CN105911612A - Multifunctional in-situ long term observation device - Google Patents

Multifunctional in-situ long term observation device Download PDF

Info

Publication number
CN105911612A
CN105911612A CN201610382216.8A CN201610382216A CN105911612A CN 105911612 A CN105911612 A CN 105911612A CN 201610382216 A CN201610382216 A CN 201610382216A CN 105911612 A CN105911612 A CN 105911612A
Authority
CN
China
Prior art keywords
multifunctional
body supports
monitoring means
observing
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610382216.8A
Other languages
Chinese (zh)
Other versions
CN105911612B (en
Inventor
郑红剑
刘飞
王春光
祝汉柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN PENESON TECHNOLOGY Co Ltd
Original Assignee
WUHAN PENESON TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN PENESON TECHNOLOGY Co Ltd filed Critical WUHAN PENESON TECHNOLOGY Co Ltd
Priority to CN201610382216.8A priority Critical patent/CN105911612B/en
Publication of CN105911612A publication Critical patent/CN105911612A/en
Application granted granted Critical
Publication of CN105911612B publication Critical patent/CN105911612B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention provides a multifunctional in-situ long term observation device which relates to the field of ocean prospecting equipment and is capable of effectively realizing quantitative monitoring of deep seabed engineering geological conditions such as PH value, oxidation reduction potential, alienation pore pressure, resistivity and temperature. In order to providing technical support to deep ocean engineering geological research, the technical scheme of the invention is characterized in that the multifunctional in-situ long term observation device comprises a main body support member, a suspension member, a measurement control and communication unit, a geological monitoring unit and a multifunctional in-situ test probe; the main body support member is a rod-shaped member; the measurement control and communication unit is arranged on the upper end of the main body support member; the suspension member is connected to the upper end of the measurement control and communication unit; the multifunctional in-situ test probe is arranged on the lower end of the main body support member; and the geological monitoring unit is arranged on the main body support member and is connected with the above measurement control and communication unit through a cable.

Description

A kind of multifunctional in-situ long-term observation device
Technical field
The present invention relates to ocean exploration equipment field, be specially a kind of multifunctional in-situ long-term observation device.
Background technology
Along with country's deep-sea research and development implementation, accelerate the construction of marine engineering geology subject, serve national marine The development of cause, promotes investigation ability and innovation level is significant.
Current existing submarine observation equipment observation effect poor, in-convenience in use, it is impossible to carry out detection by quantitative, therefore cause The investigative technique of deep-sea engineering geology cannot be improved.
Summary of the invention
The multifunctional in-situ long-term observation device that the present invention provides, it is possible to effectively realize to abyssal floor engineering geological condition such as pH value, Oxidation-reduction potential, sow discord the Quantitative Monitoring of pore pressure, resistivity, temperature etc., provide technical support for deep-sea study of engineering geology.
Technical program of the present invention lies in: include body supports part, floatation part, observing and controlling and communication unit, geology monitoring means, Multifunctional in-situ test probe, described body supports part is rod-like element, and described observing and controlling and communication unit are located at body supports part upper end, Floatation part is connected to observing and controlling and communication unit upper end, and described multifunctional in-situ test probe is located at body supports part lower end, describedly Matter monitoring means is located on body supports part, by cable connect above observing and controlling and communication unit.
Preferred as such scheme, described body supports part is hollow tubular structures, and described observing and controlling and communication unit include observing and controlling Cabin and the powerhouse dome being connected with observing and controlling cabin and underwater communication beacon, be provided with deep-sea watertight connector in described powerhouse dome, at water Under the auxiliary of lower robot, powerhouse dome is charged.
Preferred as such scheme, described geology monitoring means include measuring pore water pressure, resistivity, the first of temperature Monitoring means, and in order to measure the second monitoring means of soil property ess-strain, the first monitoring means includes being connected with observing and controlling cabin respectively Pore water pressure sensor, four electrode resistance rate sensors, temperature sensor, the second monitoring means includes that contact site and connection connect The strain-type overarm in contact portion and observing and controlling cabin.
Preferred as such scheme, described body supports part is provided with multiple first monitoring means and multiple second monitoring means, And described first monitoring means and the second monitoring means are the most alternately arranged on body supports part.
Preferred as such scheme, described first monitoring means includes and body supports part one and stretching to body supports part both sides The first wing plate gone out, is provided with the cable pilot hole connected with body supports part endoporus, stretching out of the first wing plate in described first wing plate End is provided with the second wing plate, and described pore water pressure sensor, four electrode resistance rate sensors, temperature sensor are located in the second wing plate.
Preferred as such scheme, described second wing plate top and bottom are pointed cone structure.
Preferred as such scheme, described second monitoring means also includes and body supports part one and to body supports part both sides The support wing plate stretched out, described contact site and strain-type overarm are located on support wing plate, and described contact site is chondritic.
Preferred as such scheme, is connected between described multifunctional in-situ test probe and body supports part and has probe connecting tube, Described probe connecting tube caliber is less than the external diameter of body supports part, more than multifunctional in-situ test probe external diameter, described multi-functional former Bit test probe is connected with observing and controlling cabin by cable.
Preferred as such scheme, described floatation part is ball float, and ball float connects observing and controlling and communication unit by stay cord, and described Stay cord is provided with suspension ring.
The beneficial effects of the present invention is: the many kinds of parameters of sea bed geology can effectively be measured by said apparatus for a long time, its dress Putting simple in construction, easy to use, certainty of measurement and accuracy are high, it is possible to provide the number of technically reliable for deep-sea study of engineering geology According to support, thus solve the complicated abyssal floor geological disaster threat to offshore and gas development.
Accompanying drawing explanation
Fig. 1 is the overall structure schematic diagram of the present invention.
Fig. 2 is observing and controlling and the structural representation of communication unit in the present invention.
Fig. 3 is the structural representation of the first monitoring means in the present invention.
Fig. 4 is the structural representation of the second monitoring means in the present invention.
Detailed description of the invention
Embodiments of the invention are described in detail below in conjunction with accompanying drawing.
As it is shown in figure 1, the structure of the present embodiment includes the body supports part 7 of hollow tubular structures, ball float 1, observing and controlling and communication list Unit 4, geology monitoring means, multifunctional in-situ test probe 9, observing and controlling and communication unit 4 are located at body supports part 7 upper end, floating Ball 1 is connected to observing and controlling and communication unit 4 upper end, and multifunctional in-situ test probe 9 is located at body supports part 7 lower end, ground quality supervision Survey unit to be located on body supports part 7, by cable connect above observing and controlling and communication unit 4.
In the present embodiment, observing and controlling include with communication unit 4 observing and controlling cabin 402 and the powerhouse dome 401 being connected with observing and controlling cabin 402 and Underwater communication beacon 403, is provided with deep-sea watertight connector in described powerhouse dome 401, right under the auxiliary of robot under water Powerhouse dome 401 charges.
Geology monitoring means includes the first monitoring means 5 measuring pore water pressure, resistivity, temperature, and in order to measure soil Second monitoring means 6 of matter ess-strain, the first monitoring means 5 includes the pore water pressure sensing being connected respectively with observing and controlling cabin 402 Device 503, four electrode resistance rate sensor 505, temperature sensor 504, the second monitoring means 6 includes contact site 603 and connects The strain-type overarm 602 in contact site 603 and observing and controlling cabin 402.
Body supports part 7 is provided with multiple first monitoring means 5 and multiple second monitoring means 6, and the first monitoring means 5 He Second monitoring means 6 is the most alternately arranged on body supports part 7.
Wherein, the first monitoring means 5 includes the first wing plate integrally and stretched out with body supports part 7 to body supports part 7 both sides 501, it is provided with the cable pilot hole 507 connected with body supports part 7 endoporus, stretching out of the first wing plate 501 in the first wing plate 501 End is provided with the second wing plate 502, and pore water pressure sensor 503, four electrode resistance rate sensor 505, temperature sensor 504 are located at In second wing plate 502.Second wing plate 502 top and bottom are pointed cone structure 506.
Second monitoring means 6 also includes the support wing plate 601 integrally and stretched out with body supports part 7 to body supports part 7 both sides, Contact site 603 and strain-type overarm 602 are located on support wing plate 601, and contact site 603 is chondritic.
In the present embodiment, it is connected between multifunctional in-situ test probe 9 with body supports part 7 and has probe connecting tube 8, probe Connecting tube 8 caliber is less than the external diameter of body supports part 7, and more than multifunctional in-situ test probe 9 external diameter, multifunctional in-situ is tested Probe 9 is connected with observing and controlling cabin 402 by cable.Ball float connects observing and controlling by stay cord 3 and sets on communication unit 4, and stay cord 3 There are suspension ring 2.
The operation principle of said apparatus described in detail below:
Being placed in by said apparatus under water, ball float 1 utilizes buoyancy to make whole device more than sea bed face and upright all the time, and geology is monitored Geological conditions under water is monitored and gathers related data by unit and multifunctional in-situ test probe 9 in real time, sends to observing and controlling cabin In 402, data are sent to host computer by underwater communication beacon 403 by observing and controlling cabin 402.
In the first monitoring means 5, the first wing plate 501 is in order to sow discord pore water pressure sensor 503, four electrode resistance rate sensing Device 505, temperature sensor 504 and the distance of body supports part 7, reduce the body supports part 7 impact on sensor measurement, Improve precision and the accuracy of measurement data;The pointed cone structure of the second wing plate about 502 reduces stratum resistance when being easy to injection and reclaim Power, is prevented effectively from the damage of device.
In the second monitoring means 6, support the effect mainly protection strain-type overarm 602 of wing plate 601 in device injection extremely Being unlikely to during layer to occur excessive deformation to cause damaging, the ball-shaped structure of contact site 603 is easy to when long-term observation and periphery The contact of deposit more uniform close, by the Stress Transfer of deposit to strain-type overarm 602, improves the precision of measurement data And accuracy.
Hollow tubular body supports part 7 is made with steel pipe, for providing carrier and support for each sensor combinations;Probe connecting tube 8, for body supports part 7 and the reducing of multifunctional in-situ test probe 9, reduce large-diameter hollow steel pipe multi-functional to minor diameter The impact of in-situ test probe 9 sensor measurement, especially static point resistance and the impact of sidewall friction power, improve measurement data Precision and accuracy;Multifunctional in-situ test probe 9, based on static sounding, extends soil body shooting, pH value, oxidation also Other function such as former current potential.
Ball float makes suspension ring 2 and stay cord 3 all the time more than sea bed face and keep vertical for relying on the buoyancy of self when long-term observation; Suspension ring 2 manipulate for the mechanical hand of underwater robot when system reclaims and hang hoist steel cable.

Claims (9)

1. a multifunctional in-situ long-term observation device, it is characterised in that: include body supports part, floatation part, observing and controlling and communication Unit, geology monitoring means, multifunctional in-situ test probe, described body supports part is rod-like element, described observing and controlling and communication list Unit is located at body supports part upper end, and floatation part is connected to observing and controlling and communication unit upper end, and described multifunctional in-situ test probe is located at Body supports part lower end, described geology monitoring means is located on body supports part, by cable connect above observing and controlling and communication unit.
Multifunctional in-situ long-term observation device the most according to claim 1, it is characterised in that: described body supports part is empty Tubular structures, described observing and controlling includes observing and controlling cabin and the powerhouse dome being connected with observing and controlling cabin and underwater communication beacon, institute with communication unit It is provided with deep-sea watertight connector in stating powerhouse dome, under the auxiliary of robot under water, powerhouse dome is charged.
Multifunctional in-situ long-term observation device the most according to claim 2, it is characterised in that: described geology monitoring means bag Include to measure the first monitoring means of pore water pressure, resistivity, temperature, and in order to measure the second monitoring of soil property ess-strain Unit, pore water pressure sensor that the first monitoring means includes being connected with observing and controlling cabin respectively, four electrode resistance rate sensors, temperature Sensor, the second monitoring means includes contact site and connects the strain-type overarm in contact site and observing and controlling cabin.
Multifunctional in-situ long-term observation device the most according to claim 3, it is characterised in that: set on described body supports part There are multiple first monitoring means and multiple second monitoring means, and described first monitoring means and the second monitoring means are in body supports On part, longitudinal direction is the most alternately arranged.
Multifunctional in-situ long-term observation device the most according to claim 4, it is characterised in that: described first monitoring means bag Include the first wing plate integrally and stretched out to body supports part both sides with body supports part, be provided with and body supports in described first wing plate The cable pilot hole of part endoporus connection, the external part of the first wing plate is provided with the second wing plate, described pore water pressure sensor, four electrodes Resistivity sensor, temperature sensor are located in the second wing plate.
Multifunctional in-situ long-term observation device the most according to claim 5, it is characterised in that: described second wing plate upper end and Lower end is pointed cone structure.
Multifunctional in-situ long-term observation device the most according to claim 4, it is characterised in that: described second monitoring means bag Include the support wing plate integrally and stretched out with body supports part, described contact site and strain-type overarm to body supports part both sides to be located at and prop up On support wing plate, described contact site is chondritic.
Multifunctional in-situ long-term observation device the most according to claim 1, it is characterised in that: described multifunctional in-situ is tested Probe has probe connecting tube with being connected between body supports part, and described probe connecting tube caliber is less than the external diameter of body supports part, greatly In multifunctional in-situ test probe external diameter, described multifunctional in-situ test probe is connected with observing and controlling cabin by cable.
Multifunctional in-situ long-term observation device the most according to claim 1, it is characterised in that: described floatation part is ball float, Ball float connects observing and controlling and communication unit by stay cord, and described stay cord is provided with suspension ring.
CN201610382216.8A 2016-06-01 2016-06-01 A kind of multifunctional in-situ long-term observation device Active CN105911612B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610382216.8A CN105911612B (en) 2016-06-01 2016-06-01 A kind of multifunctional in-situ long-term observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610382216.8A CN105911612B (en) 2016-06-01 2016-06-01 A kind of multifunctional in-situ long-term observation device

Publications (2)

Publication Number Publication Date
CN105911612A true CN105911612A (en) 2016-08-31
CN105911612B CN105911612B (en) 2018-07-24

Family

ID=56742927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610382216.8A Active CN105911612B (en) 2016-06-01 2016-06-01 A kind of multifunctional in-situ long-term observation device

Country Status (1)

Country Link
CN (1) CN105911612B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099972A (en) * 2018-09-20 2018-12-28 中国科学院深海科学与工程研究所 Bottom sediment in situ environment monitors system
CN110411923A (en) * 2019-09-03 2019-11-05 中国海洋大学 Marine boundary layer original position real-time monitoring device and method based on self-potential survey
CN111722299A (en) * 2020-06-29 2020-09-29 中国海洋大学 In-situ real-time monitoring device and method for hydrate induced seabed instability
CN112068141A (en) * 2020-09-11 2020-12-11 中国海洋大学 Deep sea polymetallic nodule exploitation deposit environment monitoring device
CN114993380A (en) * 2022-06-06 2022-09-02 中国海洋大学 Multi-parameter monitoring sensing array and method for seabed shallow gas accumulation and overflow process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790017A (en) * 2005-12-12 2006-06-21 国家海洋局第一海洋研究所 Multifunctional multi-channel detection rod for monitoring pore water pressure of seabed soil
CN101975820A (en) * 2010-09-27 2011-02-16 国家海洋局第一海洋研究所 Submarine sediment acoustic parameter in-situ measuring device
CN102331275A (en) * 2011-06-10 2012-01-25 中国海洋大学 Penetration probe-based deep sea multi-element comprehensive observation system
CN103147432A (en) * 2013-02-18 2013-06-12 东南大学 Spherical hole-pressure static cone penetration probe for detecting sludge
CN103410134A (en) * 2013-07-09 2013-11-27 东南大学 Conical probe for ocean under-consolidated soil pore water pressure testing
CN104568226A (en) * 2015-01-07 2015-04-29 中国科学院南海海洋研究所 Ocean floor heat flow long-time observing probe and using method thereof
CN205787180U (en) * 2016-06-01 2016-12-07 武汉磐索地勘科技有限公司 A kind of multifunctional in-situ long-term observation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790017A (en) * 2005-12-12 2006-06-21 国家海洋局第一海洋研究所 Multifunctional multi-channel detection rod for monitoring pore water pressure of seabed soil
CN101975820A (en) * 2010-09-27 2011-02-16 国家海洋局第一海洋研究所 Submarine sediment acoustic parameter in-situ measuring device
CN102331275A (en) * 2011-06-10 2012-01-25 中国海洋大学 Penetration probe-based deep sea multi-element comprehensive observation system
CN103147432A (en) * 2013-02-18 2013-06-12 东南大学 Spherical hole-pressure static cone penetration probe for detecting sludge
CN103410134A (en) * 2013-07-09 2013-11-27 东南大学 Conical probe for ocean under-consolidated soil pore water pressure testing
CN104568226A (en) * 2015-01-07 2015-04-29 中国科学院南海海洋研究所 Ocean floor heat flow long-time observing probe and using method thereof
CN205787180U (en) * 2016-06-01 2016-12-07 武汉磐索地勘科技有限公司 A kind of multifunctional in-situ long-term observation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099972A (en) * 2018-09-20 2018-12-28 中国科学院深海科学与工程研究所 Bottom sediment in situ environment monitors system
CN109099972B (en) * 2018-09-20 2024-01-16 中国科学院深海科学与工程研究所 In-situ environment monitoring system for submarine sediment
CN110411923A (en) * 2019-09-03 2019-11-05 中国海洋大学 Marine boundary layer original position real-time monitoring device and method based on self-potential survey
CN110411923B (en) * 2019-09-03 2020-05-15 中国海洋大学 In-situ real-time monitoring device and method for submarine boundary layer based on natural potential measurement
CN111722299A (en) * 2020-06-29 2020-09-29 中国海洋大学 In-situ real-time monitoring device and method for hydrate induced seabed instability
CN112068141A (en) * 2020-09-11 2020-12-11 中国海洋大学 Deep sea polymetallic nodule exploitation deposit environment monitoring device
CN114993380A (en) * 2022-06-06 2022-09-02 中国海洋大学 Multi-parameter monitoring sensing array and method for seabed shallow gas accumulation and overflow process

Also Published As

Publication number Publication date
CN105911612B (en) 2018-07-24

Similar Documents

Publication Publication Date Title
EP3351973B1 (en) Long-term seabed-based multi-point in-situ observation system
AU2019100321A4 (en) A multistage penetrating in-situ device and method to observe sand waves on the seabed based on resistivity probe
CN106802132B (en) A kind of penetration type Multifunction fishing bottom sediment in-situ observation feeler lever
CN105911612A (en) Multifunctional in-situ long term observation device
US11499826B2 (en) Long-term in-situ observing device and method for deep sea bottom- supported engineering geological environment
CN109579802B (en) Multistage injection type submarine sand wave in-situ observation device and method
CN105301193B (en) Sea bed lateral deformation and slip observation device and method
CN108592993B (en) Deep seafloor boundary layer dynamic observation device and method
CN105319596B (en) It is general from floatable submarine seismograph
CN112254864A (en) Device for in-situ real-time monitoring pore pressure of sediment and seabed deformation and distribution method
CN107631720A (en) Seabed sand waves original position real-time observation device and method
CN109668940B (en) Double-cable type submarine underground water drainage in-situ electrical monitoring method and device
CN203078741U (en) In-situ detection device of strength of beach and shallow sea sediments
CN103144751A (en) Original-space detector and detection method for beach shallow sea sediment strength
US10705239B2 (en) Marine data acquisition node
CN115588276B (en) Marine geological disaster remote monitoring and early warning station and monitoring and early warning method
CN111722299A (en) In-situ real-time monitoring device and method for hydrate induced seabed instability
US8269500B2 (en) Geophysical measurement device for natural soil resource exploration in aquatic environment
CN205787180U (en) A kind of multifunctional in-situ long-term observation device
CN110512585A (en) For evaluating the free fall type pore pressure dynamic sounding device of sea-bottom shallow soil characteristic
CN106246162A (en) Floor undulation is across borescopic imaging device and slip casting effect monitoring method
CN104776818A (en) Ultrasonic measurement instrument for pile bottom sediment thickness
CN209674009U (en) A kind of random received vertical-rise cable system for acquiring seismic data
US20220220686A1 (en) Hydrostatically compensated device for ground penetration resistance measurements
CN113740921B (en) Submarine electromagnetic data acquisition station

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant