CN105954253A - Glucose SERS detection substrate based on Ag@Ag nanodot hierarchical galaxy array and preparation method thereof - Google Patents

Glucose SERS detection substrate based on Ag@Ag nanodot hierarchical galaxy array and preparation method thereof Download PDF

Info

Publication number
CN105954253A
CN105954253A CN 201610254730 CN201610254730A CN105954253A CN 105954253 A CN105954253 A CN 105954253A CN 201610254730 CN201610254730 CN 201610254730 CN 201610254730 A CN201610254730 A CN 201610254730A CN 105954253 A CN105954253 A CN 105954253A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
array
glucose
ag
utam
nm
Prior art date
Application number
CN 201610254730
Other languages
Chinese (zh)
Inventor
付群
雷勇
吴东旭
耿飞
王聿曦
Original Assignee
上海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Abstract

The invention relates to a glucose SERS detection substrate based on a Ag@Ag nanodot hierarchical galaxy array and a preparation method thereof. The glucose SERS detection substrate is prepared by depositing on the surface of a silicon substrate the Ag@Ag nanodot hierarchical galaxy array containing a two-stage structure composed of a silver nanodot mother particle array and a silver nanodot son particle array. Silver nanodot mother particles have diameters in a range of 91 to 97 nm; silver nanodot son particles on and around the silver nanodot mother particles have diameters in a range of 3 to 12 nm; and the center distance of adjacent silver nanodot mother particles is in a range of 98 to 102 nm. The glucose SERS detection substrate based on the Ag@Ag nanodot hierarchical galaxy array is controllable in structure, high in the coupling degree of galaxy structures, substantially improved in Raman signals and uniform and stable in enhancing signals; and SERS test results show that the glucose SERS detection substrate strongly responds to glucose concentration. The method provided by the invention realizes flexible regulation and control of the sizes of the mother particles and the son particles, can more easily realize large-scale, high-sensitivity and low-cost preparation and is capable of realizing performance advantages of the SERS substrate in biological detection of glucose and the like.

Description

基于Ag@Ag纳米点分级星系阵列的葡萄糖SERS检测基底及其制备方法 SERS detection of glucose substrate and preparation method Ag @ Ag nano dots array-based classification of galaxies

技术领域 FIELD

[0001 ]本发明涉及一种基于AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底及其制备方法。 [0001] The present invention relates to the detection of glucose SERS substrate based on a point and a preparation method of nano-grade AgOAg galaxy array. 特别是一种基于超薄氧化铝模板(UTAM)表面纳米制备技术的AgOAg纳米点分级星系阵列葡萄糖检测基底及其制备方法。 Particularly to a nanodot AgOAg hierarchical galaxy glucose detection array substrate and a preparation method based on the thin aluminum oxide template (UTAM) Nanocrystalline art. 背景技术 Background technique

[0002] 最近几十年,伴随着现代生活水平的不断发展,富营养化的饮食生活加上运动量的减少等因素,导致糖尿病发病率逐年上升。 [0002] In recent decades, along with the continuous development of modern living standards, eutrophication eating habits coupled with reduced physical activity and other factors, led to the incidence of diabetes increased year by year. 糖尿病等疾病的诊断检测一直困扰整个人类, 而表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS)技术因其具有高灵敏性、高分辨率和快速反应等优点,近些年来在化学、环境和生物特别是医用传感检测方面发展非常迅速。 Diagnostic tests diabetes and other diseases has plagued mankind throughout, and surface enhanced Raman scattering (Surface Enhanced Raman Scattering, SERS) technique has the advantage of its high sensitivity, high resolution and quick response, in recent years, chemical, environmental, and in particular, a medical sensing biological developing very rapidly.

[0003] 如何设计和制备SERS检测基底结构,使其能够极大地提高拉曼信号,甚至达到单分子检测,对于SERS技术在检测领域的应用至关重要。 [0003] Preparation of SERS detection and how to design the base structure, it is possible to greatly improve the Raman signal, even to the single-molecule detection technology applications is essential for SERS detection in the field. 很多研究者做了大量工作,提出了电子束光刻(electronbeam lithography)、聚焦离子束光刻(focused-1on-be am lithography)以及纳米球辅助光刻(nanosphere-assisted lithography)等制备方法,然而通常较难调节表面纳米结构的结构参数,而且由于低产率和高成本制约了SERS技术的进一步应用。 Many researchers have done a lot of work, e-beam lithography is proposed (electronbeam lithography), focused ion beam lithography (focused-1on-be am lithography) and auxiliary nanosphere lithography (nanosphere-assisted lithography) preparation and the like, however, typically difficult to adjust the structure parameters of the surface of the nano structure, and because of low yields and high costs restricts further application SERS technique. 精确调控和制备SERS活性热点,实现大面积、低成本和高效率地制备高增强的SERS活性基底仍是当前研究中的一个难点。 Preparation of SERS active and precise control of the hot, large-area, low-cost and efficient preparation of high enhanced SERS active substrate is still a difficulty in the current study.

[0004] UTAM表面纳米制备技术以其大面积高度有序、灵活可控、超高密度(101()-1012 cm 4)、简单快速的独特优势,结合热蒸发、电子束蒸发或磁控溅射等沉积方式,可以实现纳米结构参数的灵活可控;特别是结合UTAM掩模的多次蒸镀可方便实现热点尺寸更小(结构单元间距更小)、分级结构之间拉曼散射信号高度耦合的纳米多级阵列结构,有力地保证了大面积、低成本和高效率地制备高增强、信号均一的SERS活性基底的实现。 [0004] UTAM Nanocrystalline technology with its large area of ​​highly ordered, flexible and controllable, high-density (101 () - 1012 cm 4), the unique advantages of simple and fast, with thermal evaporation, magnetron sputtering or electron beam evaporation radio and other deposition method, a nanostructure can achieve flexible and controllable parameters; binding UTAM particular deposition mask can be easily realized multiple hotspots smaller (smaller cell pitch structure), the height difference between the Raman scattering signal hierarchy nano multilevel array structure coupled effectively to ensure a large area, low cost and efficient preparation of highly reinforced, SERS active substrate to achieve a uniform signal. 发明内容 SUMMARY

[0005] 本发明的目的之一在于提供一种基于Ag@Ag纳米点分级星系阵列的葡萄糖SERS检测基底。 [0005] One object of the present invention is to provide a Ag @ Ag nano dots based hierarchical galaxy SERS detection array of glucose substrate.

[0006] 本发明的目的之二在于提供该检测基底的制备方法。 [0006] bis A further object of the present invention provides a method of detecting the substrate.

[0007] 为实现上述目的,本发明采用以下技术方案:一基于Ag@Ag纳米点分级星系阵列的葡萄糖SERS检测基底,其特征在于该基底是在硅衬底表面通过沉积得到的,银纳米点母颗粒阵列中嵌套子颗粒阵列而成的两级结构的Ag@ Ag纳米点分级星系阵列;所述银纳米点母颗粒的直径为91〜97 nm,相邻两银纳米点母颗粒中心距为98〜102 nm,所述的银纳米点子颗粒阵列分布在所述的银纳米点母颗粒表面及周围,其颗粒直径为3〜12 nm〇 [0007] To achieve the above object, the present invention employs the following technical solution: detecting a SERS substrate based on glucose Ag @ Ag nano dots hierarchical galaxy array, wherein the substrate is a silicon substrate surface by deposition obtained silver nano dots mother particle array Ag @ Ag nano dots nested hierarchical structure of the two sub-array of galaxies array of particles formed; spot diameter of the silver nano-particles is the mother 91~97 nm, the adjacent two silver nano-particles from the center point of the mother of 98~102 nm, the silver nano dot array of particles distributed in the silver nano-dots and the surrounding surface of the mother particle, the particle diameter of 3~12 nm〇

[0008] —种制备上述的基于Ag@Ag纳米点分级星系阵列的葡萄糖SERS检测基底的方法,其特征在于该方法的具体步骤为:a.超薄氧化铝模板(UTAM)的制备;b.UTAM在恒温30 °C条件下孔径调节;c.UTAM转移到Si衬底上;d.UTAM在10 °C〜15 °C范围内恒温条件下孔径调节;e.基于AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底上的母颗粒阵列制备;f.基于AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底制备。 [0008] - Preparation species Ag @ Ag nano dots based classification method galaxies glucose SERS detection array substrate described above, wherein the specific steps of the method are: a thin aluminum oxide prepared template (UTAM) a; b.. UTAM adjusting aperture at a constant temperature condition of 30 ° C; c.UTAM transferred onto the Si substrate; d.UTAM adjusting aperture at a constant temperature in the range of 10 ° C~15 ° C;. e galaxy classification based AgOAg array of nanodots preparation of the mother particle array on a substrate for SERS sensing glucose;. F glucose-based nano SERS point ranking AgOAg galaxy detection array substrate was prepared. [0009 ]上述的超薄氧化铝模板(UTAM)的制备的具体步骤为:a-1.将经预处理后的铝片以0.3 M草酸溶液为电解液,在40V恒电压下进行第一次阳极氧化处理,时间为8〜12 h;然后在温度60 °C条件下浸于质量百分比浓度为6%的磷酸和1.8%铬酸的混合液中,其中磷酸和铬酸的体积比为1:1;浸泡以去除表面的一次氧化所得的氧化铝,再以0.3 M草酸溶液为电解液,在40V恒电压下进行第二次阳极氧化5 min;二氧后剪去周围无效区域并滴附一层光刻胶在60°C烘箱内烘干。 DETAILED step of preparing the ultra-thin Alumina (UTAM) in [0009] of:. A-1 aluminum sheet was pretreated in 0.3 M oxalic acid solution as the electrolyte, for the first time at a constant voltage of 40V anodizing treatment time is 8~12 h; and then immersed in the mass concentration at a temperature of 60 ° C condition of 6% phosphoric acid and 1.8 percent chromic acid mixed solution, chromic acid and phosphoric acid wherein the volume ratio of 1: 1; soaking time resulting in the removal of aluminum oxide surface, again with 0.3 M oxalic acid solution as the electrolyte, a second anodizing at a constant voltage of 40V 5 min; cut-dioxo invalid and the surrounding region is attached a drip the photoresist layer is dried in an oven at 60 ° C. [〇〇1〇] a_2.将步骤aj所得氧化铝模板放入氯化铜和盐酸按1:1的体积比的混合液中, 以去除剩余的铝,获得纯的UTAM。 . [〇〇1〇] A_2 alumina obtained in step aj copper chloride and hydrochloric acid template in a 1: 1 volume ratio mixture in order to remove residual aluminum, to obtain pure UTAM.

[0011]上述的步骤b的具体步骤为:将步骤a所得氧化铝模板的阻挡层朝下漂浮在30 °C, 质量百分比浓度为5%的稀磷酸溶液中,扩孔时间为70 min,得到孔径为83〜87 nm的UTAM。 [0011] Step b above specific steps are: step a barrier layer of aluminum oxide template resulting in downward float 30 ° C, the mass concentration of 5% diluted phosphoric acid solution, reaming time 70 min, to give the pore size of 83~87 nm UTAM. [0〇12]上述的步骤c的具体步骤为:将步骤b所得的UTAM漂浮在丙酮溶液中,待表面的光刻胶全部溶解后,将UTAM转移到清洗干净并作亲水处理后的Si衬底上,并用80 °C恒温加热台烘干。 The Si obtained in Step B UTAM floating in acetone solution, until total dissolution of the surface of the photoresist was transferred to a clean and UTAM for hydrophilic treatment of: [0〇12] Step c above specific steps of on a substrate, and dried 80 ° C constant temperature heating and drying stage.

[0013]上述的步骤d的具体步骤为:将步骤c中的到的UTAM/Si样品,在10°C〜15°C范围内恒温的条件下,放在质量百分比浓度为5%的稀磷酸溶液中,扩孔时间为30〜50 min,得到孔径为91〜97nm的超薄氧化铝模板。 [0013] The specific steps of the above-described step d: c is the next step to UTAM / Si samples, the temperature in the range of 10 ° C~15 ° C conditions on the mass concentration of 5% diluted phosphoric acid solution, reaming time 30~50 min, to obtain a pore size of thin aluminum oxide template 91~97nm. [〇〇14]上述的步骤e的具体步骤为:将步骤d所得UTAM/Si样品,在真空度为8 X 1(T4 Pa,蒸发速率0.3〜0.5 nm/s条件下,蒸发金属银厚度为50〜70 nm;然后去除UTAM,得到直径为91 〜97 nm的Ag纳米点母颗粒阵列。[〇〇15]上述的步骤f的具体步骤为:将步骤e所得的Ag纳米点母颗粒阵列样品在真空度为8Xl(T4Pa,蒸发速率0.3〜0.5 nm/s条件下,再次蒸发Ag粉厚度为3~12 nm,即得到完整的AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底。 DETAILED Step [〇〇14] e above step is: obtained in step d UTAM / Si samples, the degree of vacuum of 8 X 1 (T4 Pa, the evaporation rate of 0.3~0.5 nm / s under the conditions of evaporation of metallic silver having a thickness of 50~70 nm; then removed UTAM, a diameter of 91 ~97 nm of Ag nano dots array mother particle [〇〇15] step f above specific steps are: step E the resulting Ag nano dots mother particle sample array. the degree of vacuum is 8Xl (T4Pa, evaporation rate 0.3~0.5 nm / s under conditions of Ag powder having a thickness of evaporated again 3 ~ 12 nm, to obtain a complete classification of galaxies AgOAg nanodots array substrate SERS detection of glucose.

[0016] 本发明的优点和效果是:本发明与现有的技术相比,具有以下优点:1)本发明以非常简单、低成本的方式制备了大面积、高密度、结构可控的AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底,基底具有显著的表面拉曼增强效应,可实现对0.08 m mol • I/1极低浓度葡萄糖的灵敏检测。 [0016] The advantages and effects of the present invention: in comparison with the prior art the present invention has the following advantages: 1) of the present invention is a very simple, low cost way to the preparation of large area, high density, controllable structure AgOAg grading array of nanodots galaxy SERS detection of glucose substrate, the substrate having a significant surface Raman enhancement effect can be achieved sensitive detection of 0.08 m mol • I / 1 of very low concentrations of glucose.

[0017] 2)本发明对UTAM进行高低温下两次孔径调控,方便地实现纳米金属银颗粒尺寸的灵活调控以及大尺寸(91〜97 nm)纳米颗粒阵列制备,从而实现Ag@Ag星系阵列的葡萄糖SERS基底检测性能上的灵活调控。 [0017] 2) of the present invention is twice UTAM aperture control, easily achieve silver nano metal particle size and large-size flexible regulation making nanoparticles arrays (91~97 nm), Ag @ Ag in order to achieve high and low temperature array galaxy regulation on the flexible substrate glucose detection performance SERS.

[0018] 3)本发明在孔径可精确调控的基础上,进行两次不同厚度的金属热蒸发,可以实现对金属颗粒分级结构制备的精确控制,确保星系结构的两级纳米点阵列结构之间的高度耦合,进而保证了SERS活性基底拉曼信号的极大增强,以及信号的良好均一性,进而实现SERS活性基底在检测性能上的优势。 [0018] 3) The present invention, in the pore diameter can be precisely regulated, for two different thicknesses of hot metal evaporation, allows accurate control of the preparation of the metal particles hierarchical structure, secured between two points nano structure array structure of galaxies the highly coupled, thus ensuring greatly enhanced Raman signal SERS active substrate, and good uniformity of the signal, thus achieving the advantages of SERS active substrate on the detection properties. 附图说明 BRIEF DESCRIPTION

[0019] 图1为AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底的制备过程(如图1 (a)、 (b)、(c)、(d)、(e))以及结构示意图。 [0019] FIG 1 is a hierarchical AgOAg nano dot array galaxies preparation SERS detection of glucose substrate (FIG. 1 (a), (b), (c), (d), (e)) and the structure of FIG.

[0020] 图2为在高低温两步扩孔后所制备的UTAM的SEM图。 [0020] FIG 2 is a SEM image of the prepared UTAM high temperature after the two-step reamer. [0021 ]图3为第二次沉积银厚度为9 nm制得的检测性能最好的AgOAg纳米点分级星系阵列结构的SEM图。 [0021] FIG. 3 is a second deposition of silver having a thickness of 9 nm to obtain the best detection performance AgOAg nano SEM galaxy FIG point ranking array structure. [〇〇22]图4为检测性能最好的AgOAg纳米点分级星系阵列检测基底对生理浓度(5〜25 m mol • L—1)的葡萄糖响应的SERS谱图。 [〇〇22] FIG. 4 is the best detection performance rating galaxy AgOAg nanodots array detector physiological substrate glucose concentration (5~25 m mol • L-1) in response to the SERS spectra. [〇〇23]图5为AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底的葡萄糖检测灵敏限响应。 Glucose detection [〇〇23] FIG. 5 is a nano-point grading AgOAg galaxy array substrate glucose SERS detection sensitivity limits of the response. [〇〇24]图6为性能最好的Ag@Ag纳米点分级星系阵列的SERS检测基底上任意选择24个点对15 m mol • L-1浓度的葡萄糖的响应检测。 [〇〇24] FIG arbitrarily selected 24 points of 15 m mol • in response to the detection of glucose concentration L-1's best performance SERS detection substrate Ag @ Ag nano dots hierarchical array of galaxies. 具体实施方式[〇〇25]实施例1:本实例对UTAM进行高低温两次扩孔后,在UTAM上两次真空热阻沉积制备出含母颗粒和子颗粒两级阵列的Ag@Ag纳米点分级星系阵列的葡萄糖SERS检测基底,制备流程如图1所示。 DETAILED DESCRIPTION Example embodiments [〇〇25] 1: This example of the high and low temperature two reaming UTAM deposited prepared containing Ag @ Ag nano dots mother particle and child particle on the array of two two vacuum thermal UTAM classifying galaxies array substrate SERS detection of glucose, prepared according to Scheme 1 as shown in FIG. 具体操作如下:首先将厚度为0.2 mm、纯度为99.999%的铝片在丙酮、乙醇和水中分别超声清洗10 min,然后将铝片放在乙醇和高氯酸的溶液中,冰浴条件下进行电化学抛光,制得备用铝片。 Specific operation is as follows: First, a thickness of 0.2 mm, a purity of 99.999% aluminum flakes in acetone, ethanol and water ultrasonic cleaning, respectively 10 min, and then the aluminum sheet and perchloric acid in ethanol solution, under ice-cooling for electrochemical polishing, to obtain an aluminum backup. 将备用铝片在0.3 M草酸中40 V电压、2 °C下氧化10 h,取出, 放入体积比为1:1的1.8w%络酸和6w%的磷酸的混合溶液中,60 °C的温度下浸泡10 h;用去离子水反复冲洗后,再放入电解槽中,采用与一次氧化相同条件进行二次氧化5 min。 An aluminum oxide in the spare 0.3 M oxalic acid at a voltage 40 V, 2 ° C 10 h, taken out, placed in a volume ratio of 1: 1.8w% 1 complex of the acid and a mixed solution of phosphoric acid 6w%, 60 ° C soaking at a temperature of 10 h; after repeated washing with deionized water, then placed in the electrolytic bath, using the same conditions for reoxidation first oxidation 5 min. 取出冲洗吹干后,除去无效区域后在余下样品表面滴覆光刻胶,烘烤成型,在氯化铜和盐酸混合液中(两者按体积比1:1混合)反应2 min,将铝完全去除,以获得纯的UTAM。 After drying rinse out, after removal of the invalid region in the remaining photoresist coated surface of the sample drops, baking the molding in a mixture of cupric chloride and hydrochloric acid (both by volume ratio of 1: 1 mixture) to 2 min, aluminum completely removed in order to obtain pure UTAM. 将去除铝基底的UTAM样品阻碍层朝下漂浮在恒温30 °C、质量分数为5%的稀磷酸溶液中,以去除底部较厚的阻碍层和调节孔径大小。 UTAM sample to remove the aluminum substrate at a constant temperature barrier layer floats down 30 ° C, the mass fraction of 5% dilute solution of phosphoric acid in order to remove a thicker barrier layer and a bottom adjusting pore size. 根据实验需要,扩孔时间为70 min,得到孔径为85 nm的双通UTAM,其中相邻孔中心距为100 nm。 Depending on the experiment, reaming time of 70 min, to obtain a pore size of 85 nm double pass UTAM, wherein adjacent hole center distance of 100 nm. 将UTAM浸于丙酮中溶去光刻胶,转移到亲水处理后的Si 衬底上,80°C加热台烘干。 The UTAM immersed in acetone to dissolve the photoresist, the substrate was transferred to the Si after the hydrophilic treatment, 80 ° C heated stage and drying. 然后在恒温10°C的条件下,放在质量百分比浓度为5%的稀磷酸溶液中,扩孔时间为30 min,得到孔径为95nm的超薄氧化铝模板,如图2所示。 Then at a constant temperature of 10 ° C, in mass percent concentration of 5% diluted phosphoric acid solution, reaming time is 30 min, to obtain a pore size of 95nm thin aluminum oxide template, as shown in FIG. 将UTAM放进真空度为8Xl(T4Pa、蒸发速率0.3〜0.5 nm/s条件下,蒸发银厚度为60 nm,然后用0.1M的NaOH溶液去除UTAM,得到硅基底上排列有序、结构形貌均一的银纳米点母颗粒阵列,直径为95 nm,厚度为60 nm。再次蒸镀厚度为9 nm的银,S卩可得到含两级结构的Ag@Ag纳米点分级星系阵列结构,如图3所示。将该结构用于生理浓度(5〜25 mmol •I/1)的葡萄糖SERS响应测试,谱图如图4所示,图中各谱线上的893 cm—^1124 cm—S1069 cm—1和1437 cm—1处四个葡萄糖的拉曼特征峰及强度显示基底对葡萄糖响应良好。图5中结构对极低浓度(0.08 mmol • I/1)葡萄糖的检测也显示出基底优异的响应能力。为了说明检测基底的信号均一性,任意选择24个点位置测试了基底对15 mmol • I/1浓度葡萄糖的响应,得到了特征峰处相对标准偏差(RSD)为3.11%,结果如图6所示,显示良好的信号均一性。 The UTAM placed under a vacuum degree of 8Xl (T4Pa, evaporation rate 0.3~0.5 nm / s condition, a thickness of the silver was evaporated 60 nm, then removed with NaOH solution of 0.1M UTAM, orderly, arranged on a silicon substrate structure and morphology uniform silver nano dot array mother particle diameter of 95 nm, a thickness of 60 nm. again deposited silver having a thickness of 9 nm, S Jie obtained containing Ag @ Ag nano dots hierarchical structure of the two galaxies array structure, as shown in glucose SERS. the structures for physiological concentrations (5~25 mmol • I / 1) 3 response test illustrated, the spectrum shown in figure 4, the figure on the respective lines 893 cm- ^ 1124 cm-S1069 cm-1 and at 1437 cm-1 Raman intensity of four peaks and glucose showed good response to glucose substrate. FIG. 5 structure detecting very low concentrations (0.08 mmol • I / 1) glucose also exhibited excellent substrate responsiveness. to illustrate signal uniformity detection substrate, arbitrarily selected 24 o'clock position of the test the substrate in response to 15 mmol • I / 1 glucose concentration, to obtain a relative standard deviation of the characteristic peak at (RSD) of 3.11%, the result 6, show good signal homogeneity.

Claims (8)

  1. 1.一基于AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底,其特征在于该基底是在硅衬底表面通过沉积得到的,银纳米点母颗粒阵列中嵌套子颗粒阵列而成的两级结构的AgOAg纳米点分级星系阵列;所述银纳米点母颗粒的直径为91〜97 nm,相邻两银纳米点母颗粒中心距为98〜102 nm,所述的银纳米点子颗粒阵列分布在所述的银纳米点母颗粒表面及周围,其颗粒直径为3〜12 nm〇 1. a glucose-based SERS substrate AgOAg detector array of nanodots hierarchical galaxy, wherein the substrate is a silicon substrate surface by deposition obtained silver nano structure two points mother particle array nested sub array of particles formed the array of galaxies AgOAg nanodots classification; spot diameter of the silver nano-particles is the mother 91~97 nm, the adjacent two silver nanodots mother particle center distance of 98~102 nm, the silver nano-particles are arrayed on the idea silver nano-dots and around said surface of the mother particle, the particle diameter of 3~12 nm〇
  2. 2.—种制备根据权利要求1所述的基于AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底的方法,其特征在于该方法的具体步骤为:a.超薄氧化铝模板(UTAM)的制备;b.UTAM在恒温30 °C条件下孔径调节;c.UTAM转移到Si衬底上;d.UTAM在10 °C〜15 °C范围内恒温条件下孔径调节;e.基于AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底上的母颗粒阵列制备;f.基于AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底制备。 2.- species prepared according to the classification based AgOAg nanodot array of galaxies glucose SERS substrate according to a method of detection as claimed in claim, wherein the specific steps of the process are: Preparation of thin aluminum oxide template (UTAM) of a; b.UTAM adjusting aperture at a constant temperature condition of 30 ° C; c.UTAM transferred onto the Si substrate; d.UTAM adjusting aperture at a constant temperature in the range of 10 ° C~15 ° C; E galaxies AgOAg nanodots based classification. preparation of the mother particle array on a substrate for SERS sensing array glucose; F preparation of glucose-based SERS substrate detection point ranking array AgOAg nano galaxy.
  3. 3.根据权利要求2所述的方法,其特征在于制备所述的超薄氧化铝模板(UTAM)的制备的具体步骤为:a_l.将经预处理后的铝片以0.3 M草酸溶液为电解液,在40V恒电压下进行第一次阳极氧化处理,时间为10〜12 h;然后在温度60 °C条件下浸于质量百分比浓度为6%的磷酸和1.8%铬酸的混合液中,其中磷酸和铬酸的体积比为1:1;浸泡以去除表面的一次氧化所得的氧化铝,再以0.3 M草酸溶液为电解液,在40V恒电压下进行第二次阳极氧化5 min;二氧后剪去周围无效区域并滴附一层光刻胶在60°C烘箱内烘干;a_2.将步骤aj所得氧化铝模板放入氯化铜和盐酸按1:1的体积比的混合液中,以去除剩余的铝,获得纯的UTAM。 3. The method according to claim 2, wherein the step of preparing the preparation of the specific thin Alumina (UTAM) is:. A_l the aluminum sheet was pretreated in an electrolytic solution of 0.3 M oxalic acid was performed at 40V constant voltage anodizing treatment for the first time, the time is 10~12 h; and then immersed in the mass concentration of 6% phosphoric acid and 1.8 percent chromic acid mixed solution at a temperature of 60 ° C conditions, wherein the volume ratio of phosphoric acid and chromic acid is 1: 1; the resulting soaking time to remove aluminum oxide surface, again with 0.3 M oxalic acid solution as the electrolyte, a second anodizing at a constant voltage of 40V 5 min; two after invalid region around the oxygen cut and attached layer of photoresist dropwise dried in an oven at 60 ° C; aj obtained in step A_2 alumina copper chloride and hydrochloric acid into a 1: 1 volume ratio mixture of in order to remove residual aluminum, to obtain pure UTAM.
  4. 4.根据权利要求2所述的方法,其特征在于所述的步骤b的具体步骤为:将步骤a所得氧化铝模板的阻挡层朝下漂浮在30 °C,质量百分比浓度为5%的稀磷酸溶液中,扩孔时间为70 min,得到孔径为83〜87 nm的UTAM。 4. The method according to claim 2, wherein said step b, the specific steps: Step a barrier layer of aluminum oxide template resulting in downward float 30 ° C, the mass concentration of 5% dilute phosphoric acid solution, reaming time of 70 min, to obtain a pore size of 83~87 nm UTAM.
  5. 5.根据权利要求2所述的方法,其特征在于所述的步骤c的具体步骤为:将步骤b所得的UTAM漂浮在丙酮溶液中,待表面的光刻胶全部溶解后,将UTAM转移到清洗干净并作亲水处理后的Si衬底上,并用80 °C恒温加热台烘干。 5. The method according to claim 2, wherein said step c is the specific steps: step b resulting UTAM floating in acetone, until all of the surface of the photoresist is dissolved, transferred to UTAM cleaned and made hydrophilic on the Si substrate after the treatment, and 80 ° C with constant temperature heating and drying stage.
  6. 6.根据权利要求2所述的方法,其特征在于所述的步骤d的具体步骤为:将步骤c中的到的UTAM/Si样品,在10°C〜15°C范围内恒温的条件下,放在质量百分比浓度为5%的稀磷酸溶液中,扩孔时间为30〜50 min,得到孔径为91〜97nm的超薄氧化错模板。 When step c is to UTAM / Si samples, the temperature in the range of 10 ° C~15 ° C Conditions: 6. The method according to claim 2, wherein said specific step is step d , in mass percent concentration of 5% diluted phosphoric acid solution, reaming time 30~50 min, to obtain a pore size ultrathin oxide 91~97nm the wrong template.
  7. 7.根据权利要求2所述的方法,其特征在于所述的步骤e的具体步骤为:将步骤d所得UTAM/Si样品,在真空度为8 X 1(T4 Pa,蒸发速率0.3〜0.5 nm/s条件下,蒸发金属银厚度为50 〜70 nm;然后去除UTAM,得到直径为91〜97 nm的Ag纳米点母颗粒阵列。 7. The method according to claim 2, wherein said step e is the specific steps: step d resulting UTAM / Si samples, the degree of vacuum of 8 X 1 (T4 Pa, evaporation rate 0.3~0.5 nm under / s conditions, evaporation of metallic silver having a thickness of 50 ~70 nm; UTAM then removed, a diameter of 91~97 nm of Ag nano dots mother particle arrays.
  8. 8.根据权利要求2所述的方法,其特征在于所述的步骤f的具体步骤为:将步骤e所得的Ag纳米点母颗粒阵列样品在真空度为8X 1(T4 Pa,蒸发速率0.3〜0.5 nm/s条件下,再次蒸发Ag粉厚度为3~12 nm,即得到完整的AgOAg纳米点分级星系阵列的葡萄糖SERS检测基底。 8. The method according to claim 2, wherein said step f specific steps are as follows: The resulting mother step e Ag nano dots array of particles in a sample vacuum degree of 8X 1 (T4 Pa, evaporation rate 0.3~ under 0.5 nm / s conditions, re-evaporated to a thickness of Ag powder of 3 ~ 12 nm, to obtain a complete classification of galaxies AgOAg nanodots array substrate SERS detection of glucose.
CN 201610254730 2016-04-23 2016-04-23 Glucose SERS detection substrate based on Ag@Ag nanodot hierarchical galaxy array and preparation method thereof CN105954253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201610254730 CN105954253A (en) 2016-04-23 2016-04-23 Glucose SERS detection substrate based on Ag@Ag nanodot hierarchical galaxy array and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201610254730 CN105954253A (en) 2016-04-23 2016-04-23 Glucose SERS detection substrate based on Ag@Ag nanodot hierarchical galaxy array and preparation method thereof

Publications (1)

Publication Number Publication Date
CN105954253A true true CN105954253A (en) 2016-09-21

Family

ID=56914740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201610254730 CN105954253A (en) 2016-04-23 2016-04-23 Glucose SERS detection substrate based on Ag@Ag nanodot hierarchical galaxy array and preparation method thereof

Country Status (1)

Country Link
CN (1) CN105954253A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128536A1 (en) * 2009-12-02 2011-06-02 Bond Tiziana C Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
CN102590179A (en) * 2012-03-28 2012-07-18 上海大学 Silver nano lattice surface enhanced raman active substrate and preparation method thereof
CN102621126A (en) * 2012-03-28 2012-08-01 上海大学 Metal nanodot array surface enhancing Raman active base and preparation method thereof
CN103257132A (en) * 2013-04-16 2013-08-21 上海大学 Silver nanoparticle cap array surface-enhanced raman activity substrate and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128536A1 (en) * 2009-12-02 2011-06-02 Bond Tiziana C Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
CN102590179A (en) * 2012-03-28 2012-07-18 上海大学 Silver nano lattice surface enhanced raman active substrate and preparation method thereof
CN102621126A (en) * 2012-03-28 2012-08-01 上海大学 Metal nanodot array surface enhancing Raman active base and preparation method thereof
CN103257132A (en) * 2013-04-16 2013-08-21 上海大学 Silver nanoparticle cap array surface-enhanced raman activity substrate and preparation method thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KUNDAN SIVASHANMUGAN ET AL.: "Intense Raman Scattering on hybrid Au/Ag nanoplatforms for the distinction of MMP-9-digested collagen type-I fiber detection", 《BIOSENSORS AND BIOELECTRONICS》 *
QUN FU ET AL.: "Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps for 5 nm Fabricated by Ultrathin Aluminum Mask Technique", 《APPLIED MATERIALS INTERFACES》 *
QUN FU ET AL.: "Ni/Au hybrid nanoparticle arrays as a highly efficient,cost-effective and stable SERS substrate", 《RSC ADVANCES》 *
周懿 等: "有序金纳米阵列的可控制备及其表面增强拉曼光谱", 《上海大学学报》 *
王沙沙 等: "高拉曼增强银纳米帽阵列活性基底的模板法制备及其性能", 《上海大学学报》 *
郭合帅 等: "模板法制备银纳米点阵活性基底及其用于葡萄糖的高灵敏检测", 《上海大学学报》 *

Similar Documents

Publication Publication Date Title
Cheung et al. Fabrication of nanopillars by nanosphere lithography
Lin et al. Surface-enhanced Raman spectroscopy: substrate-related issues
Sun et al. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates
Martin et al. Orthogonal self‐assembly on colloidal gold‐platinum nanorods
Tian et al. A review of recent advances in nonenzymatic glucose sensors
Sun et al. Morphology Control and Transferability of Ordered Through‐Pore Arrays Based on the Electrodeposition of a Colloidal Monolayer
Elechiguerra et al. Corrosion at the nanoscale: the case of silver nanowires and nanoparticles
Wen et al. Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications
Masuda et al. Site-selective deposition and morphology control of UV-and visible-light-emitting ZnO crystals
Nguyen et al. Synthesis of thin and highly conductive DNA‐based palladium nanowires
Liu et al. Size effect on the crystal structure of silver nanowires
Chu et al. Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition
Gu et al. Cobalt metallization of DNA: toward magnetic nanowires
Liu et al. Epitaxial electrodeposition of high-aspect-ratio Cu2O (110) nanostructures on InP (111)
US20100003822A1 (en) Method for producing columnar structured material
Sun et al. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template
CN101024483A (en) Constituting method for metal ordered structure surface reinforced base
US20100129623A1 (en) Active Sensor Surface and a Method for Manufacture Thereof
CN102126724A (en) Method for preparing silicon nanowire array with smooth surface
Kim et al. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering
CN101566570A (en) Orderly controllable surface-reinforced Raman scattering active substrate and preparation method thereof
Lokhande et al. Some structural studies on successive ionic layer adsorption and reaction (SILAR)-deposited CdS thin films
US7488671B2 (en) Nanostructure arrays and methods of making same
Zhang et al. One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced graphene oxide–gold nanoparticle hybrid membranes
CN101216430A (en) Surface enhanced raman scattering activity nanometer porous metal substrate and method for making same

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination