CN105858713B - 一种熔融盐焙烧法合成负载型纳米复合材料的方法 - Google Patents

一种熔融盐焙烧法合成负载型纳米复合材料的方法 Download PDF

Info

Publication number
CN105858713B
CN105858713B CN201610204056.8A CN201610204056A CN105858713B CN 105858713 B CN105858713 B CN 105858713B CN 201610204056 A CN201610204056 A CN 201610204056A CN 105858713 B CN105858713 B CN 105858713B
Authority
CN
China
Prior art keywords
product
graphene
nanocatalyst
deionized water
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610204056.8A
Other languages
English (en)
Other versions
CN105858713A (zh
Inventor
宿新泰
曹国梁
崔成平
黑进城
张婉琪
梁小玉
王吉德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Zhuoyu Kangchen Technology Development Co.,Ltd.
Original Assignee
Xinjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang University filed Critical Xinjiang University
Priority to CN201610204056.8A priority Critical patent/CN105858713B/zh
Publication of CN105858713A publication Critical patent/CN105858713A/zh
Application granted granted Critical
Publication of CN105858713B publication Critical patent/CN105858713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于化工方法的设计与研究开发技术领域,具体涉及一种熔融盐焙烧法合成负载型纳米复合材料的方法,该方法包括下述步骤:(1)取一定量的纳米催化剂金属离子溶解于去离子水中,向其中加入纳米催化剂金属离子化合价倍数物质的量的油酸钠,70‑90℃老化2‑4h,备用;(2)向步骤(1)中制备好的产物中加入40‑60倍纳米催化剂金属离子的量的硫酸钠,研磨后将产物加热至500‑900℃,加热升温速率为10℃·min−1,在氮气气氛下保护下保温2‑4h;(3)对步骤(2)中获得的产物进行降温,然后用去离子水将盐洗净,将制备获得的产物置于烘箱中80‑120℃干燥4‑7h,即可得到金属氧化物/Graphene复合物。本方法,能快速有效合成金属氧化物/石墨烯纳米复合物。

