CN105911621A - 能量聚焦的耦合光子-等离激元微腔及其制备方法和应用 - Google Patents

能量聚焦的耦合光子-等离激元微腔及其制备方法和应用 Download PDF

Info

Publication number
CN105911621A
CN105911621A CN201610356961.5A CN201610356961A CN105911621A CN 105911621 A CN105911621 A CN 105911621A CN 201610356961 A CN201610356961 A CN 201610356961A CN 105911621 A CN105911621 A CN 105911621A
Authority
CN
China
Prior art keywords
phasmon
microcavity
metal
coupling
bragg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610356961.5A
Other languages
English (en)
Other versions
CN105911621B (zh
Inventor
侯玉敏
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201610356961.5A priority Critical patent/CN105911621B/zh
Publication of CN105911621A publication Critical patent/CN105911621A/zh
Application granted granted Critical
Publication of CN105911621B publication Critical patent/CN105911621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种能量聚焦的耦合光子‑等离激元微腔及其制备方法和应用。本发明采用耦合层连接Bragg纳米微腔和金属表面等离激元透镜形成耦合光子‑等离激元微腔,在耦合层的作用下,波导模式和表面等离激元模式相互作用,形成耦合光子‑等离激元模式,从而能量聚焦在Bragg纳米微腔中心;通过蝴蝶结纳米天线和磁振子,有效地将局域在Bragg纳米微腔中的能量耦合到蝴蝶结纳米天线或者磁振子中,并极大地提高了蝴蝶结纳米天线中的电场强度和磁振子中的磁场强度;并且本发明的耦合光子‑等离激元微腔能够用于单分子拉曼光谱检测装置,分子表面增强红外吸收光谱检测装置,光刻微加工中的纳米点光源,以及折射率传感器或者生物传感器。

Description

能量聚焦的耦合光子-等离激元微腔及其制备方法和应用
技术领域
本发明涉及微纳尺度光学器件,具体涉及一种能量聚焦的耦合光子-等离激元微腔及其制备方法和应用。
背景技术
目前,表面等离激元SPP电磁场聚焦,主要是通过设计金属结构或者调整入射光源将产生的SPP汇聚实现能量聚焦。但是,在SPP聚焦过程中,金属结构吸收损耗比较大,即品质因子Q较小,而且,入射光源利用率不高。此外,如何将聚焦的能量进一步从金属结构中耦合出来加以利用也是一大难点。
发明内容
本发明旨在通过耦合环形电介质布拉格(Bragg)纳米微腔和金属表面等离激元透镜,形成耦合光子-等离激元纳米微腔,以克服单独金属聚焦结构能量损耗较大、单独光子晶体结构局域电磁场能力较弱的缺点。
本发明的一个目的在于提出一种能量聚焦的耦合光子-等离激元微腔。
本发明的能量聚焦的耦合光子-等离激元微腔包括:Bragg纳米微腔、耦合层和金属表面等离激元透镜;其中,Bragg纳米微腔由中心电介质圆柱和外围两种不同折射率的等高同心电介质圆环交替排列形成的Bragg层构成,两种电介质圆环的折射率以及环的宽度满足Bragg反射条件;金属表面等离激元透镜包括金属衬底以及在衬底上的中心金属圆柱和外围周期性排列的等高同心金属圆环;Bragg纳米微腔和金属表面等离激元透镜之间通过耦合层连接,并且填充表面等离激元透镜金属圆环之间的空隙;入射波为线偏振平面波,垂直入射至耦合光子-等离激元微腔,入射波电场E0分解为方位角分量Eα和径向分量Er,入射波磁场H0分解为方位角分量Hα和径向分量Hr;入射波首先在Bragg纳米微腔作用下发生衍射,转换成面内波导模式,波导模式利用了入射波电场方位角分量Eα和磁场径向分量Hr,波导模式在两种电介质同心环的界面处发生反射,向Bragg纳米微腔的中心传播并聚焦;透过Bragg纳米微腔的入射波,在金属表面等离激元透镜的作用下,转换成表面等离激元SPP模式,SPP模式利用了入射波电场径向分量Er和磁场方位角分量Hα,SPP模式向金属表面等离激元透镜的中心传播并聚焦;在耦合层的作用下,波导模式和表面等离激元模式相互作用;通过调节耦合层的折射率和厚度,使得波导模式和表面等离激元模式耦合最强,最终形成了耦合光子-等离激元模式,将能量聚焦在Bragg纳米微腔中心。
Bragg纳米微腔包括中心电介质圆柱和外围两种不同折射率的同心电介质圆环,同心电介质圆环的周期在600~1600nm之间,高度在100~200nm之间。通过调节电介质圆环的折射率和宽度,使得波导模式在两种电介质的界面发生反射时满足Bragg反射条件。中心电介质圆柱的材料与两种同心电介质圆环中的一种相同。
耦合层采用电介质材料,例如二氧化硅;耦合层的上表面高出同心金属圆环上表面的距离为L,通过调节距离L和耦合层的折射率,使得波导模式和表面等离激元模式耦合最强;距离L在10~300nm之间。
金属表面等离激元透镜包括金属衬底以及在衬底上的中心金属圆柱和外围同心金属圆环,衬底采用金或银;中心圆柱和金属圆环采用金或银。金属圆环的周期为SPP波长的整数倍,金属圆环的周期在400~1200nm之间,高度在40~60nm之间。
在实际应用中,本发明的耦合光子-等离激元微腔可以和其他纳米结构进一步耦合,将耦合光子-等离激元微腔中的能量耦合出来,实现巨大的电场、磁场增强。本发明给出了两种典型的纳米结构,分别为增强电场的蝴蝶结纳米天线和增强磁场的磁振子,放置在Bragg纳米微腔的上表面中心。蝴蝶结纳米天线由一对金属等边三角形构成,磁振子由金属-电介质-金属圆柱三明治结构构成,蝴蝶结纳米天线或者磁振子与耦合光子-等离激元微腔耦合,能够进一步有效地将聚焦能量耦合到蝴蝶结纳米天线或者磁振子中,能量被局域在几十甚至几个纳米范围。蝴蝶结纳米天线的边长在50~500nm之间,高度在5~20nm之间,倒角在0~10nm之间,中间的间隙在3~20nm之间。圆柱状的磁振子的直径在100~300nm之间,每一层高度在30~100nm之间。
本发明的另一个目的在于提供一种能量聚焦的耦合光子-等离激元微腔的制备方法。
本发明的能量聚焦的耦合光子-等离激元微腔的制备方法,包括以下步骤:
1)提供衬底,衬底采用金或银;
2)在衬底上制备中心金属圆柱和周期性排列的同心金属圆环,形成金属表面等离激元透镜,金属圆环采用金或银。
3)在金属表面等离激元透镜的上表面填充耦合层,耦合层填充金属表面等离激元透镜的同心金属圆环之间的空隙,并且上表面高出同心金属圆环的上表面;
4)在耦合层上制备中心电介质圆柱以及两种不同折射率交替排列的电介质同心圆环,形成Bragg纳米微腔。
本发明的又一目的在于提供一种能量聚焦的耦合光子-等离激元微腔用作单分子拉曼光谱检测装置,分子表面增强红外吸收光谱检测装置,光刻微加工中的纳米点光源,以及折射率传感器或者生物传感器的用途。
本发明的优点:
本发明采用耦合层连接Bragg纳米微腔和金属表面等离激元透镜形成耦合光子-等离激元微腔,在耦合层的作用下,波导模式和表面等离激元模式相互作用,形成耦合光子-等离激元模式,从而将能量聚焦在Bragg纳米微腔中心;通过与其他纳米结构耦合,例如蝴蝶结纳米天线和磁振子,可以有效地将局域在Bragg纳米微腔中的能量耦合到蝴蝶结纳米天线或者磁振子中,并极大地提高了蝴蝶结纳米天线中的电场强度和磁振子中的磁场强度。在应用方面:(1)本发明极大地提高了聚焦电场、磁场的强度,形成一个能量聚焦结构,通过与其他纳米结构耦合,例如蝴蝶结纳米天线和磁振子,可以进一步将能量耦合到蝴蝶结纳米天线或者磁振子中,极大地提高了聚焦电、磁场的强度,有利于聚焦电场、磁场的应用,例如提高单分子拉曼光谱检测的灵敏度和分子表面增强红外吸收光谱检测的灵敏度;(2)在耦合光子-等离激元微腔上设置蝴蝶结纳米天线,能够将能量聚焦到几个纳米范围,电场增强(|E/E0|)可达3000以上,在光刻微加工上,可将聚焦点作为纳米点光源,在纳米器件上加工出几个纳米尺度的结构;(3)本发明对于外部环境折射率变化非常敏感,可以制成折射率传感器或者生物传感器。
附图说明
图1为本发明的能量聚焦的耦合光子-等离激元微腔的示意图,其中,(a)为立体图,(b)为剖面图;
图2为本发明的能量聚焦的耦合光子-等离激元微腔的Bragg纳米微腔的俯视图;
图3为本发明的能量聚焦的耦合光子-等离激元微腔的金属表面等离激元透镜的俯视图;
图4为线偏振平面波在耦合光子-等离激元微腔作用下耦合模式的电场和磁场分布图,其中,(a)为电场分布图,(b)为磁场分布图;
图5为本发明的蝴蝶结纳米天线的示意图,其中,(a)为俯视图,(b)为侧视图;
图6为本发明的磁振子的示意图,其中,(a)为俯视图,(b)为侧视图;
图7(a)为将蝴蝶结纳米天线放在耦合光子-等离激元微腔上表面中心的示意图,图7(b)为将磁振子放在耦合光子-等离激元微腔上表面中心的示意图。
具体实施方式
下面结合附图,通过具体实施例,进一步阐述本发明。
实施例一
在本实施例中,入射光波长为850nm。如图1所示,本实施例的耦合光子-等离激元微腔包括:Bragg纳米微腔1、耦合层2和金属表面等离激元透镜3;其中,中心电介质圆柱和外围两种不同折射率交替排列的电介质同心圆环构成Bragg纳米微腔1,两种电介质圆环的折射率以及圆环宽度满足Bragg反射条件;金属表面等离激元透镜3包括衬底以及在衬底上的中心金属圆柱和外围周期性排列的同心金属圆环;Bragg纳米微腔和金属表面等离激元透镜之间通过耦合层连接,耦合层2填充同心金属圆环之间的空隙,并且上表面高出同心金属圆环的上表面的距离为L。
如图2所示,Bragg纳米微腔包括中心电介质圆柱13和两种不同折射率的同心电介质圆环11和12,周期为700nm。第一种同心电介质圆环采用二氧化硅SiO2,Bragg纳米微腔的中心为第一种电介质的电介质圆柱13,直径为160nm,高度为150nm,第一种同心电介质圆环11的宽度为450nm,高度为150nm。第二种同心电介质圆环采用二氧化钛TiO2,第二种同心电介质圆环12的宽度为250nm,高度为150nm。
耦合层2采用SiO2;耦合层的上表面高出同心金属圆环的表面距离L为15nm。
如图3所示,金属表面等离激元透镜3包括衬底31以及在衬底上的同心金属圆环32,衬底31采用银;金属圆环32采用银,高度为50nm,周期为500nm,宽度为200nm,最内部的金属圆柱采用银,直径为330nm,高度为50nm,最内部中心圆柱和最内部金属圆环之间的距离为160nm。
线偏振平面波首先在Bragg纳米微腔作用下发生衍射,转换成面内波导模式,波导模式利用了入射波电场方位角分量Eα和磁场径向分量Hr,波导模式在两种电介质同心环的界面处发生反射,向Bragg纳米微腔的中心传播、聚焦。透过Bragg纳米微腔的入射波,在金属表面等离激元透镜的作用下,转换成表面等离激元SPP模式,SPP模式利用了入射波电场径向分量Er和磁场方位角分量Hα,SPP向金属表面等离激元透镜的中心传播、聚焦。波导模式和表面等离激元SPP模式相互作用形成了耦合光子-等离激元模式,耦合模式的电场和磁场分布图如图4(a)和(b)所示。
蝴蝶结纳米天线4或者磁振子5,放置在Bragg纳米微腔的上表面的中心,如图7所示。如图5所示,蝴蝶结纳米天线的材料为金,形状为等边三角形,边长为80nm,高为10nm,倒角为5nm,间隙为4nm。如图6所示,磁振子5采用金属-电介质-金属的圆柱三明治结构,金属采用金,电介质采用二氧化钛TiO2,金的高度为80nm,二氧化钛高度为40nm,金和二氧化钛直径均为125nm。
将蝴蝶结纳米天线或者磁振子放在耦合光子-等离激元微腔上表面中心,如图7所示,当线偏振平面波垂直入射时(对于蝴蝶结纳米天线,入射光偏振方向平行于天线长轴),可以将聚焦在Bragg微腔中的能量进一步耦合到蝴蝶结纳米天线或者磁振子中,能够将能量聚焦到几十甚至几个纳米范围。经过耦合,蝴蝶结纳米天线中的电场或者磁振子中的磁场都得到极大的增强,入射波长为850nm时,蝴蝶结纳米天线中的电场强度(|E/E0|)和磁振子中的磁场强度(|H/H0|)可以分别达到3000和200以上。
实施例二
在本实施例中,入射光波长为1620nm。Bragg纳米微腔包括的两种不同折射率的同心电介质圆环的周期为1400nm;Bragg纳米微腔的中心的第一种电介质的电介质圆柱13的直径为400nm;第一种同心电介质圆环11的宽度为900nm;第二种同心电介质圆环12的宽度为500nm。耦合层2的上表面高出同心金属圆环的表面距离L为250nm。金属表面等离激元透镜3的金属圆环32的周期为1000nm,宽度为400nm,最内部的金属圆柱的直径为700nm,;最内部中心圆柱和最内部金属圆环之间的距离为300nm。其他同实例一。
在本实施例的能量聚焦的耦合光子-等离激元微腔上放置的蝴蝶结纳米天线的尺寸参数如下:边长为400nm,高为10nm,倒角为5nm,间隙为5nm。放置的磁振子的尺寸参数如下:金的高度为80nm,二氧化钛高度为40nm,金和二氧化钛直径均为270nm。
