CN105856387A - 二氧化锆陶瓷生坯的制备方法 - Google Patents

二氧化锆陶瓷生坯的制备方法 Download PDF

Info

Publication number
CN105856387A
CN105856387A CN201510025827.2A CN201510025827A CN105856387A CN 105856387 A CN105856387 A CN 105856387A CN 201510025827 A CN201510025827 A CN 201510025827A CN 105856387 A CN105856387 A CN 105856387A
Authority
CN
China
Prior art keywords
pressing
zirconium dioxide
dry
ceramic green
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510025827.2A
Other languages
English (en)
Inventor
严庆云
张君锋
严庆久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Upcera Biomaterial Co Ltd
Original Assignee
Liaoning Upcera Biomaterial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Upcera Biomaterial Co Ltd filed Critical Liaoning Upcera Biomaterial Co Ltd
Priority to CN201510025827.2A priority Critical patent/CN105856387A/zh
Publication of CN105856387A publication Critical patent/CN105856387A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明实施例公开了二氧化锆陶瓷生坯的制备方法,包括以下步骤:(1)干压预成型:将纳米二氧化锆造粒粉放入干压模具中后,进行干压成型,得到预制坯,其中,干压成型的压力为2-100MPa;(2)温等静压成型:干压成型后的预制坯装入温等静压模具后,进行温等静压成型,得到二氧化锆陶瓷生坯。本发明采用先干压预成型,再进行温等静压成型的方法制备二氧化锆陶瓷生坯,由于在温等静压的压力和温度作用下,预制坯仍有较好的流动性,使得纳米二氧化锆粉体颗粒能够按着紧密的方式进行堆积,更充分的排出粉体间的气体和熔融的添加剂。使得陶瓷坯体更加致密,缺陷更少,从而使得烧结后的纳米二氧化锆陶瓷,强度、密度、透光率都有所提高。

Description

二氧化锆陶瓷生坯的制备方法
技术领域
本发明涉及陶瓷材料制备领域,特别涉及二氧化锆陶瓷生坯的制备方法。
背景技术
纳米二氧化锆陶瓷具有高韧性、高抗弯强度和高耐磨性、优异的隔热性能、热膨胀系数接近于负等优点,因此被广泛应用于结构陶瓷领域。
制备纳米二氧化锆陶瓷的原料为纳米二氧化锆,由于纳米材料本身的特点,直接应用纳米二氧化锆粉料进行成型加工,操作非常困难。因此,在实际应用中,一般先将纳米二氧化锆粉料加入添加剂进行造粒处理,形成粒径为0.05-0.1毫米的纳米二氧化锆造粒粉,再使用纳米二氧化锆造粒粉进行成型加工。造粒一般由纳米二氧化锆粉料生产商来完成,也可以由陶瓷的生产者购得纳米二氧化锆粉料后,自行完成。但无论是由纳米二氧化锆生产商完成还是由陶瓷的生产者自行完成,在造粒过程中,都经常会出现粉料团聚及添加剂分散不均匀等问题。
在现有技术中,一般采用干压成型或冷等静压成型的方法来对纳米二氧化锆造粒粉进行成型加工。采用上述的成型方法进行成型加工时,无法消除粉料团聚及添加剂分散不均匀等问题,使得成型后的生坯密度较低,具有孔洞等缺陷。这些缺陷会直接影响烧结后的纳米二氧化锆陶瓷的强度、透光率。在一些特定的应用领域,例如在牙科修复领域,用纳米二氧化锆陶瓷来制作义齿时,对纳米二氧化锆陶瓷的强度及透光率都有很高的要求,采用现有的制备方法所生产纳米二氧化锆陶瓷生坯,在烧结后,其性能很难满足要求。
发明内容
为解决上述问题,本发明实施例公开了二氧化锆陶瓷生坯的制备方法。技术方案如下:
二氧化锆陶瓷生坯的制备方法,包括以下步骤:
(1)干压预成型:将纳米二氧化锆造粒粉放入干压模具中后,进行干压成型,得到预制坯,其中,干压成型的压力为2-100MPa;
(2)温等静压成型:干压成型后的预制坯装入温等静压模具后,进行温等静压成型,得到二氧化锆陶瓷生坯,其中,温等静压成型的温度为100-350℃,压力为120-300Mpa。
其中,在得到二氧化锆陶瓷生坯后,将二氧化锆陶瓷生坯进行烧结,得到二氧化锆陶瓷毛坯。
其中,其特征在于,干压成型的温度为10-50℃,干压成型的压力为15-90Mpa,。
其中,干压成型的温度为15-35℃,干压成型的压力为40-80Mpa。
其中,温等静压成型的温度为150-300℃,压力为150-270Mpa。
其中,温等静压成型的温度为200-250℃,压力为180-240Mpa。
其中,烧结的温度为700℃~1200℃,升温速率为60℃~100℃/小时,保温时间2~4小时。
本发明采用先干压预成型,再进行温等静压成型的方法制备二氧化锆陶瓷生坯,由于在温等静压的压力和温度作用下,预制坯仍有较好的流动性,使得纳米二氧化锆粉体颗粒能够按着紧密的方式进行堆积,更充分的排出粉体间的气体和熔融的添加剂。使得陶瓷坯体更加致密,缺陷更少,从而使得烧结后的纳米二氧化锆陶瓷,强度、密度、透光率都有所提高。不仅如此,由于在温等静压成型之前先采用干压预成型,与直接将纳米二氧化锆造粒粉进行温等静压成型相比,粉料利用率和人工效率都有所提高,可以降低企业的生产成本。
具体实施方式
本发明的技术方案,主要是利用温等静压成型过程中相对较高的压力和温度环境,在这种环境下,预制坯中的添加剂呈熔融状态,因此有较好的流动性。这样在温等静压成型的压力下,纳米二氧化锆粉体颗粒堆积得更紧密,能更充分的排出粉体间的气体和熔融的添加剂。使得纳米二氧化锆陶瓷生坯更加致密,缺陷更少,从而使得烧结后的纳米二氧化锆陶瓷,强度、密度、透光率都有所提高。
但是,如果直接采用温等静压成型方法来制备纳米二氧化锆陶瓷生坯,则纳米二氧化锆造粒粉的利用率和人工效率都比较低。其理由如下:
由于温等静压所采用的模具一般由弹性材料制成,其在压制的过程中会产生较大的形变,直接采用造粒粉进行成型,会使得成型后的生坯几何规整度不好,例如,当成型的生坯为圆柱体时,经温等静压成型后,其圆度及直线度等都不理想,需要进一步的修坯,使其达到规格要求,整个修坯的过程需要浪费较多的造粒粉。
不仅如此,采用造粒粉直接进行温等静压成型时,一般一次成型只能出两个生坯,当产量较大时,就需要很多次的成型。而且,温等静压成型需要由操作人员手动将纳米二氧化锆造粒粉加入到模具中,由于造粒粉本身的特点,以及模具较小,每次装模的时间都会相对较长。这些都会影响人工效率。
本发明的技术方案先将纳米二氧化锆造粒粉进行干压预成型制成预制坯,然后将预制坯进行温等静压成型,得到纳米二氧化锆陶瓷生坯,这样,温等静压成型所针对的对象由造粒粉变成具有固定形状的预制坯,由于预制坯的形状已经固定,只是其密度较低,因此,温等静压成型在进一步增加其密度同时,对其几何规整度的影响不大。这样经过温等静压成型后的生坯,其几何规整度与直接用造粒粉进行温等静压成型的生坯相比,要好得多,基本不需要修坯,这样就会大大减少造粒粉的浪费。
由于已经将造粒粉成型为预制坯,这样,在温等静压成型时,可以采用较大的模具,这样一次压出的生坯的数量就会比较多。不仅如此,预制坯比较容易装模,人工效率也会提高很多。
需要说明的是,本发明所说的纳米二氧化锆造粒粉是指将纯纳米二氧化锆粉料与一定量的添加剂混合后,经造粒处理,所形成的颗粒状的粉料,其中,造粒粉的粒径一般为0.05-0.1毫米。进一步需要说明的是,纳米二氧化锆造粒粉可以直接市售获得,本领域技术人员直接购买即可。例如,可以购买东方锆业的OZ-3Y型3mol钇稳定纳米二氧化锆造粒粉产品来实现本发明的技术方案。
需要说明的是,本发明实施例中所采用的设备,例如干压预成型用的干压机、温等静压成型用的温等静压机、对制得的生坯进行烧结所用的烧结炉等均属于本领域的现有技术,并无特殊之处,均可通过商业途径获得,因此,本发明在此不作详细描述。
下面将以制备直径100mm,厚度14mm的圆柱形纳米二氧化锆陶瓷生坯为例,对本发明的技术方案进行描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)干压预成型:将3mol钇稳定纳米二氧化锆造粒粉(东方锆业,OZ-3Y型)放入干压模具中后,进行干压成型,得到预制坯,其中,干压成型的温度为25℃,压力为30MPa;
(2)温热等静压成型:干压成型后的预制坯装入温等静压模具后,进行温等静压成型,得到二氧化锆陶瓷生坯,其中,温等静压成型的温度为150℃,压力为180Mpa。
实施例2~8
根据如实施例1所记载的方法,使用与实施例1相同的原料,采用表1中实施例2~8的各步骤的工艺参数,分别制得实施例2~8的纳米二氧化锆陶瓷生坯。需要说明的是,本发明各实施例虽然都是以3mol钇稳定纳米二氧化锆造粒粉来制备二氧化锆陶瓷生坯,但陶瓷领域常用的其它类型的纳米二氧化锆造粒粉都可以实现本发明的技术方案,本发明在此不进行详细描述。
表1实施例2~8的各步骤的工艺参数
对比例1
制备直径100mm,厚度14mm的圆柱形纳米二氧化锆陶瓷生坯。
采用与实施例1相同的3mol钇稳定纳米二氧化锆造粒粉,将其放入干压模具中后,进行干压成型,得到生坯,其中,干压成型的温度为25℃,压力为200Mpa。
对比例2
制备直径100mm,厚度14mm的圆柱形纳米二氧化锆陶瓷生坯。
采用与实施例1相同的3mol钇稳定纳米二氧化锆造粒粉,将其放入冷等静压模具中后,进行冷等静压成型,得到生坯,其中,冷等静压成型的温度为25℃,压力为200Mpa。
分别按实施例1~8、对比例1及对比例2的方法各制备10个生坯,用游标卡尺或千分尺准确测量各生坯的尺寸,并计算出各生坯的体积;再用电子天平测量各生坯的重量;用各生坯的重量除以体积得出各生坯的密度。最后计算每个实施例及对比例所制得的生坯的密度平均值,得到结果如表2:
表2实施例1~8及对比例1对比例2所制得的生坯的平均密度
从表2可以看出,制备同样规格的生坯,本发明的技术方案与现有技术的干压成型或冷等静压成型相比,生坯密度有所提高。说明本发明采用先干压预成型,再进行温等静压成型的方法可以使得纳米二氧化锆粉体颗粒堆积的更加紧密,更充分的排出粉体间的气体和熔融的添加剂,从而增加了生坯的密度。可以保证生坯在进行烧结后,强度、透光率更好。
分别按实施例1~8、对比例1及对比例2的方法各制备10个生坯,然后以相同的烧结工艺时行烧结,得到毛坯。烧结的工艺参数为现有技术,本领域技术人员可以容易获得,本发明在此不用具体限定。例如,烧结的温度为700℃~1200℃,升温速率为60℃~100℃/小时,保温时间2~4小时。优选的,烧结的温度可以为1100℃,升温速率为当温度小于900℃时,升温速率为100℃/小时,当高于900℃时,升温速率为60℃/小时,保温时间3小时。
分别测试烧结后各毛坯密度、毛坯的三点弯曲强度、毛坯透光率,并计算每个实施例及对比例所制得的毛坯的密度平均值、三点弯曲强度平均值及透光率平均值,得到的结果如表3所示。
其中,
(1)毛坯密度的测试方法为:
用阿基米德排水法测定烧结后毛坯的密度。用电子天平测得试样在空气中的质量M1和试样浸入水中的质量M2。按下列公式计算毛坯密度D:
其中,D为水的密度。
(2)烧结后毛坯的三点弯曲强度的测试方法为:
按ISO6872-2008进行测试
器具:精度为±0.02mm的游标卡尺、夹具。
设备:载荷大于2000牛顿的材料试验机。
试样要求:⑴尺寸:三点弯曲强度试样:宽(4±0.2)mm,厚(1.2±0.2)mm,长大于20mm,倒角(0.09~0.15)mm;双轴弯曲强度试样:直径(Φ12±0.2)mm,厚(1.2±0.2)mm;⑵试样相对面的平行度不大于0.02mm,横截面的两相邻边夹角应为90°±0.5°。
测试步骤:测量试样横截面尺寸,精度达±0.01mm。对于三点弯曲强度测试,需要调节跨距为14~17mm。将一个试样置于夹具支点的正中,使载荷沿垂直于试样长轴的方向施加于试样表面,测定试样断裂时所需要的负荷,试验机以(1.0±0.5)mm/min的速度加载。并按下列公式计算出试样的三点弯曲强度M。
M = 3 WL 2 bd 2
公式中:M—弯曲强度,MPa;W—试样断裂时的最大负荷,N;L—跨距,mm;b—试样宽度,mm;d—试样厚度,mm。
(3)毛坯透光率测试方法为:
采用PERKINELMER公司的Lambda 650型紫外可见分光光度计对毛坯进行测试。光源为D65标准光源(standardⅢuminant D65)。试样厚度:1mm。透光率的计算方法为:
透光率=550nm波长透过率×1.19(太阳光平均波长550nm)
表3实施例1~8及对比例1~2所制得的毛坯的各性能参数的平均值
从表3可以看出,采用本发明的技术方案所制备的二氧化锆陶瓷生坯,与对比例1及对比例2所制备的生坯相比,在进行烧结后,前者的密度、三点弯曲强度、透光率均要高于后者,因此,采用本发明的技术方案所制备的生坯,在烧结得到纳米二氧化锆陶瓷后,陶瓷的强度及透光率可以满足在一些特定的应用领域,例如在牙科修复领域的性能要求,可以用来制作要求较高的义齿。
以上对本发明所提供的二氧化锆陶瓷生坯的制备方法进行了详细介绍。本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其中心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护。

Claims (7)

1.二氧化锆陶瓷生坯的制备方法,其特征在于,包括以下步骤:
(1)干压预成型:将纳米二氧化锆造粒粉放入干压模具中后,进行干压成型,得到预制坯,其中,干压成型的压力为2-100MPa;
(2)温等静压成型:干压成型后的预制坯装入温等静压模具后,进行温等静压成型,得到二氧化锆陶瓷生坯,其中,温等静压成型的温度为100-350℃,压力为120-300Mpa。
2.如权利要求1所述的方法,其特征在于,在得到二氧化锆陶瓷生坯后,将二氧化锆陶瓷生坯进行烧结,得到二氧化锆陶瓷毛坯。
3.如权利要求1所述的方法,其特征在于,干压成型的温度为10-50℃,干压成型的压力为15-90Mpa。
4.如权利要求3所述的方法,其特征在于,干压成型的温度为15-35℃,干压成型的压力为40-80Mpa。
5.如权利要求1所述的方法,其特征在于,温等静压成型的温度为150-300℃,压力为150-270Mpa。
6.如权利要求5所述的方法,其特征在于,温等静压成型的温度为200-250℃,压力为180-240Mpa。
7.如权利要求2所述的方法,其特征在于,烧结的温度为700℃~1200℃,升温速率为60℃~100℃/小时,保温时间2~4小时。
CN201510025827.2A 2015-01-19 2015-01-19 二氧化锆陶瓷生坯的制备方法 Pending CN105856387A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510025827.2A CN105856387A (zh) 2015-01-19 2015-01-19 二氧化锆陶瓷生坯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510025827.2A CN105856387A (zh) 2015-01-19 2015-01-19 二氧化锆陶瓷生坯的制备方法

Publications (1)

Publication Number Publication Date
CN105856387A true CN105856387A (zh) 2016-08-17

Family

ID=56623158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510025827.2A Pending CN105856387A (zh) 2015-01-19 2015-01-19 二氧化锆陶瓷生坯的制备方法

Country Status (1)

Country Link
CN (1) CN105856387A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106799783A (zh) * 2017-02-10 2017-06-06 广东工业大学 一种适用于光学陶瓷的冷等静压方法和光学陶瓷的制备方法
CN107162603A (zh) * 2017-06-06 2017-09-15 爱迪特(秦皇岛)科技股份有限公司 一种牙科用氧化锆陶瓷的快速烧结方法
CN109704783A (zh) * 2018-12-26 2019-05-03 常熟市银洋陶瓷器件有限公司 一种适用于薄壁件输出窗陶瓷的成型方法
CN110436921A (zh) * 2019-08-16 2019-11-12 Oppo广东移动通信有限公司 陶瓷制品及其制备方法和电子设备
CN110483040A (zh) * 2019-08-20 2019-11-22 深圳市翔通光电技术有限公司 一种氧化锆全瓷义齿的制备方法
CN110655415A (zh) * 2018-06-28 2020-01-07 东莞信柏结构陶瓷股份有限公司 陶瓷结构件及其制备方法
CN110893123A (zh) * 2018-08-22 2020-03-20 株式会社松风 牙科切削加工用氧化锆被切削体及其制造方法
CN111098392A (zh) * 2020-01-08 2020-05-05 山东大学 一种大尺寸复杂形面陶瓷零件的制造方法
CN112250438A (zh) * 2020-10-16 2021-01-22 江西德锆美瓷有限公司 一种高均匀性全瓷义齿用氧化锆瓷块的制备方法及其制品
CN112374883A (zh) * 2020-11-17 2021-02-19 爱迪特(秦皇岛)科技股份有限公司 一种一体多色的牙科用cad/cam氧化锆及其制备方及干压模具
CN114571578A (zh) * 2022-02-25 2022-06-03 东莞信柏结构陶瓷股份有限公司 工件成型方法
CN115531605A (zh) * 2022-10-28 2022-12-30 深圳玉汝成口腔材料有限公司 一种牙科玻璃陶瓷修复体及其制备方法
CN116854465A (zh) * 2023-05-19 2023-10-10 广东捷成科创电子股份有限公司 一种高强度高可靠氧化锆陶瓷刀具材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172845A (zh) * 2007-09-30 2008-05-07 哈尔滨工业大学 一种制备氧化铝/氧化钛系复相精细陶瓷材料的方法
CN101698601A (zh) * 2009-11-04 2010-04-28 中国科学院上海硅酸盐研究所 一种氧化钇基透明陶瓷的烧结方法
CN103708832A (zh) * 2013-09-29 2014-04-09 雅安远创陶瓷有限责任公司 一种纳米陶瓷刀具及其制备方法
CN104140265A (zh) * 2014-07-28 2014-11-12 中国科学院上海硅酸盐研究所 采用液相烧结制备以氧化锆为增韧相的碳化硅陶瓷的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172845A (zh) * 2007-09-30 2008-05-07 哈尔滨工业大学 一种制备氧化铝/氧化钛系复相精细陶瓷材料的方法
CN101698601A (zh) * 2009-11-04 2010-04-28 中国科学院上海硅酸盐研究所 一种氧化钇基透明陶瓷的烧结方法
CN103708832A (zh) * 2013-09-29 2014-04-09 雅安远创陶瓷有限责任公司 一种纳米陶瓷刀具及其制备方法
CN104140265A (zh) * 2014-07-28 2014-11-12 中国科学院上海硅酸盐研究所 采用液相烧结制备以氧化锆为增韧相的碳化硅陶瓷的方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106799783B (zh) * 2017-02-10 2019-01-01 广东工业大学 一种适用于光学陶瓷的冷等静压方法和光学陶瓷的制备方法
CN106799783A (zh) * 2017-02-10 2017-06-06 广东工业大学 一种适用于光学陶瓷的冷等静压方法和光学陶瓷的制备方法
CN107162603A (zh) * 2017-06-06 2017-09-15 爱迪特(秦皇岛)科技股份有限公司 一种牙科用氧化锆陶瓷的快速烧结方法
CN110655415A (zh) * 2018-06-28 2020-01-07 东莞信柏结构陶瓷股份有限公司 陶瓷结构件及其制备方法
CN110893123A (zh) * 2018-08-22 2020-03-20 株式会社松风 牙科切削加工用氧化锆被切削体及其制造方法
CN109704783A (zh) * 2018-12-26 2019-05-03 常熟市银洋陶瓷器件有限公司 一种适用于薄壁件输出窗陶瓷的成型方法
CN110436921B (zh) * 2019-08-16 2022-03-15 Oppo广东移动通信有限公司 陶瓷制品及其制备方法和电子设备
CN110436921A (zh) * 2019-08-16 2019-11-12 Oppo广东移动通信有限公司 陶瓷制品及其制备方法和电子设备
CN110483040A (zh) * 2019-08-20 2019-11-22 深圳市翔通光电技术有限公司 一种氧化锆全瓷义齿的制备方法
CN111098392A (zh) * 2020-01-08 2020-05-05 山东大学 一种大尺寸复杂形面陶瓷零件的制造方法
CN112250438A (zh) * 2020-10-16 2021-01-22 江西德锆美瓷有限公司 一种高均匀性全瓷义齿用氧化锆瓷块的制备方法及其制品
CN112250438B (zh) * 2020-10-16 2022-11-25 江西德锆美瓷有限公司 一种高均匀性全瓷义齿用氧化锆瓷块的制备方法及其制品
CN112374883A (zh) * 2020-11-17 2021-02-19 爱迪特(秦皇岛)科技股份有限公司 一种一体多色的牙科用cad/cam氧化锆及其制备方及干压模具
CN114571578A (zh) * 2022-02-25 2022-06-03 东莞信柏结构陶瓷股份有限公司 工件成型方法
CN115531605A (zh) * 2022-10-28 2022-12-30 深圳玉汝成口腔材料有限公司 一种牙科玻璃陶瓷修复体及其制备方法
CN115531605B (zh) * 2022-10-28 2023-09-12 深圳玉汝成口腔材料有限公司 一种牙科玻璃陶瓷修复体及其制备方法
CN116854465A (zh) * 2023-05-19 2023-10-10 广东捷成科创电子股份有限公司 一种高强度高可靠氧化锆陶瓷刀具材料及其制备方法

Similar Documents

Publication Publication Date Title
CN105856387A (zh) 二氧化锆陶瓷生坯的制备方法
CN105563616B (zh) 氧化锆陶瓷制品的成型方法
Leo et al. Near‐net‐shaping methods for ceramic elements of (body) armor systems
CN102875150A (zh) 一种凝胶注模成型、无压烧结制备碳化硅陶瓷叶轮的方法
CN106927798B (zh) 一种水溶性陶瓷型芯及其制备方法
CN108607989A (zh) 异形复杂零件的注射成形方法
Zhang et al. The effect of solid volume fraction on properties of ZTA composites by gelcasting using DMAA system
CN103171024A (zh) 一种耐磨氧化铝瓷球等静压成型工艺及其专用设备
CN107602130A (zh) 基于3D成型技术制备多孔SiC陶瓷的方法
KR20170130778A (ko) 겔 캐스팅법을 이용한 세라믹 성형체 및 이의 제조방법
CN102442819A (zh) 一种低成本制备高性能大型氧化铝制品的方法
Zhao et al. 3D printing of ZrO2 ceramic using nano-zirconia suspension as a binder
CN107162588A (zh) 一种全瓷义齿用氧化锆瓷块的制作方法
CN103639396B (zh) 利用陶瓷型制备金属钛及钛合金铸件的方法
CN101805159B (zh) 液态浇铸快速固化成型耐高温陶土及其制备和制模工艺
CN101363085A (zh) 一种模压球形铜粉制备多孔材料的方法
JP2013534505A (ja) セラミック素材用のセラミック材料の製造方法
CN105880467B (zh) 一种用于生产高精度ps粉模型精铸件的方法
KR101222476B1 (ko) 소결체
CN107857597A (zh) 一种先进结构陶瓷的制备方法
CN112250445A (zh) 一种3d打印梯度陶瓷型芯及其制备方法
CN220446731U (zh) 一种陶瓷粉体成型装置
KR101652397B1 (ko) 지르코니아-알루미나 복합물 성형체 및 그 제조방법
Wang et al. Liquid drying of BeO gelcast green bodies using ethanol as liquid desiccant
Yang et al. Generation, development, inheritance, and control of the defects in the transformation from suspension to solid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160817

RJ01 Rejection of invention patent application after publication