Description

一种熔融盐焙烧法合成负载型纳米复合材料的方法
技术领域
本发明属于化工方法的设计与研究开发技术领域,具体涉及一种熔融盐焙烧法合成负载型纳米复合材料的方法。
背景技术
石墨烯具有许多优异的性质。例如:石墨烯是目前世界上最薄的材料(厚度0.335nm),最坚固的材料(杨氏模量为1060GPa),理论比表面积高达(2630m2·g-1),具有良好的导电性能(5000W·m-1·K-1),以及室温下高速的电子迁移率(200000cm2·V-1·S-1)。同时,石墨烯独特的电子结构使其具有独特的量子隧道效应、半整数的量子霍尔效应、双极电场效应、从不消失的电导率等特殊的性质,引起了科学界巨大兴趣。全世界正掀起一股石墨烯研究的热潮。石墨烯的电子结构和电学性质也非常独特。石墨烯的能带结构中价带和导带在费米能级的六个顶点上相交,从这个意义上说,石墨烯是一种没有能隙的物质,显示金属性。在单层石墨烯中,每个碳原子都贡献出一个未成键的电子,这些电子可以在晶体中自由移动,赋予石墨烯非常好的导电性。石墨烯中电子的典型传导速率达到了光速的1/300,远远超过了电子在一般半导体的传导速度。
金属/石墨烯(Graphene)纳米复合材料是通过将金属纳米粒子分散在石墨烯片上形成的。目前,该类复合材料的研究主要集中在用Au、R、Pd、Ag等贵金属纳米粒子修饰石墨烯。这虽然可以增强金属催化剂的活性,减少贵金属的消耗;但是贵金属仍然十分昂贵,同时又十分稀缺,找到普通金属同时又性能优良的金属氧化物/石墨烯纳米复合材料具有很大的经济价值。
目前,在金属氧化物/石墨烯复合物的制备方面,大家主要采用物理方法,得到的复合物提高了金属氧化物的储能、场发射、光电等性能。例如:Park课题组用气相沉积法将规则的金属氧化物纳米棒陈列沉积到石墨烯薄膜上形成的ZnO/Graphene异质结构,表现出优异的光电性质。测试结果表明当开路电压为IV时其电流达到1.lmA,光学透射比达70%一80%。Zheng等采用等离子增强气相沉积法制备了ZnO/Graphene异质结构,其场发射性质与纯的金属氧化物和纯石墨烯相比,得到很大的提高。然而,上述制备金属氧化物/Graphene复合物的方法都需要昂贵的仪器设备、高温高压等及其复杂的反应条件。而溶液法是一种简便、成本低廉的有效方法,广泛用于制备纳米材料及基于石墨烯的复合物
发明内容
本发明的目的是:为了解决金属氧化物/石墨烯(Graphene)复合物的方法都需要昂贵的仪器设备、高温高压等及其复杂反应条件的技术问题,提供一种简便的方法,能快速有效合成金属氧化物/石墨烯纳米复合物。
本发明的技术方案为:一种熔融盐焙烧法合成负载型纳米复合材料的方法,该方法包括下述步骤:(1)取一定量的纳米催化剂金属离子溶解于去离子水中,向其中加入纳米催化剂金属离子化合价倍数物质的量的油酸钠,70-90℃老化2-4h,备用;(2)向步骤(1)中制备好的产物中加入40-60倍纳米催化剂金属离子的量的硫酸钠,研磨后将产物加热至500-900℃,加热升温速率为10℃·min−1 ,在氮气气氛下保护下保温2-4h;(3)对步骤(2)中获得的产物进行降温,然后用去离子水将盐洗净,将制备获得的产物置于烘箱中80-120℃干燥4-7h,即可得到金属氧化物/Graphene复合物。所述的纳米催化剂金属离子是指Zn或Zr或In或Sn金属氧化物,纳米催化剂金属离子的粒径范围在1~100纳米。所述油酸钠,其生产厂家为TCI,质量分数为95%。步骤(2)中所述的硫酸钠为粉末状,其生产厂家为 Aldrich,质量分数98%。
有益效果:本发明提供了一种简便的方法,能快速有效合成金属氧化物/石墨烯纳米复合物。将金属氧化物纳米粒子负载于氧化石墨烯表面,有效达到阻止了还原后的石墨烯片的团聚,从而形成形貌均一的金属氧化物/石墨烯纳米复合物。
附图说明
图1为所合成的Zn/Graphene复合物的TEM图;图2为所合成的Zn/Graphene复合物的XRD图;图3为所合成的Zr/Graphene复合物的TEM图;图4为所合成的Zr/Graphene复合物的XRD图;图5为所合成的In/Graphene复合物的TEM图;图6为所合成的In/Graphene复合物的XRD图;图7为所合成的Sn/Graphene复合物的TEM图;图8为所合成的Sn/Graphene复合物的XRD图。
具体实施方式
实施例1、一种熔融盐焙烧法合成负载型纳米复合材料的方法,该方法包括下述步骤:(1)称取1.314g Zn(CH3COO)2·2H2O(6mmol),溶解于4mL的去离子水中,向其中加入3.648 g油酸钠(12mmol,TCI,质量分数95%);把产物在85℃下老化3h;(2)然后加入50g硫酸钠粉末(Na2SO4, Aldrich,98%),后用玛瑙研钵研磨1h,取1/4研磨后产物加热到600℃,加热升温速率为10℃·min−1 ,在氮气气氛下保护,600℃下在持续保温3h;(3)降温后用去离子水将盐洗净,将产物置于烘箱中100℃干燥6h,产物为Zn/Graphene复合物。TEM图为图1,XRD图为图2。
实施例2 、一种熔融盐焙烧法合成负载型纳米复合材料的方法,该方法包括下述步骤:(1)称取2.034g Zr(NO3)4(6mmol),溶解于4mL的去离子水中,向其中加入7.296g油酸钠(24mmol,TCI,质量分数95%);把产物在85℃下老化3h;(2)然后加入50g硫酸钠粉末(Na2SO4,Aldrich,98%),后用玛瑙研钵研磨1h,取1/4研磨后产物加热到600℃,加热升温速率为10℃·min−1 ,在氮气气氛下保护,600℃下在持续保温3h;(3)降温后用去离子水将盐洗净,将产物置于烘箱中100℃干燥6h,产物为Zr/Graphene复合物。TEM图为图3,XRD图为图4。
实施例3、一种熔融盐焙烧法合成负载型纳米复合材料的方法,该方法包括下述步骤:(1)称取1.806gZIn(NO3)3·4H2O(6mmol),溶解于4mL的去离子水中,向其中加入5.472g油酸钠(18 mmol,TCI,质量分数95%);把产物在85℃下老化3h;(2)然后加入50g硫酸钠粉末(Na2SO4,Aldrich,98%),后用玛瑙研钵研磨1h,取1/4研磨后产物加热到600℃,加热升温速率为10℃·min−1 ,在氮气气氛下保护,600℃下在持续保温3h;(3)降温后用去离子水将盐洗净,将产物置于烘箱中100℃干燥6h;产物为In/Graphene复合物。TEM图为图5,XRD图为图6。
实施例4、一种熔融盐焙烧法合成负载型纳米复合材料的方法,该方法包括下述步骤:(1)称取2.106g SnCl4·5H2O(6mmol),溶解于4mL的去离子水中,向其中加入7.296 g油酸钠(24mmol,TCI,质量分数95%);把产物在85℃下老化3h;(2)然后加入50g硫酸钠粉末(Na2SO4,Aldrich,98%),后用玛瑙研钵研磨1h,取1/4研磨后产物加热到600℃,加热升温速率为10℃·min−1 ,在氮气气氛下保护,600℃下在持续保温3h;(3)降温后用去离子水将盐洗净,将产物置于烘箱中100℃干燥6h;产物为Sn/Graphene复合物。TEM图为图7,XRD图为图8。
本发明的主要技术内容是将金属离子溶解于去离子水中,向其中加入适量油酸钠,提供碳源,老化3h,使其络合更充分;后加入适量的硫酸钠研磨做粒子的表面活性剂,研磨后产物加热到600℃左右,加热升温速率为10℃·min−1 ,在氮气气氛下保护,在该温度下在持续保温3h,降温后用去离子水将盐洗净,将产物置于烘箱中100℃干燥6h,即得到产物为金属氧化物/Graphene复合物。
通过上述简便的方法,能快速有效合成金属氧化物/石墨烯纳米复合物。将金属氧化物纳米粒子负载于氧化石墨烯表面,有效阻止了还原后的石墨烯片的团聚;从而形成形貌均一的金属氧化物/石墨烯纳米复合物。通过研究不同的金属氧化物对复合物形成的影响,进一步探讨了金属氧化物/石墨烯纳米复合物的形成机理,为金属氧化物/石墨烯纳米复合物应用于光电材料领域提供了实验依据。

Claims (1)

1.一种熔融盐焙烧法合成负载型纳米复合材料的方法,其特征在于:该方法包括下述步骤:(1)称取纳米催化剂金属离子即1.314g Zn(CH3COO)2·2H2O 6mmol,溶解于4mL的去离子水中,向其中加入3.648g油酸钠12mmol,其质量分数为95%,把产物在85℃下老化3h;(2)然后加入50g硫酸钠粉末Na2SO4,其质量分数为98%,用玛瑙研钵研磨1h,取1/4研磨后产物加热到600℃,加热升温速率为10℃·min−1 ,在氮气气氛下保护,600℃下在持续保温3h;(3)降温后用去离子水将盐洗净,将产物置于烘箱中100℃干燥6h,产物为Zn/Graphene复合物;所述纳米催化剂金属离子的粒径范围在1~100纳米。
CN201610204056.8A 2016-04-01 2016-04-01 一种熔融盐焙烧法合成负载型纳米复合材料的方法 Active CN105858713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610204056.8A CN105858713B (zh) 2016-04-01 2016-04-01 一种熔融盐焙烧法合成负载型纳米复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610204056.8A CN105858713B (zh) 2016-04-01 2016-04-01 一种熔融盐焙烧法合成负载型纳米复合材料的方法

Publications (2)

Publication Number Publication Date
CN105858713A CN105858713A (zh) 2016-08-17
CN105858713B true CN105858713B (zh) 2017-08-29

Family

ID=56626983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610204056.8A Active CN105858713B (zh) 2016-04-01 2016-04-01 一种熔融盐焙烧法合成负载型纳米复合材料的方法

Country Status (1)

Country Link
CN (1) CN105858713B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423218A (zh) * 2016-09-26 2017-02-22 新疆大学 一种二硫化钼/碳纳米复合材料的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349112B (zh) * 2014-08-18 2019-03-15 武汉理工大学 一种高温用熔盐/陶瓷复合蓄热体及其制备方法

Also Published As

Publication number Publication date
CN105858713A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Kumar et al. Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique
Liu et al. Mechanically exfoliated MoS 2 nanosheets decorated with SnS 2 nanoparticles for high-stability gas sensors at room temperature
Selvan et al. Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@ C nanocomposites for electrochemical redox supercapacitors
Mao et al. Synthesis of a CoTiO3/BiOBr heterojunction composite with enhanced photocatalytic performance
Parthibavarman et al. Effect of copper on structural, optical and electrochemical properties of SnO2 nanoparticles
Babu et al. Enhanced visible-light-active photocatalytic performance using CdS nanorods decorated with colloidal SnO2 quantum dots: optimization of core–shell nanostructure
Zhang et al. SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells
Lou et al. Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route
Zhou et al. Porous nanoplate-assembled CdO/ZnO composite microstructures: A highly sensitive material for ethanol detection
Guo et al. The enhanced ethanol sensing properties of CNT@ ZnSnO3 hollow boxes derived from Zn-MOF (ZIF-8)
KR20120133065A (ko) 화학적 박리를 이용한 그라핀의 제조방법
WO2014032399A1 (zh) 一种石墨烯和石墨烯基复合材料的低温制备方法
Chen et al. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance
Zhang et al. High performance In2 (MoO4) 3@ In2O3 nanocomposites gas sensor with long-term stability
Li et al. Zn-doped In 2 O 3 hollow spheres: mild solution reaction synthesis and enhanced Cl 2 sensing performance
Choi et al. Facile scalable synthesis of MoO2 nanoparticles by new solvothermal cracking process and their application to hole transporting layer for CH3NH3PbI3 planar perovskite solar cells
Wang et al. Boosted interfacial charge transfer in SnO 2/SnSe 2 heterostructures: toward ultrasensitive room-temperature H 2 S detection
Ding et al. Preparation and gas-sensing property of ultra-fine NiO/SnO 2 nano-particles
Wang et al. Rational design of LaNiO3/carbon composites as outstanding platinum‐free photocathodes in dye‐sensitized solar cells with enhanced catalysis for the triiodide reduction reaction
Niu et al. Mesoporous Co3O4 nanowires decorated with g-C3N4 nanosheets for high performance toluene gas sensors based on pn heterojunction
Li et al. Fabrication, characterization, and photocatalytic property of α-Fe 2 O 3/graphene oxide composite
Zhang et al. Chemiresistive H2S gas sensors based on composites of ZnO nanocrystals and foam-like GaN fabricated by photoelectrochemical etching and a sol-gel method
El Desouky et al. Synergistic influence of SnFe2O4 on ZnSnO3 hybrid nanostructures and optimizations optical, photoluminescence, and magnetic properties for multifunction application
CN103910341A (zh) 一种纳米级六角片状碲化铋热电材料的制作方法
Xu et al. Enhanced gas sensing properties for ethanol of Ag@ ZnSnO 3 nano-composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231011

Address after: 528251 room 141, first floor, building 7, Sanshan scientific innovation center, No. 12, Gangkou Road, Guicheng Street, Nanhai District, Foshan City, Guangdong Province

Patentee after: Newborn (Foshan) Technology Co.,Ltd.

Address before: 830046 No. 14 Shengli Road, Tianshan District, the Xinjiang Uygur Autonomous Region, Urumqi

Patentee before: XINJIANG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240527

Address after: Room KJ-377, 11th Floor, Tourism Distribution Center, No. 99 North Sixth High Speed Rail Road, Urumqi Economic and Technological Development Zone (Toutunhe District), Xinjiang Uygur Autonomous Region (China (Xinjiang) Pilot Free Trade Zone)

Patentee after: Xinjiang Zhuoyu Kangchen Technology Development Co.,Ltd.

Country or region after: China

Address before: 528251 room 141, first floor, building 7, Sanshan scientific innovation center, No. 12, Gangkou Road, Guicheng Street, Nanhai District, Foshan City, Guangdong Province

Patentee before: Newborn (Foshan) Technology Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right