入射波长为1620nm时,蝴蝶结纳米天线中的电场强度(|E/E0|)和磁振子中的磁场强度(|H/H0|)可以分别达到2000和400以上。
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (10)

1.一种能量聚焦的耦合光子-等离激元微腔,其特征在于,所述耦合光子-等离激元微腔包括:Bragg纳米微腔、耦合层和金属表面等离激元透镜;其中,Bragg纳米微腔由中心电介质圆柱和外围两种不同折射率的等高同心电介质圆环交替排列形成的Bragg层构成,两种电介质圆环的折射率以及环的宽度满足Bragg反射条件;金属表面等离激元透镜包括金属衬底以及在衬底上的中心金属圆柱和外围周期性排列的等高同心金属圆环;Bragg纳米微腔和金属表面等离激元透镜之间通过耦合层连接,并且填充表面等离激元透镜金属圆环之间的空隙;入射波为线偏振平面波,垂直入射至耦合光子-等离激元微腔,入射波电场E0分解为方位角分量Eα和径向分量Er,入射波磁场H0分解为方位角分量Hα和径向分量Hr;入射波首先在Bragg纳米微腔作用下发生衍射,转换成面内波导模式,波导模式利用了入射波电场方位角分量Eα和磁场径向分量Hr,波导模式在两种电介质同心环的界面处发生反射,向Bragg纳米微腔的中心传播并聚焦;透过Bragg纳米微腔的入射波,在金属表面等离激元透镜的作用下,转换成表面等离激元SPP模式,SPP模式利用了入射波电场径向分量Er和磁场方位角分量Hα,SPP模式向金属表面等离激元透镜的中心传播并聚焦;在耦合层的作用下,波导模式和表面等离激元模式相互作用;通过调节耦合层的折射率和厚度,使得波导模式和表面等离激元模式耦合最强,最终形成了耦合光子-等离激元模式,将能量聚焦在Bragg纳米微腔中心。
2.如权利要求1所述的耦合光子-等离激元微腔,其特征在于,所述耦合光子-等离激元微腔与蝴蝶结纳米天线或者磁振子耦合,将耦合光子-等离激元微腔中的能量耦合出来,所述蝴蝶结纳米天线或者磁振子放置在Bragg纳米微腔的上表面中心。
3.如权利要求1所述的耦合光子-等离激元微腔,其特征在于,所述Bragg纳米微腔的外围同心电介质圆环,周期在600~1600nm之间,高度在100~200nm之间。
4.如权利要求1所述的耦合光子-等离激元微腔,其特征在于,所述耦合层采用电介质材料;耦合层的上表面高出同心金属圆环上表面的距离为L,通过调节距离L和耦合层的折射率,使得波导模式和表面等离激元模式耦合最强;距离L在10~300nm之间。
5.如权利要求1所述的耦合光子-等离激元微腔,其特征在于,所述金属表面等离激元透镜的衬底采用金或银;中心圆柱和金属圆环采用金或银。
6.如权利要求1所述的耦合光子-等离激元微腔,其特征在于,所述金属表面等离激元透镜的金属圆环的周期为SPP波长的整数倍,金属圆环的周期在400~1200nm之间,高度在40~60nm之间。
7.如权利要求2所述的耦合光子-等离激元微腔,其特征在于,所述蝴蝶结纳米天线由一对金属等边三角形构成;所述蝴蝶结纳米天线的边长在50~500nm之间,高度在5~20nm之间,倒角在0~10nm之间,中间的间隙在3~20nm之间。
8.如权利要求2所述的耦合光子-等离激元微腔,其特征在于,所述磁振子由金属-电介质-金属圆柱三明治结构构成;圆柱状的磁振子的直径在100~300nm之间,每一层高度在30~100nm之间。
9.一种能量聚焦的耦合光子-等离激元微腔的制备方法,其特征在于,所述制备方法包括以下步骤:
1)提供衬底,衬底采用金或银;
2)在衬底上制备中心金属圆柱和周期性排列的同心金属圆环,形成金属表面等离激元透镜,金属圆环采用金或银。
3)在金属表面等离激元透镜的上表面填充耦合层,耦合层填充金属表面等离激元透镜的同心金属圆环之间的空隙,并且上表面高出同心金属圆环的上表面;
4)在耦合层上制备中心电介质圆柱以及两种不同折射率交替排列的电介质同心圆环,形成Bragg纳米微腔。
10.一种如权利要求1所述的能量聚焦的耦合光子-等离激元微腔用作单分子拉曼光谱检测装置,分子表面增强红外吸收光谱检测装置,光刻微加工中的纳米点光源,以及折射率传感器或者生物传感器的用途。
CN201610356961.5A 2016-05-26 2016-05-26 能量聚焦的耦合光子‑等离激元微腔及其制备方法和应用 Active CN105911621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610356961.5A CN105911621B (zh) 2016-05-26 2016-05-26 能量聚焦的耦合光子‑等离激元微腔及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610356961.5A CN105911621B (zh) 2016-05-26 2016-05-26 能量聚焦的耦合光子‑等离激元微腔及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105911621A true CN105911621A (zh) 2016-08-31
CN105911621B CN105911621B (zh) 2018-02-13

Family

ID=56741481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610356961.5A Active CN105911621B (zh) 2016-05-26 2016-05-26 能量聚焦的耦合光子‑等离激元微腔及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105911621B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317117A (zh) * 2017-05-17 2017-11-03 天津大学 与太赫兹光电导天线搭配使用的介质超表面准直透镜
CN108152870A (zh) * 2017-12-27 2018-06-12 东南大学 一种光子集成电路中双领结金属纳米光学天线
CN108227054A (zh) * 2018-02-09 2018-06-29 南京邮电大学 一种表面构建环形凹槽的场局域增强器件
CN108873176A (zh) * 2018-06-12 2018-11-23 东南大学 一种紧凑式三向波分复用/解复用器及实现方法
CN108963752A (zh) * 2018-09-27 2018-12-07 青岛科技大学 基于圆环形光子晶体纳米梁谐振腔的电驱动激光器
CN109541733A (zh) * 2018-10-11 2019-03-29 中国石油大学(华东) 一种用于纳米间隙式近场光刻的表面等离子体透镜设计方法
CN111190245A (zh) * 2020-02-28 2020-05-22 中国科学院上海技术物理研究所 一种实现外延材料深亚波长光子模式体积的平面漏斗微腔
CN112751206A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 透镜结构、透镜天线及电子设备
CN112882144A (zh) * 2021-01-21 2021-06-01 北京理工大学 基于纳米环图案化界面的紫外滤光结构及其设计方法
CN113534338A (zh) * 2021-09-16 2021-10-22 南京信息工程大学 一种光子自旋定向分离器
CN113687465A (zh) * 2021-09-27 2021-11-23 清华大学 基于全介质超表面的表面等离激元近场聚焦透镜
CN113866229A (zh) * 2021-09-23 2021-12-31 北京大学 高q值偏心人工局域表面等离激元准bic超表面及实现方法
WO2022021330A1 (zh) * 2020-07-31 2022-02-03 国家纳米科学中心 一种平面透镜聚焦器件及调控焦距的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031197A1 (en) * 2006-09-12 2008-03-20 Onechip Photonics Inc. Coupling-enhanced device having surface etched grating and effective side ridges
US20100014808A1 (en) * 2008-06-05 2010-01-21 Colorado School Of Mines Hybrid dielectric/surface plasmon polariton waveguide with grating coupling
CN103346476A (zh) * 2013-06-24 2013-10-09 中国科学院长春光学精密机械与物理研究所 光子晶体纳腔量子环单光子发射器件及其制备方法
CN104090332A (zh) * 2014-07-10 2014-10-08 南京邮电大学 一种径向偏振光下的长焦、紧聚焦表面等离激元透镜
CN104597562A (zh) * 2014-12-19 2015-05-06 鲁东大学 近红外宽波段定向传播和聚焦的表面等离激元透镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031197A1 (en) * 2006-09-12 2008-03-20 Onechip Photonics Inc. Coupling-enhanced device having surface etched grating and effective side ridges
US20100014808A1 (en) * 2008-06-05 2010-01-21 Colorado School Of Mines Hybrid dielectric/surface plasmon polariton waveguide with grating coupling
CN103346476A (zh) * 2013-06-24 2013-10-09 中国科学院长春光学精密机械与物理研究所 光子晶体纳腔量子环单光子发射器件及其制备方法
CN104090332A (zh) * 2014-07-10 2014-10-08 南京邮电大学 一种径向偏振光下的长焦、紧聚焦表面等离激元透镜
CN104597562A (zh) * 2014-12-19 2015-05-06 鲁东大学 近红外宽波段定向传播和聚焦的表面等离激元透镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈建军: "表面等离激元波导-腔结构中的Fano共振", 《量子电子学报 》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317117A (zh) * 2017-05-17 2017-11-03 天津大学 与太赫兹光电导天线搭配使用的介质超表面准直透镜
CN108152870A (zh) * 2017-12-27 2018-06-12 东南大学 一种光子集成电路中双领结金属纳米光学天线
CN108227054A (zh) * 2018-02-09 2018-06-29 南京邮电大学 一种表面构建环形凹槽的场局域增强器件
CN108227054B (zh) * 2018-02-09 2024-02-02 南京邮电大学 一种表面构建环形凹槽的场局域增强器件
CN108873176A (zh) * 2018-06-12 2018-11-23 东南大学 一种紧凑式三向波分复用/解复用器及实现方法
CN108873176B (zh) * 2018-06-12 2020-08-14 东南大学 一种紧凑式三向波分复用/解复用器及实现方法
CN108963752A (zh) * 2018-09-27 2018-12-07 青岛科技大学 基于圆环形光子晶体纳米梁谐振腔的电驱动激光器
CN108963752B (zh) * 2018-09-27 2023-07-25 青岛科技大学 基于圆环形光子晶体纳米梁谐振腔的电驱动激光器
CN109541733B (zh) * 2018-10-11 2021-05-07 中国石油大学(华东) 一种用于高效、高分辨纳米图形的加工方法及设备
CN109541733A (zh) * 2018-10-11 2019-03-29 中国石油大学(华东) 一种用于纳米间隙式近场光刻的表面等离子体透镜设计方法
CN112751206A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 透镜结构、透镜天线及电子设备
CN111190245A (zh) * 2020-02-28 2020-05-22 中国科学院上海技术物理研究所 一种实现外延材料深亚波长光子模式体积的平面漏斗微腔
CN111190245B (zh) * 2020-02-28 2023-07-04 中国科学院上海技术物理研究所 一种实现外延材料深亚波长光子模式体积的平面漏斗微腔
WO2022021330A1 (zh) * 2020-07-31 2022-02-03 国家纳米科学中心 一种平面透镜聚焦器件及调控焦距的方法
CN112882144B (zh) * 2021-01-21 2021-11-30 北京理工大学 基于纳米环图案化界面的紫外滤光结构及其设计方法
CN112882144A (zh) * 2021-01-21 2021-06-01 北京理工大学 基于纳米环图案化界面的紫外滤光结构及其设计方法
CN113534338A (zh) * 2021-09-16 2021-10-22 南京信息工程大学 一种光子自旋定向分离器
CN113866229A (zh) * 2021-09-23 2021-12-31 北京大学 高q值偏心人工局域表面等离激元准bic超表面及实现方法
CN113866229B (zh) * 2021-09-23 2022-07-26 北京大学 高q值偏心人工局域表面等离激元准bic超表面及实现方法
CN113687465B (zh) * 2021-09-27 2022-05-24 清华大学 基于全介质超表面的表面等离激元近场聚焦透镜
CN113687465A (zh) * 2021-09-27 2021-11-23 清华大学 基于全介质超表面的表面等离激元近场聚焦透镜

Also Published As

Publication number Publication date
CN105911621B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
CN105911621A (zh) 能量聚焦的耦合光子-等离激元微腔及其制备方法和应用
CN104374745B (zh) 一种基于介质纳米结构Fano共振特性的传感器
Shen et al. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction
CN108519352B (zh) 一种基于金属-介质-金属波导布拉格光栅的折射率传感器
Wang et al. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array
CN104656170A (zh) 一种宽波段光全吸收器及其制备方法
CN106784030A (zh) 基于金属膜层‑半导体共振腔复合结构的多频段光完美吸收器
Liu et al. Ultra-broadband infrared absorbers using iron thin layers
CN103728275B (zh) 基于光学Tamm态等离激元的光折射率传感器
CN111879728B (zh) 一种提高折射率传感器件品质因数的结构及测试方法
Tan et al. Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles
Abbasi et al. Design of a new type of magneto-optical refractometric sensors
Wu et al. Abnormal optical response of PAMAM dendrimer-based silver nanocomposite metamaterials
Li et al. Investigation of perfect narrow-band absorber in silicon nano hole array
CN101672785B (zh) 一种不对称双劈裂环表面增强光谱衬底
CN104931459A (zh) 一种基于表面等离子体双带零反射的传感器
Zhou et al. Silicon-Au nanowire resonators for high-Q multiband near-infrared wave absorption
CN206315075U (zh) 一种oct探头
CN108227054A (zh) 一种表面构建环形凹槽的场局域增强器件
Ghanim et al. Mid-infrared localized surface plasmon resonances in silicon-dioxide nanoantennas for ozone detection
CN210137014U (zh) 一种基于二维简单超材料结构的超宽带吸波体
CN114624209A (zh) 基于介质超表面偏振转换的折射率传感器
Su et al. High selectivity plasmonic color filters based on tapered annular aperture arrays
Heng et al. Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities
CN113097333A (zh) 近红外双波段等离子体Ge基光电探测器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant