CN105921123A - 一种纳米磁性复合物的制备方法 - Google Patents

一种纳米磁性复合物的制备方法 Download PDF

Info

Publication number
CN105921123A
CN105921123A CN201610333862.5A CN201610333862A CN105921123A CN 105921123 A CN105921123 A CN 105921123A CN 201610333862 A CN201610333862 A CN 201610333862A CN 105921123 A CN105921123 A CN 105921123A
Authority
CN
China
Prior art keywords
graphene
preparation
cyclodextrin
solid product
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610333862.5A
Other languages
English (en)
Other versions
CN105921123B (zh
Inventor
赵梦奇
廖银念
曹丽琴
陈德军
丁蕾
徐艳
赵玉霞
黄佳路
贾剑平
任定益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Tiandi Jinyang Environmental Protection New Material Co ltd
Original Assignee
Xinjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang University filed Critical Xinjiang University
Priority to CN201610333862.5A priority Critical patent/CN105921123B/zh
Publication of CN105921123A publication Critical patent/CN105921123A/zh
Application granted granted Critical
Publication of CN105921123B publication Critical patent/CN105921123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于新材料制备领域,公开一种纳米磁性复合物的制备方法,包括以下步骤:(1)将氧化石墨烯粉末和羟丙基‑β‑环糊精在去离子水溶液中混合均匀,在70~90℃下持续搅拌10~20h,加入氨水溶液和水合肼溶液反应12~16h,离心分离,洗涤固体产物至pH值为7,真空干燥后制得羟丙基‑β‑环糊精‑石墨烯超分子,备用;(2)再以乙二醇为溶剂,将羟丙基‑β‑环糊精‑石墨烯超分子与CH3COONa、聚乙二醇和FeCl3·6H2O混合均匀后,装入高压反应釜中,加热到180℃,反应12~18h,利用磁性,分离固液产物,干燥固体产物制备得到纳米磁性复合物,即羟丙基β‑环糊精‑石墨烯/Fe3O4。该方法为石墨烯作为吸附材料应用于污水等领域提供了有效方式,具有良好的应用前景。

Description

一种纳米磁性复合物的制备方法
技术领域
本发明属于精细化工新材料制备方法的设计技术领域,具体来说公开了一种纳米磁性复合物的制备方法。
背景技术
石墨烯和β-环糊精及其衍生物在诸如分离、生物医药、催化剂等很多领域扮演着非常重要的角色。β-环糊精本身就是一种纳米尺度的分子材料,可以识别和包结一系列的底物。吸附被认为是最常用且高效低成本的技术,而石墨烯及其衍生物作为良好的吸附材料—碳家族的新成员,具有比表面积大(约2630 m2.g-1)、表面活性位点多、易于修饰且制备方便、成本低廉等优点,被广泛认为是具有很大潜力的吸附剂材料。氧化石墨烯的C=C的质子络合以及官能团如-COOH和-OH会和带有功能团-NH2和-OH的有机污染物产生强烈的氢键,因此,可以将石墨烯及其衍生物用于有机废水的处理。但石墨烯及其衍生物的粒径小,在水体中较难分离,易发生严重的聚集或堆积现象,导致有效表面积减少,从而降低吸附能力,并且一旦泄露到环境中会引起一定的健康和环境问题。
羟丙基-β-环糊精-石墨烯超分子与纳米磁性颗粒Fe3O4复合制备纳米磁性复合物,一方面降低了磁性纳米粒子的高比表面能,避免其因团聚造成的粒径分布不均和生物相容性差的缺陷;另一方面能使其表面免受外部环境的直接侵扰,保持了其化学稳定性和磁性能。磁性吸附材料可以通过外加磁场从水体中轻易分离,已经成为近几年来环境净化的新一代材料。低能耗的磁分离和小粒径的羟丙基-β-环糊精-石墨烯超分子纳米吸附材料有效复合,能达到更佳的污水处理效果。
目前,石墨烯及其衍生物已实现工业化,可以大批量生产。GO含有大量的含氧官能团,除了能高效吸附极性有机分子外,也能和金属离子尤其是多价金属离子通过静电引力和配位键结合,可用于重金属污水的处理。如何有效利用石墨烯及其衍生物处理当前日益严重的水污染,引起了研究者们的广泛关注。污水处理常规的去除方法主要有混凝法和活性炭吸附等,但由于存在成本高、再生和回收困难等问题未能大规模应用。因此,开发新型、高效、绿色环保、可回收的石墨烯复合吸附材料的制备方法,显得尤为重要。
发明内容
本发明的目的:提供了一种由羟丙基-β-环糊精-石墨烯超分子制备纳米磁性复合物的制备方法,制备得到的纳米磁性复合物,即羟丙基β-环糊精-石墨烯/Fe3O4能有效解决现有吸附剂再生和回收困难等问题。
本发明的技术方案如下:一种纳米磁性复合物的制备方法,该制备方法包括以下步骤:(1)将氧化石墨烯粉末和羟丙基-β-环糊精在去离子水溶液中混合均匀,在70~90℃下持续搅拌10~20h,加入氨水溶液和水合肼溶液反应12~16h,离心分离,洗涤固体产物至pH值为7,真空干燥后制得羟丙基-β-环糊精-石墨烯超分子,备用;工艺流程如图1所示,
(2)再以乙二醇为溶剂,将步骤(1)制备好的羟丙基-β-环糊精-石墨烯超分子与CH3COONa(NaAc) 、聚乙二醇和FeCl3·6H2O混合均匀后,装入高压反应釜中,加热到180℃,反应12~18h,利用磁性,分离固液产物,干燥固体产物制备得到纳米磁性复合物,即羟丙基β-环糊精-石墨烯/Fe3O4;工艺流程如图2所示。
其中,所述的羟丙基-β-环糊精-石墨烯超分子分别与FeCl3·6H2O的质量比为1∶5~10,与溶剂乙二醇的质量比为1∶10~20,与NaAc的质量比为1∶20~50,与聚乙二醇的质量比为1∶5~20。所述氧化石墨烯粉末是工业级中的一种;所述羟丙基-β-环糊精是β-环糊精衍生物中的一种;所述氨水溶液的浓度为0.6~1.0 wt%;所述水合肼溶液的浓度为0.1~0.5 vt%。
有益效果:本发明反应过程中生成的纳米四氧化三铁可与羟丙基-β-环糊精-石墨烯超分子复合制得具有磁性的纳米吸附材料。该吸附剂具有较高的产率,可解决现有吸附剂再生和回收困难等问题,实现高效、绿色环保的功效,具有极为广阔的应用前景。
附图说明
图1和图2为本发明的工艺流程图;图3和图4分别为本发明实施例1中反应生成羟丙基-β-环糊精-石墨烯超分子的透射电子显微镜图和粉末X射线衍射谱图;图5和图6分别为本发明实施例1中反应生成羟丙基-β-环糊精-石墨烯超分子和纳米四氧化三铁复合产物羟丙基β-环糊精-石墨烯/Fe3O4的透射电子显微镜图和粉末X射线衍射谱图。
具体实施方式
下面结合具体的实施例对本发明作进一步阐述。
实施例1、一种纳米磁性复合物的制备方法,该制备方法包括以下步骤:
(1)将氧化石墨烯粉末和羟丙基-β-环糊精在去离子水溶液中混合均匀,在70~90℃下持续搅拌10~20h,加入氨水溶液和水合肼溶液反应12~16h,离心分离,洗涤固体产物至pH值为7,真空干燥后制得羟丙基-β-环糊精-石墨烯超分子,备用;
(2)再以乙二醇为溶剂,将步骤(1)制备好的羟丙基-β-环糊精-石墨烯超分子与CH3COONa、聚乙二醇和FeCl3·6H2O混合均匀后,装入高压反应釜中,加热到170~190℃,反应12~18h,利用磁性,分离固液产物,干燥固体产物制备得到纳米磁性复合物,即羟丙基β-环糊精-石墨烯/Fe3O4
所述氧化石墨烯粉末是工业级中的一种;所述羟丙基-β-环糊精是β-环糊精衍生物中的一种;所述氨水溶液的浓度为0.6~1.0 wt%;所述水合肼溶液的浓度为0.1~0.5 vt%。
所述羟丙基-β-环糊精-石墨烯超分子分别与FeCl3·6H2O的质量比为1∶5~10,与乙二醇溶剂的质量比为1∶10~20,与CH3COONa的质量比为1∶20~50,与聚乙二醇的质量比为1∶5~20。
实施例2、一种纳米磁性复合物的制备方法,该制备方法包括以下步骤:
(1)将2.0g羟丙基-β-环糊精和0.08g氧化石墨烯在90℃下搅拌20h,再逐滴加入氨水溶液1mL和水合肼溶液0.2mL,反应12h,溶液由黄褐色变为黑色 ,离心分离液固产物;固体产物的透射电子显微镜图片如图3所示,X射线衍射谱图如图4所示,可以看出羟丙基-β-环糊精成功地负载在氧化石墨烯上,且羟丙基-β-环糊精呈圆球状,直径约为20~50 nm不等,结合其X射线衍射谱图可知,分离固液产物后的固体产物为羟丙基-β-环糊精-石墨烯超分子;
(2)将0.1g羟丙基-β-环糊精-石墨烯超分子与50mL的乙二醇充分混合后,加入 0.5g FeCl3•6H2O搅拌2h,再加入3.6g NaAc和1.0g 聚乙二醇,搅拌1h;将混合物装入反应釜中, 180 ℃下,反应16h,液固产物磁性分离,固体产物的透射电子显微镜图片如图5所示,可见羟丙基-β-环糊精-石墨烯超分磁性修饰后形貌上未出现明显变化,且分散性更好。X射线衍射谱图如图6所示,可见2θ为18.2°,30.0°,35.5°,43.2°,53.2°,57.1°及62.9°处的峰分别归属于Fe3O4纳米粒子的(111),(220),(311),(400),(422),(511)及(440)晶面,表明分离固液产物后的固体产物为纳米磁性复合物,即羟丙基β-环糊精-石墨烯/Fe3O4

Claims (3)

1.一种纳米磁性复合物的制备方法,其特征在于:该制备方法包括以下步骤:
(1)将氧化石墨烯粉末和羟丙基-β-环糊精在去离子水溶液中混合均匀,在70~90℃下持续搅拌10~20h,加入氨水溶液和水合肼溶液反应12~16h,离心分离,洗涤固体产物至pH值为7,真空干燥后制得羟丙基-β-环糊精-石墨烯超分子,备用;
(2)再以乙二醇为溶剂,将步骤(1)制备好的羟丙基-β-环糊精-石墨烯超分子与CH3COONa、聚乙二醇和FeCl3·6H2O混合均匀后,装入高压反应釜中,加热到170~190℃,反应12~18h,利用磁性,分离固液产物,干燥固体产物制备得到纳米磁性复合物,即羟丙基β-环糊精-石墨烯/Fe3O4
2.依权利要求1所述的制备方法,其特征在于:所述氧化石墨烯粉末是工业级中的一种;所述羟丙基-β-环糊精是β-环糊精衍生物中的一种;所述氨水溶液的浓度为0.6~1.0 wt%;所述水合肼溶液的浓度为0.1~0.5 vt%。
3.依权利要求1所述的制备方法,其特征在于:所述羟丙基-β-环糊精-石墨烯超分子分别与FeCl3·6H2O的质量比为1∶5~10,与乙二醇溶剂的质量比为1∶10~20,与CH3COONa的质量比为1∶20~50,与聚乙二醇的质量比为1∶5~20。
CN201610333862.5A 2016-05-19 2016-05-19 一种纳米磁性复合物的制备方法 Active CN105921123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610333862.5A CN105921123B (zh) 2016-05-19 2016-05-19 一种纳米磁性复合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610333862.5A CN105921123B (zh) 2016-05-19 2016-05-19 一种纳米磁性复合物的制备方法

Publications (2)

Publication Number Publication Date
CN105921123A true CN105921123A (zh) 2016-09-07
CN105921123B CN105921123B (zh) 2018-04-03

Family

ID=56841627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610333862.5A Active CN105921123B (zh) 2016-05-19 2016-05-19 一种纳米磁性复合物的制备方法

Country Status (1)

Country Link
CN (1) CN105921123B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064274A (zh) * 2017-05-24 2017-08-18 遵义师范学院 基于GO/Fe3O4/β‑CD磁性纳米复合材料高灵敏检测多环芳烃电化学方法
CN107185498A (zh) * 2017-07-20 2017-09-22 上海应用技术大学 一种RGO‑β‑CD水凝胶吸附材料及其制备方法
CN107474324A (zh) * 2017-09-06 2017-12-15 西北师范大学 羟丙基β‑环糊精功能化的氧化石墨烯复合材料的制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096536A (zh) * 2013-04-01 2014-10-15 同济大学 一种磁性还原氧化石墨烯复合材料的制备及其用于去除水中喹诺酮类抗生素的方法
CN104761728A (zh) * 2015-03-19 2015-07-08 安徽师范大学 β-环糊精/聚乙烯亚胺/氧化石墨烯复合材料及制备方法、组合物和检测方法
CN105195094A (zh) * 2015-09-08 2015-12-30 中国科学院东北地理与农业生态研究所 一种吸附铜离子的氧化石墨烯吸附材料的制备方法
CN105267976A (zh) * 2015-10-14 2016-01-27 重庆华邦制药有限公司 氧化石墨烯与环糊精的复合物及其制备方法
CN105289523A (zh) * 2015-11-05 2016-02-03 江苏大学 β-环糊精-氧化石墨烯-硅藻土复合材料的制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096536A (zh) * 2013-04-01 2014-10-15 同济大学 一种磁性还原氧化石墨烯复合材料的制备及其用于去除水中喹诺酮类抗生素的方法
CN104761728A (zh) * 2015-03-19 2015-07-08 安徽师范大学 β-环糊精/聚乙烯亚胺/氧化石墨烯复合材料及制备方法、组合物和检测方法
CN105195094A (zh) * 2015-09-08 2015-12-30 中国科学院东北地理与农业生态研究所 一种吸附铜离子的氧化石墨烯吸附材料的制备方法
CN105267976A (zh) * 2015-10-14 2016-01-27 重庆华邦制药有限公司 氧化石墨烯与环糊精的复合物及其制备方法
CN105289523A (zh) * 2015-11-05 2016-02-03 江苏大学 β-环糊精-氧化石墨烯-硅藻土复合材料的制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LULU FAN等: ""Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal"", 《JOURNAL OF MATERIALS CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064274A (zh) * 2017-05-24 2017-08-18 遵义师范学院 基于GO/Fe3O4/β‑CD磁性纳米复合材料高灵敏检测多环芳烃电化学方法
CN107064274B (zh) * 2017-05-24 2019-02-01 遵义师范学院 基于GO/Fe3O4/β-CD磁性纳米复合材料高灵敏检测多环芳烃电化学方法
CN107185498A (zh) * 2017-07-20 2017-09-22 上海应用技术大学 一种RGO‑β‑CD水凝胶吸附材料及其制备方法
CN107474324A (zh) * 2017-09-06 2017-12-15 西北师范大学 羟丙基β‑环糊精功能化的氧化石墨烯复合材料的制备和应用

Also Published As

Publication number Publication date
CN105921123B (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
Zhang et al. Confined pyrolysis of metal–organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes
Chen et al. Recent progress and advances in the environmental applications of MXene related materials
Yu et al. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions
Wang et al. Halloysite nanotube@ carbon with rich carboxyl groups as a multifunctional adsorbent for the efficient removal of cationic Pb (II), anionic Cr (VI) and methylene blue (MB)
Huang et al. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks
Zhang et al. Enhanced removal of As (Ⅲ) and As (Ⅴ) from aqueous solution using ionic liquid-modified magnetic graphene oxide
Zhang et al. Theoretical guidance for the construction of electron-rich reaction microcenters on C–O–Fe bridges for enhanced Fenton-like degradation of tetracycline hydrochloride
Yang et al. Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@ MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study
Ren et al. One-step solvothermal synthesis of Fe3O4@ Carbon composites and their application in removing of Cr (VI) and Congo red
Lin et al. The effective removal of nickel ions from aqueous solution onto magnetic multi-walled carbon nanotubes modified by β-cyclodextrin
Li et al. Effective removal of bisphenols from aqueous solution with magnetic hierarchical rattle-like Co/Ni-based LDH
Verma et al. Graphene-based materials for the adsorptive removal of uranium in aqueous solutions
Donga et al. Advances in graphene-based magnetic and graphene-based/TiO2 nanoparticles in the removal of heavy metals and organic pollutants from industrial wastewater
Liu et al. Removal of 17β-estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: adsorption behavior and mechanism
Yan et al. Self-assembly preparation of lignin–graphene oxide composite nanospheres for highly efficient Cr (vi) removal
Chen et al. Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater
Khan et al. Investigation of the photocatalytic potential enhancement of silica monolith decorated tin oxide nanoparticles through experimental and theoretical studies
Xiao et al. Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water
CN105032375B (zh) 一种磁性石墨基重金属吸附材料的制备方法
Solangi et al. Emerging 2D MXene-based adsorbents for hazardous pollutants removal
Ma et al. Facile method for the synthesis of a magnetic CNTs–C@ Fe–chitosan composite and its application in tetracycline removal from aqueous solutions
Yang et al. Electro-adsorption and reduction of Uranium (VI) by Fe3O4@ COFs electrode with enhanced removal performance
Venkateswarlu et al. An environmentally benign synthesis of Fe3O4 nanoparticles to Fe3O4 nanoclusters: Rapid separation and removal of Hg (II) from an aqueous medium
CN107999033A (zh) 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
CN105148835B (zh) 颗粒型13x分子筛/凹凸棒土负载纳米铁‑镍材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220630

Address after: 831400 No. 500, Kaitai North Road, Midong District, Urumqi, Xinjiang Uygur Autonomous Region

Patentee after: XINJIANG TIANDI JINYANG ENVIRONMENTAL PROTECTION NEW MATERIAL Co.,Ltd.

Address before: 830046 No. 14 Shengli Road, Tianshan District, the Xinjiang Uygur Autonomous Region, Urumqi

Patentee before: XINJIANG University

TR01 Transfer of patent right