 4 quadrant detector 66 become Picture.
The main innovative point of the present invention is the angle adjustment measurement dress adding reflecting mirror 3 and being arranged on reflecting mirror 3 Putting 4, this structure can have bigger drift angle or there are the feelings of relatively larger transverse displacement between measured object 5 incident illumination and reflection light Under condition, adjust 4 whole reflecting mirror attitudes by angle adjustment measurement apparatus, make reflection light backtracking and connect by feedback imaging system 6 Receive, be prevented effectively from measured object reflection light deviation measurement system and the problem that causes measuring.
But, the introducing of reflecting mirror 3, its face type error can be delivered in final result, reduces the certainty of measurement of system;With Time, the increase of operating distance makes again the air agitation between reflecting mirror 3 and measured object 5 can not ignore, and also can reduce system Certainty of measurement.Visible, want to realize high-acruracy survey, be necessary in view of 3 type errors of reflecting mirror and reflecting mirror 3 with tested The air agitation impact on measurement result between thing 5, to this end, devise specific embodiment seven, specific embodiment eight and concrete Embodiment nine.
Specific embodiment seven
The present embodiment is on portable combined zeroing high frequency sound big working distance autocollimation described in specific embodiment three The portable combined zeroing high frequency sound big working distance auto-collimation embodiment of the method realized.
The portable combined zeroing high frequency sound big working distance auto-collimation method of the present embodiment, comprises the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source 1, be individually positioned in operating position A and nearly operating position by the reference substance selected by step a B, air agitation wave front detector 72 respectively obtains two groups of data of GA and GB;
Step c, G1=GA-GB, obtain the wavefront variation that air agitation causes;
Step d, according to f5 (G1) adjust transmission liquid crystal spatial light modulator 83 parameter, light compensatory light 81, compensate Air agitation;
Step e, imageing sensor 65 imaging, according to as a deviation image plane center direction, utilize the first driver 411 and the Two drivers 412 adjust reflecting mirror 3 angle, make a picture return to imageing sensor 65 image plane center region;
Step f, 4 quadrant detector 66 imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector 66 image planes Heart position Δ x and Δ y, utilizes the first driver 411 and the second driver 412 to adjust reflecting mirror 3 angle, makes a picture return to four-quadrant Limit detector 66 image plane center position;
Step g, read the change in displacement Δ x1 that the first laser interferometer 427 obtains, and the second laser interferometer 428 The change in displacement Δ x2 arrived, be reconverted into reflecting mirror 3 angle changes delta θ andAnd then the angle obtaining measured object 5 surface becomes Change Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
The method implementing the present embodiment in the system of specific embodiment three, it is possible to utilize air agitation wave front detector 72 Air agitation is separated, and then utilizes wavefront compensation system 8 that air agitation is compensated, finally realize without air agitation The high-acruracy survey of impact.
Specific embodiment eight
The present embodiment is on portable combined zeroing high frequency sound big working distance autocollimation described in specific embodiment four The portable combined zeroing high frequency sound big working distance auto-collimation embodiment of the method realized.
The portable combined zeroing high frequency sound big working distance auto-collimation method of the present embodiment, comprises the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source 1, be individually positioned in operating position A and nearly operating position by the reference substance selected by step a B, reflecting mirror deformation wave front detector 73 respectively obtains two groups of data of GC and GD;
Step c, G2=GC-GD, obtain air agitation and wavefront variation that reflecting mirror deformation causes jointly;
Step d, according to f5 (G2) adjust transmission liquid crystal spatial light modulator 83 parameter, light compensatory light 81, compensate Air agitation and reflecting mirror deformation;
Step e, imageing sensor 65 imaging, according to as a deviation image plane center direction, utilize the first driver 411 and the Two drivers 412 adjust reflecting mirror 3 angle, make a picture return to imageing sensor 65 image plane center region;
Step f, 4 quadrant detector 66 imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector 66 image planes Heart position Δ x and Δ y, utilizes the first driver 411 and the second driver 412 to adjust reflecting mirror 3 angle, makes a picture return to four-quadrant Limit detector 66 image plane center position;
Step g, read the change in displacement Δ x1 that the first laser interferometer 427 obtains, and the second laser interferometer 428 The change in displacement Δ x2 arrived, be reconverted into reflecting mirror 3 angle changes delta θ andAnd then the angle obtaining measured object 5 surface becomes Change Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
The method implementing the present embodiment on the device of specific embodiment four, it is possible to utilize reflecting mirror deformation wave front detector Air agitation and reflecting mirror deformation are carried out overall separation by 73, and then utilize wavefront compensation system 8 to air agitation and reflecting mirror Deformation carries out entire compensation, finally realizes without air agitation and the high-acruracy survey of reflecting mirror influence of crust deformation.
Specific embodiment nine
The present embodiment is on portable combined zeroing high frequency sound big working distance autocollimation described in specific embodiment five The portable combined zeroing high frequency sound big working distance auto-collimation embodiment of the method realized.
The portable combined zeroing high frequency sound big working distance auto-collimation method of the present embodiment, comprises the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source 1, be individually positioned in operating position A and nearly operating position by the reference substance selected by step a B, air agitation wave front detector 72 respectively obtains two groups of data of GA and GB, and reflecting mirror deformation wave front detector 73 respectively obtains GC With two groups of data of GD;
Step c, G1=GA-GB, obtain the wavefront variation that air agitation causes;G2=GC-GD, obtains air agitation with anti- Penetrate the wavefront variation that mirror deformation causes jointly;G=G2-G1, obtains the wavefront variation that reflecting mirror deformation causes;
Step d,
Adjusting transmission liquid crystal spatial light modulator 83 parameter according to f5 (G1), light compensatory light 81, make-up air is disturbed Dynamic;
Or
Adjusting transmission liquid crystal spatial light modulator 83 parameter according to f5 (G2), light compensatory light 81, make-up air is disturbed Move and reflecting mirror deformation;
Or
Adjust transmission liquid crystal spatial light modulator 83 parameter according to f5 (G), light compensatory light 81, compensatory reflex mirror shape Become;
Step e, imageing sensor 65 imaging, according to as a deviation image plane center direction, utilize the first driver 411 and the Two drivers 412 adjust reflecting mirror 3 angle, make a picture return to imageing sensor 65 image plane center region;
Step f, 4 quadrant detector 66 imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector 66 image planes Heart position Δ x and Δ y, utilizes the first driver 411 and the second driver 412 to adjust reflecting mirror 3 angle, makes a picture return to four-quadrant Limit detector 66 image plane center position;
Step g, read the change in displacement Δ x1 that the first laser interferometer 427 obtains, and the second laser interferometer 428 The change in displacement Δ x2 arrived, be reconverted into reflecting mirror 3 angle changes delta θ andAnd then the angle obtaining measured object 5 surface becomes Change Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
The method implementing the present embodiment on the device of specific embodiment five, it is possible to utilize air agitation wave front detector 72 With reflecting mirror deformation wave front detector 73, air agitation and reflecting mirror deformation are separately separated, and then optionally to air Disturbance carries out separate compensation, reflecting mirror deformation carries out separate compensation or air agitation and reflecting mirror deformation carry out overall benefit Repay, final realize without air agitation or no-mirror deformation or the high accuracy survey without air agitation and reflecting mirror influence of crust deformation Amount.
The present embodiment has an advantage that, that is, after air agitation and reflecting mirror deformation being separately separated, can be to each The size that affects of result is individually assessed by part, can not only find out in air agitation and reflecting mirror deformation, and who is impact The principal contradiction of certainty of measurement, and mirror deformation individually can be assessed, reflecting mirror crudy is carried out simultaneously Effective evaluation.
If also, it should be noted specific embodiment three, specific embodiment four and specific embodiment five are based on tool Body embodiment two and the device built, then in specific embodiment seven, specific embodiment eight and specific embodiment nine, After point is as returning to imageing sensor 65 image plane center region, guide rail 68 is adjusted to another stall position from a stall position, Make the focal position of 4 quadrant detector 66 image plane center correspondence transmission-type collimating mirror 21, then make 4 quadrant detector 66 become Picture.

Claims (6)

1. portable combined zeroing high frequency sound big working distance autocollimation, it is characterised in that include light source (1), reflective standard Straight mirror (22), reflecting mirror (3) and feedback imaging system (6), described reflecting mirror is provided with angle adjustment measurement apparatus on (3) (4);The light beam of light source (1) outgoing, after reflective collimating mirror (22) is collimated into collimated light beam, then is reflected by reflecting mirror (3), Incide the surface of measured object (5);From the light beam of measured object (5) surface reflection, then after reflecting mirror (3) reflects, by feeding back Imaging system (6) gathers imaging;
Described feedback imaging system (6) is in following two form:
The first, feedback imaging system (6) includes imageing sensor imaging system and 4 quadrant detector imaging system;
Described imageing sensor imaging system includes the first feedback spectroscope (61) and is arranged on reflective collimating mirror (22) focus The imageing sensor (65) at place;From the light beam of measured object (5) surface reflection, then after reflecting mirror (3) reflects, successively through anti- Penetrate formula collimating mirror (22) projection, the first feedback spectroscope (61) reflection, gathered imaging by imageing sensor (65);At measured object (5), under conditions of surface is vertical with optical axis, imageing sensor (65) is become a little as in image plane center position;
Or
Described imageing sensor imaging system includes the first feedback spectroscope (61), the first feedback object lens (63) and is arranged on first The imageing sensor (65) of feedback object lens (63) focal point;From the light beam of measured object (5) surface reflection, then through reflecting mirror (3) After reflection, successively through first feedback spectroscope (61) reflection, first feedback object lens (63) transmission, adopted by imageing sensor (65) Collection imaging;Under conditions of measured object (5) surface is vertical with optical axis, imageing sensor (65) is become a little as in image plane center position Put;
Described 4 quadrant detector imaging system includes the second feedback spectroscope (62) and is arranged on reflective collimating mirror (22) Jiao 4 quadrant detector (66) at Dian;From the light beam of measured object (5) surface reflection, then after reflecting mirror (3) reflects, warp after elder generation Cross reflective collimating mirror (22) projection, the first feedback spectroscope (61) reflection, gathered imaging by 4 quadrant detector (66);At quilt Under conditions of survey thing (5) surface is vertical with optical axis, 4 quadrant detector (66) is become a little as in image plane center position;
Or
Described 4 quadrant detector imaging system includes the second feedback spectroscope (62), the second feedback object lens (64) and is arranged on the The 4 quadrant detector (66) of two feedback object lens (64) focal point;From the light beam of measured object (5) surface reflection, then through reflecting mirror (3) reflection after, successively through second feedback spectroscope (62) reflection, second feedback object lens (64) transmission, by 4 quadrant detector (66) imaging is gathered;Under conditions of measured object (5) surface is vertical with optical axis, 4 quadrant detector (66) is become a little as in image planes Center;
The second, feedback imaging system (6) includes the first feedback spectroscope (61) and the imageing sensor carried by guide rail (68) (65) and 4 quadrant detector (66), described guide rail (68) has two stall position, and a stall position makes imageing sensor (65) focal position of the corresponding reflective collimating mirror of image plane center (22), another stall position make 4 quadrant detector (66) as The focal position of the corresponding reflective collimating mirror (22) in center, face;
Or
Feedback imaging system (6) includes the first feedback spectroscope (61), the first feedback object lens (63) and is carried by guide rail (68) Imageing sensor (65) and 4 quadrant detector (66), described guide rail (68) has two stall position, a stall position Making imageing sensor (65) image plane center be positioned at the focal position of the first feedback object lens (63), another stall position makes four-quadrant Detector (66) image plane center is positioned at the focal position of the first feedback object lens (63);
Described angle adjustment measurement apparatus (4) includes that dress is measured in the angular adjustment apparatus being arranged on reflecting mirror (3), angular deflection Putting and universal drive shaft (43), angular adjustment apparatus includes the first driver (411) and the second driver (412);Angular deflection is surveyed Amount device includes that the first reflecting mirror (425), the second reflecting mirror (426), the first laser of corresponding first reflecting mirror (425) position are done Second laser interferometer (428) of interferometer (427) and corresponding second reflecting mirror (426) position;First driver (411), One reflecting mirror (425) and universal drive shaft (43) point-blank, the second driver (412), the second reflecting mirror (426) and Universal drive shaft (43) point-blank, and the first driver (411) second driver vertical with the line of universal drive shaft (43) (412) with the line of universal drive shaft (43).
Portable combined the most according to claim 1 zeroing high frequency sound big working distance autocollimation, it is characterised in that also Including Wavefront detecting system (7) and wavefront compensation system (8);
Described Wavefront detecting system (7) includes Wavefront detecting spectroscope (71) and air agitation wave front detector (72) and anti- Penetrate at least one in mirror deformation wave front detector (73);Described Wavefront detecting spectroscope (71) is arranged on reflecting mirror (3) and quilt Surveying between thing (5), air agitation wave front detector (72) is arranged on the reflected light path of Wavefront detecting spectroscope (71), reflecting mirror Deformation wave front detector (73) is arranged in the secondary reflection light path of reflecting mirror (3);
Described wavefront compensation system (8) includes compensatory light (81), compensates collimating mirror (82) and transmission liquid crystal spatial light tune Device processed (83);The light beam of compensatory light (81) outgoing, after overcompensation collimating mirror (82) is collimated into collimated light beam, then by transmission-type LCD space light modulator (83) is modulated, and incides on Wavefront detecting spectroscope (71).
3. realize on portable portable combined zeroing high frequency sound big working distance autocollimation described in claim 1 is portable Formula portable combined zeroing high frequency sound big working distance auto-collimation method, it is characterised in that comprise the following steps:
Step a, some bright light source (1), imageing sensor (65) imaging, according to a picture deviation image plane center direction, utilize first to drive Dynamic device (411) and the second driver (412) adjust reflecting mirror (3) angle, make a picture return to imageing sensor (65) image plane center Region;
Step b, 4 quadrant detector (66) imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector (66) image planes Heart position Δ x and Δ y, utilizes the first driver (411) and the second driver (412) to adjust reflecting mirror (3) angle, makes a picture return To 4 quadrant detector (66) image plane center position;
Step c, read the change in displacement Δ x1 that the first laser interferometer (427) obtains, and the second laser interferometer (428) obtains Change in displacement Δ x2, be reconverted into reflecting mirror (3) angle changes delta θ andAnd then obtain the angle change on measured object (5) surface Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
4. realize on portable portable combined zeroing high frequency sound big working distance autocollimation described in claim 2 is portable Formula portable combined zeroing high frequency sound big working distance auto-collimation method, it is desirable to Wavefront detecting system (7) only includes that Wavefront detecting divides Light microscopic (71) and air agitation wave front detector (72);
It is characterized in that, comprise the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source (1), be individually positioned in operating position A and nearly operating position B by the reference substance selected by step a, Air agitation wave front detector (72) respectively obtains two groups of data of GA and GB;
Step c, G1=GA-GB, obtain the wavefront variation that air agitation causes;
Step d, according to f5 (G1) adjust transmission liquid crystal spatial light modulator (83) parameter, light compensatory light (81), compensate Air agitation;
Step e, imageing sensor (65) imaging, according to as a deviation image plane center direction, utilize the first driver (411) and the Two drivers (412) adjust reflecting mirror (3) angle, make a picture return to imageing sensor (65) image plane center region;
Step f, 4 quadrant detector (66) imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector (66) image planes Heart position Δ x and Δ y, utilizes the first driver (411) and the second driver (412) to adjust reflecting mirror (3) angle, makes a picture return To 4 quadrant detector (66) image plane center position;
Step g, read the change in displacement Δ x1 that the first laser interferometer (427) obtains, and the second laser interferometer (428) obtains Change in displacement Δ x2, be reconverted into reflecting mirror (3) angle changes delta θ andAnd then the angle obtaining measured object (5) surface becomes Change Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
5. realize on portable portable combined zeroing high frequency sound big working distance autocollimation described in claim 2 is portable Formula portable combined zeroing high frequency sound big working distance auto-collimation method, it is desirable to Wavefront detecting system (7) only includes that Wavefront detecting divides Light microscopic (71) and reflecting mirror deformation wave front detector (73);
It is characterized in that, comprise the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source (1), be individually positioned in operating position A and nearly operating position B by the reference substance selected by step a, Reflecting mirror deformation wave front detector (73) respectively obtains two groups of data of GC and GD;
Step c, G2=GC-GD, obtain air agitation and wavefront variation that reflecting mirror deformation causes jointly;
Step d, according to f5 (G2) adjust transmission liquid crystal spatial light modulator (83) parameter, light compensatory light (81), compensate Air agitation and reflecting mirror deformation;
Step e, imageing sensor (65) imaging, according to as a deviation image plane center direction, utilize the first driver (411) and the Two drivers (412) adjust reflecting mirror (3) angle, make a picture return to imageing sensor (65) image plane center region;
Step f, 4 quadrant detector (66) imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector (66) image planes Heart position Δ x and Δ y, utilizes the first driver (411) and the second driver (412) to adjust reflecting mirror (3) angle, makes a picture return To 4 quadrant detector (66) image plane center position;
Step g, read the change in displacement Δ x1 that the first laser interferometer (427) obtains, and the second laser interferometer (428) obtains Change in displacement Δ x2, be reconverted into reflecting mirror (3) angle changes delta θ andAnd then obtain the angle change on measured object (5) surface Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
6. realize on portable portable combined zeroing high frequency sound big working distance autocollimation described in claim 2 is portable Formula portable combined zeroing high frequency sound big working distance auto-collimation method, it is desirable to Wavefront detecting system (7) includes Wavefront detecting simultaneously Spectroscope (71), air agitation wave front detector (72) and reflecting mirror deformation wave front detector (73);
It is characterized in that, comprise the following steps:
Step a, choose surface and be perpendicular to the reference substance of optical axis direction;
Step b, some bright light source (1), be individually positioned in operating position A and nearly operating position B by the reference substance selected by step a, Air agitation wave front detector (72) respectively obtains two groups of data of GA and GB, and reflecting mirror deformation wave front detector (73) respectively obtains Two groups of data of GC and GD;
Step c, G1=GA-GB, obtain the wavefront variation that air agitation causes;G2=GC-GD, obtains air agitation and reflecting mirror The wavefront variation that deformation causes jointly;G=G2-G1, obtains the wavefront variation that reflecting mirror deformation causes;
Step d,
Adjusting transmission liquid crystal spatial light modulator (83) parameter according to f5 (G1), light compensatory light (81), make-up air is disturbed Dynamic;
Or
Adjusting transmission liquid crystal spatial light modulator (83) parameter according to f5 (G2), light compensatory light (81), make-up air is disturbed Move and reflecting mirror deformation;
Or
Adjust transmission liquid crystal spatial light modulator (83) parameter according to f5 (G), light compensatory light (81), compensatory reflex mirror shape Become;
Step e, imageing sensor (65) imaging, according to as a deviation image plane center direction, utilize the first driver (411) and the Two drivers (412) adjust reflecting mirror (3) angle, make a picture return to imageing sensor (65) image plane center region;
Step f, 4 quadrant detector (66) imaging, obtain some picture after step a terminates and deviate in 4 quadrant detector (66) image planes Heart position Δ x and Δ y, utilizes the first driver (411) and the second driver (412) to adjust reflecting mirror (3) angle, makes a picture return To 4 quadrant detector (66) image plane center position;
Step g, read the change in displacement Δ x1 that the first laser interferometer (427) obtains, and the second laser interferometer (428) obtains Change in displacement Δ x2, be reconverted into reflecting mirror (3) angle changes delta θ andAnd then the angle obtaining measured object (5) surface becomes Change Δ α and Δ β;Wherein, Δ θ=f1 (Δ x1, Δ x2),With F1, f2, f3, f4 represent 4 functions.
CN201610638926.2A 2016-08-07 2016-08-07 The big working distance autocollimation of portable combined zeroing high frequency sound and method Active CN106017440B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610638926.2A CN106017440B (en) 2016-08-07 2016-08-07 The big working distance autocollimation of portable combined zeroing high frequency sound and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610638926.2A CN106017440B (en) 2016-08-07 2016-08-07 The big working distance autocollimation of portable combined zeroing high frequency sound and method

Publications (2)

Publication Number Publication Date
CN106017440A true CN106017440A (en) 2016-10-12
CN106017440B CN106017440B (en) 2018-05-15

Family

ID=57134991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610638926.2A Active CN106017440B (en) 2016-08-07 2016-08-07 The big working distance autocollimation of portable combined zeroing high frequency sound and method

Country Status (1)

Country Link
CN (1) CN106017440B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002506A (en) * 1998-03-30 2000-01-07 Carl Zeiss Jena Gmbh Method and apparatus for optical coherence tomography with coherent dynamic focus
CN1570554A (en) * 2004-05-12 2005-01-26 中国科学院长春光学精密机械与物理研究所 Auto-collimation interference measurement system for three dimensional angular distortion of object
CN1687702A (en) * 2005-05-27 2005-10-26 哈尔滨工业大学 2D photoelectric auto collimation equipment and measuring method based on dynamic differential compensation process
CN101063607A (en) * 2006-04-26 2007-10-31 天津大学 Device for detecting deformation of accurate measuring systems for synthesis ship gesture
US20100225926A1 (en) * 2007-05-16 2010-09-09 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Optical Distance Sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002506A (en) * 1998-03-30 2000-01-07 Carl Zeiss Jena Gmbh Method and apparatus for optical coherence tomography with coherent dynamic focus
CN1570554A (en) * 2004-05-12 2005-01-26 中国科学院长春光学精密机械与物理研究所 Auto-collimation interference measurement system for three dimensional angular distortion of object
CN1687702A (en) * 2005-05-27 2005-10-26 哈尔滨工业大学 2D photoelectric auto collimation equipment and measuring method based on dynamic differential compensation process
CN101063607A (en) * 2006-04-26 2007-10-31 天津大学 Device for detecting deformation of accurate measuring systems for synthesis ship gesture
US20100225926A1 (en) * 2007-05-16 2010-09-09 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Optical Distance Sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
敖磊: ""基于靶标反馈的自准直光束漂移抑制技术研究"", 《中国博士学位论文全文数据库(电子期刊)》 *
朱凡: ""基于共光路光束漂移测量与同步补偿的激光自准直技术"", 《中国博士学位论文全文数据库(电子期刊)》 *
石倩: ""漂移量靶标反馈激光自准直系统关键技术"", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Also Published As

Publication number Publication date
CN106017440B (en) 2018-05-15

Similar Documents

Publication Publication Date Title
CN106323199B (en) The big working distance autocollimation of combination zeroing laser and method
CN106225727B (en) The big working distance autocollimation of array zeroing laser and method
CN106323198B (en) A kind of high-precision, wide scope and big working distance laser auto-collimation apparatus and method
CN106247992B (en) A kind of high-precision, wide scope and big working distance autocollimation and method
CN106225730A (en) Portable combined zeroing high-precision laser big working distance autocollimation and method
CN106017364A (en) High-accuracy laser large-working-distance auto-collimation device and method
CN106225725B (en) The big working distance autocollimation of portable array zeroing laser and method
CN106017362B (en) A kind of big working distance autocollimation of portable high dynamic precision and method
CN106323197A (en) Portable array zeroing high precision laser large working distance auto-collimation device and method
CN106017441A (en) Portable high-precision laser long-working distance auto-collimation apparatus and method thereof
CN106052549B (en) The big working distance autocollimation of combination zeroing high dynamic precision and method
CN106225731B (en) The big working distance autocollimation of combination zeroing high-precision laser and method
CN106323200B (en) A kind of big working distance autocollimation of laser and method
CN106017363B (en) A kind of big working distance autocollimation of high dynamic precision and method
CN106225726B (en) The big working distance autocollimation of array zeroing high-precision laser and method
CN106017440B (en) The big working distance autocollimation of portable combined zeroing high frequency sound and method
CN106052659A (en) Portable laser large-working distance auto-collimation device and method
CN106091990A (en) Portable array zeroing high dynamic accuracy big working distance autocollimation and method
CN106017360B (en) The big working distance autocollimation of portable array zeroing high frequency sound and method
CN106017361B (en) The big working distance autocollimation of array zeroing high frequency sound and method
CN106052547A (en) Portable combined zeroing high-precision long-working-distance auto-collimation device and method
CN106247991B (en) The big working distance autocollimation of portable combined zeroing laser and method
CN106352814B (en) The big working distance autocollimation of array zeroing high dynamic precision and method
CN106052598B (en) A kind of big working distance autocollimation of high frequency sound and method
CN106052597A (en) Portable high-frequency-response long-working-distance auto-collimation device and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant