CN105755346A - 一种Ni-Mn-In室温磁制冷材料及其制备方法 - Google Patents

一种Ni-Mn-In室温磁制冷材料及其制备方法 Download PDF

Info

Publication number
CN105755346A
CN105755346A CN201610236829.0A CN201610236829A CN105755346A CN 105755346 A CN105755346 A CN 105755346A CN 201610236829 A CN201610236829 A CN 201610236829A CN 105755346 A CN105755346 A CN 105755346A
Authority
CN
China
Prior art keywords
magnetic
temperature
gained
room temperature
temperature magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610236829.0A
Other languages
English (en)
Inventor
杨森
田方华
曾余洋
周超
张垠
许敏炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201610236829.0A priority Critical patent/CN105755346A/zh
Publication of CN105755346A publication Critical patent/CN105755346A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种Ni?Mn?In室温磁制冷材料及其制备方法,所述材料是Ni?Mn基的Huesler合金,其化学通式为:Ni50Mn50?xInx,所述化学通式Ni50Mn50?xInx中X的取值范围为7~25。所述材料为优异磁制冷材料,当马氏体相变区和另一低温磁性转变区相邻时,在高磁场时,会产生磁致相变,提高磁熵变的面积,从而得到优异的磁制冷材料。同时本发明提供制备这种材料的方法,该方法主要包括以下内容:首先通过电弧熔炼制备一系列Ni50Mn50?xInx合金,其原料包括Ni,Mn及In,将这三种元素按照化学计量比进行配比,采用电弧熔炼法进行制备。

Description

一种Ni-Mn-In室温磁制冷材料及其制备方法
技术领域:
本发明属于磁制冷材料领域,特别涉及一种Ni-Mn-In室温磁制冷材料及其制备方法。
技术背景:
目前研究的磁制冷材料主要有四种类型:稀土磁制冷材料、类钙钛矿型锰氧化物、过渡族金属基材料以及Heusler型铁磁性材料。Gd作为经典的稀土磁制冷材料,但99.99%的高纯Gd成本较高,化学稳定性差,磁熵变较小,不适合广泛使用;类钙钛矿型锰氧化物的居里温度低于室温,虽可以调制室温区间但是磁熵变会急剧下降,不适宜用作室温磁制冷材料。对于过渡族金属基材料,其制冷性能过分依赖于Ge等取代基的浓度,性能不稳定。因此,具有热弹马氏体相变的Heusler型铁磁型材料的磁热效应得到广泛的关注。但在合金体系中单一的研究某一合金,会出现制冷温区无法调控,制冷能力不强等缺点。
发明内容:
基于此,本发明公开了一种Ni-Mn-In室温磁制冷材料,所述材料为Ni-Mn基的Huesler合金,化学通式为:Ni50Mn50-xInx,所述化学通式Ni50Mn50-xInx中X的取值范围为7~25。
并且本发明还提供了一种Ni-Mn-In室温磁制冷材料的制备方法,所述方法包括以下步骤:
S100、将Ni,Mn及In三种原料按照Ni50Mn50-xInx的化学计量比进行配比;
S200、将配好的原料放入电弧炉中,并将电弧炉抽真空,最后充入高纯度惰性气体作为保护气体;
S300、在步骤S200的电弧炉环境中开始熔炼原料,为保证合金成分均匀,将熔炼所得的铸锭反复熔炼多次;
S400、将制备所得的铸锭进行包裹封入真空石英管中,进行热处理,随炉冷却,便得到铸锭样品。
本发明的有益效果是:采用磁学测量仪器对其磁学性能进行测试,主要表现在:
(1)采用X射线衍射仪测量Ni50Mn50-xInx的XRD衍射图谱,可以发现,Ni50Mn50-xInx的结构由L21型立方结构变为马氏体相结构,说明其具有磁制冷材料的特点,存在一级相变。
(2)为了进一步证明Ni50Mn50-xInx马氏体相变的过程,采用DSC热差分析,结果表明Ni50Mn50-xInx的马氏体相变是典型的结构相变,伴随结构变化有强烈的吸热,放热现象,这为Ni50Mn50-xInx作为优秀的磁制冷材料提供了必要条件。
(3)同时,还对Ni50Mn50-xInx进行了典型的磁学性能测试,采用quantuminterference device(SQUID)测量静态磁场下样品的热磁曲线(即磁化强度随温度的变化关系曲线),所得的结果进一步明确的上述相变过程。
附图说明:
图1(a)为一个实施例中Ni50Mn50-xInx的合金组分温度相图;
图1(b)为一个实施例中使用X射线衍射仪测量所得的变温XRD图谱;
图2(a)为一个实施例中Ni50Mn50-xInx合金的热磁曲线;
图2(b)为一个实施例中Ni50Mn50-xInx合金的DSC曲线;
图3(a1)-图3(a3)为一个实施例中Ni50Mn50-xInx合金体系的马氏体相变区的MH曲线;
图3(b1)-图3(b3)为一个实施例中根据Maxwell关系计算所得的不同磁场下Ni50Mn50-xInx合金体系的磁熵变随外加磁场的变化。
具体实施方式
下面结合附图和具体的实施例对本发明进行进一步的说明:
在一个实施例中,本发明公开了一种Ni-Mn-In室温磁制冷材料,所述材料为Ni-Mn基的Huesler合金,化学通式为:Ni50Mn50-xInx,所述化学通式Ni50Mn50-xInx中X的取值范围为7~25。
本实施例所述的室温磁制冷材料随着磁场的增大,其制冷温区将变宽;随着制冷温区的变宽,在很大程度上提高了所述材料的制冷能力。
在本实施例中,Ni50Mn50-xInx中X的取值范围不同,所述磁制冷材料的特性也有所不同;如图1(a)所示:当Ni50Mn50-xInx中25≥x≥17时,所述磁制冷材料随温度只发生了居里转变,从顺磁性母相转变成铁磁性母相合金;当17>x≥15.5时,随着温度的变化,Ni50Mn50-xInx发生了居里转变,从顺磁性母相转变成铁磁性母相,随着温度的进一步降低,又从铁磁性母相转变成铁磁性的马氏体相;当15.5>x≥14时,随着温度的降低,Ni50Mn50-xInx首先发生了居里转变,从顺磁性母相转变成铁磁性母相合金,随着温度的继续降低,发生马氏体转变,从顺磁性母相转变成了反铁磁性的马氏体相,随着温度的进一步降低,又从反铁磁性的马氏体相转变成铁磁性的马氏体相;14>x≥7时,随着温度的变化,Ni50Mn50-xInx也发生马氏体转变,从顺磁性母相转变成反铁磁性的马氏体相,但是随着温度的进一步降低,从反铁磁性的马氏体相转变成冻结的玻璃态。
在一个实施例中,采用X射线衍射仪测量Ni50Mn50-xInx的XRD衍射图谱,能够发现,Ni50Mn50-xInx的结构由L21型立方结构变为马氏体相结构,说明Ni50Mn50-xInx具有磁制冷材料的特点,存在一级相变。
进一步的,如图1(b)所示的Ni50Mn50-xInx的磁性相图,从图中可以得到合金随组分及温度的磁性相变,用X射线衍射仪测量所得的XRD图谱,从图中可以看出随着温度的降低,Ni50Mn50-xInx合金从L21型立方结构的母相结构逐渐变为马氏体结构。
在一个实施例中,对Ni50Mn50-xInx采用DSC热差分析,能够发现Ni50Mn50-xInx的马氏体相变是典型的结构相变,伴随着结构变化有强烈的吸热,放热现象。
进一步的,如图2(a)Ni50Mn50-xInx合金的热磁曲线,其中ZFC表示零场降温10K;外加200Oe测量10K-400K变化下所得的热磁曲线;FC表示将样品外加200Oe升温至400K,测量400K-10K变化下所得的热磁曲线,FH表示将样品外加200Oe降温至10K,测量10K-400K变化下所得的热磁曲线;从图中可以明显看出,Ms出现较大的磁性转变,证明随温度变化发生马氏体相变。然后随着温度继续降低,磁性又会发生变化。图2(b)所示的是Ni50Mn50-xInx合金的DSC曲线,从图中可以明显看出马氏体相变对应的吸放热峰。
在本实施例中,更进一步的,为了进一步证明Ni50Mn50-xInx马氏体相变的过程,采用DSC热差分析,结果表明Ni50Mn50-xInx的马氏体相变是典型的结构相变,伴随结构变化有强烈的吸热,放热现象,这为Ni50Mn50-xInx作为优秀的磁制冷材料提供了必要条件。
在一个实施例中,对Ni50Mn50-xInx进行磁学性能测试,采用quantuminterference device(SQUID)测量静态磁场下样品的热磁曲线,所得的结果说明Ni50Mn50-xInx具有磁制冷材料的特点,存在一级相变。
更进一步的,对Ni50Mn50-xInx进行了典型的磁学性能测试,采用quantuminterference device(SQUID)测量静态磁场下样品的热磁曲线(即磁化强度随温度的变化关系曲线),所得的结果进一步说明Ni50Mn50-xInx具有磁制冷材料的特点,存在一级相变;伴随着体积的变化,有热量的吸收和释放。
在一个实施例中,所述Ni50Mn50-xInx中X的取值为14-16。
在本实施例中,当16>x≥14时,随着温度的降低,Ni50Mn50-xInx首先发生了居里转变,从顺磁性母相转变成铁磁性母相合金,随着温度的继续降低,发生马氏体转变,从顺磁性母相转变成了反铁磁性的马氏体相,随着温度的进一步降低,又从反铁磁性的马氏体相转变成铁磁性的马氏体相。
在一个实施例中,所述Ni50Mn50-xInx中X的取值为15.3,14.8,14.3。
在本实施例中,当x=15.3时,Ni50Mn34.7In15.3在330K附近发生了居里相变从顺磁性的母相到了铁磁性的马氏体相,温度继续降低,在240K附近发生了马氏体相变从铁磁性的马氏体相转变到了反铁磁性的马氏体相;当x=14.8时,Ni50Mn35.2In14.8居里转变点未发生明显变化,在330K附近从顺磁性的母相到了铁磁性的马氏体相,温度继续降低,在280K附近发生了马氏体相变从铁磁性的马氏体相转变到了反铁磁性的马氏体相;当x=14.3时,Ni50Mn35.7In14.3居里转变点继续保持在330K附近,从顺磁性的母相到了铁磁性的马氏体相,随后在320K附近发生了马氏体相变从铁磁性的马氏体相转变到了反铁磁性的马氏体相。所以,在室温270-310K附近,发生马氏体相变的Ni50Mn35.2In14.8是比较理想的室温磁制冷材料。
基于上一个实施例,根据Maxwell关系,计算体系中的磁熵变值Ni50Mn50-xInx制冷温区在室温附近。
在本实施例中,所述室温为270-320K左右,根据计算体系中的磁熵变值,当Ni50Mn50-xInx中X的取值在14.8附近时,例如14.3-15.3,所述Ni50Mn50-xInx的制冷温区在室温附近,所述材料的温区宽度和磁制冷能力都有提高。
进一步的,如图3(a1)-图3(a3)、图3(b1)-图3(b3)所示:其中图3(a1)-图3(a3)是Ni50Mn50-xInx合金体系的马氏体相变区的MH曲线,图3(b1)-图3(b3)根据Maxwell关系计算所得的不同磁场下Ni50Mn50-xInx合金体系的磁熵变随温度的变化,能够发现在小磁场时熵变值已很大,随着磁场的增大,制冷温区变的越宽,能够说明随着磁场的增大,提高了材料的制冷能力。
更为具体的,随着磁场的增大,制冷温区变的很宽,进而提高了Ni50Mn50-xInx的制冷能力。图3(a1)-图3(a3)表示室温区发生马氏体相变合金材料的初始磁化曲线在降温过程中的变化示意图,合金发生马氏体的区域不同,所以使用不同的温度区域测试,从图中可以看出,这三种合金材料在70Koe的场下均未达到饱和,磁化强度随着场的增大均继续变大。从磁化曲线也可以看出三种合金均发生的场致相变,磁化曲线均出现突变。图3(b1)-图3(b3)是通过Maxwell关系得到的熵变值,附图为磁制冷能力,从图3(b1)可以看出合金在160~240K会产生磁熵变,通过计算可以发现在3T以下,熵变值随场的增大而变大,继续增加磁场熵变值不会发生较大的变化,但熵变的面积却会越来越大,出现了一个小平台,从附图可以看到,制冷能力随磁场有类线性增大的关系。从图3(b2)可以看出该合金的熵变值和制冷能力与图3(b1)的变化类似,其熵变温区为在286K左右,所以该材料是较好的室温制冷材料。图3(b3)中可以发现,该材料磁熵变的变化趋势和图3(b1)类似,但没有出现较为明显的平台,故其制冷能力和前两种材料相比较小。
更进一步的,对Ni50Mn50-xInx进行了典型的磁学性能测试,采用quantuminterference device(SQUID)测量静态磁场下样品的热磁曲线(即磁化强度随温度的变化关系曲线),所得的结果进一步明确的上述相变过程;其理论证明在于:根据Maxwell关系,计算体系中的磁熵变值;Ni50Mn35.2Inl4.8制冷温区(286K)在室温附近,1T时,熵变可达到16.3J/kg·k(该值是1T磁场变化时Gd单质最大磁熵变值的3倍多),磁制冷能力为68.1J/kg,7T时,温区宽度达到40K,磁制冷能力为657.9J/kg,以上结果表明Ni50Mn50-xInx是一种潜在的性能优秀的室温磁制冷材料。
在一个实施例中,所述方法包括以下步骤:
S100、将Ni,Mn及In三种原料按照Ni50Mn50-xInx的化学计量比进行配比;
S200、将配好的原料放入电弧炉中,并将电弧炉抽真空,最后充入高纯度惰性气体作为保护气体;
S300、在步骤S200的电弧炉环境中开始熔炼原料,为保证合金成分均匀,将熔炼所得的铸锭反复熔炼多次;
S400、将制备所得的铸锭进行包裹封入真空石英管中,进行热处理,随炉冷却,便得到铸锭样品。
本实施例所述的方法能够得到优异制冷能力的磁制冷材料,具体为通过电弧熔炼制得Ni50Mn50-xInx,热处理后,绘制出合金的磁性相图,通过相图,可快速的得到室温区马氏体相变的材料,研究发现马氏体相变和低温区的另一磁性相变越接近时,磁致相变导致的熵变面积变化越明显,当远离时,马氏体相变的熵变面积将没有明显增加。
本实施例所述的高纯度气体包括99.9%以上的高纯氮气,氩气,氦气等惰性气体,并纯度越高,原料越不易氧化。
在一个实施例中,所述步骤S100中Ni,Mn及In三种原料纯度大于99.9%。
在本实施例中,在制备室温磁制冷材料时,制备的原料纯度与制备成的磁制冷材料的制冷特性成正比关系,所以,本实施例选用纯度大于99.9%的三种原料来制备室温次制冷材料。
在一个实施例中,所述步骤S100中Ni,Mn及In三种原料按照Ni50Mn50-xInx的化学计量比进行配比时Mn过量添加5%。
在本实施例中,由于在制备Ni50Mn50-xInx时,Mn会发生挥发,所以在原料配比时多添加5%的Mn。
在一个实施例中,所述S300中将熔炼所得的铸锭反复熔炼5-6次。
在本实施例中,所述的铸件熔炼次数也可以为其他次数,总之,以所述铸件中的合金混合均匀为原则。
在一个实施例中,所述S400中利用钼片将所得的铸锭进行包裹。
在本实施例中,所述步骤S400中将制备所得的铸锭用钼片包裹后封入真空石英管中,因为钼片的熔点高,柔韧性好,被广泛应用于生产蓝宝石晶体生长炉内的反射屏、盖板,真空炉内的反射屏、发热带、连接件,等离子镀膜用的溅射靶材,耐高温舟皿等制品,在高温热处理的过程中不会和所致样品发生融合。
在本实施例中,所述步骤S400中将制备所得的铸锭用钼片包裹后封入真空石英管中,是因为石英管的热稳定性好,耐高温,其软化点是1800℃,在1100℃下能长时间使用,急速降温也不会炸裂。
在一个实施例中,所述S400中热处理的温度为900~1000℃,热处理时间为24~48h。
在本实施例中,以热处理后合金的晶体结构和均一性,以及最终的性能,为选择热处理温度和时间的选取原则,在不同温度和热处理时间下,合金的结构就有一定的差别,这样就会影响材料最终的性能。更进一步的,所述热处理的温度选择在900~1000℃之间,热处理时间包括24~48h。
以上实施例仅用以说明本发明专利而并非限制本发明专利所描述的技术方案;因此尽管本说明书参照上述的各个实施例对本发明专利已进行了详细的说明,但是本领域的技术人员应当理解,仍然可以对本发明专利进行修改或等同替换;而一切不脱离本发明专利的精神和范围的技术方案及其改进,其均应涵盖在本发明专利的权利要求范围中。

Claims (10)

1.一种Ni-Mn-In室温磁制冷材料,其特征在于:所述材料为Ni-Mn基的Huesler合金,化学通式为:Ni50Mn50-xInx,所述化学通式Ni50Mn50-xInx中X的取值范围为7~25。
2.根据权利要求1所述的材料,其特征在于:优选的,所述化学通式Ni50Mn50-xInx中X的取值范围为14-16。
3.根据权利要求2所述的材料,其特征在于:所述化学通式Ni50Mn50-xInx中X的取值包括15.3,14.8,14.3。
4.根据权利要求3所述的材料,其特征在于:所述Ni50Mn50-xInx的制冷温区在室温附近。
5.一种Ni-Mn-In室温磁制冷材料的制备方法,其特征在于,所述方法包括以下步骤:
S100、将Ni,Mn及In三种原料按照Ni50Mn50-xInx的化学计量比进行配比;
S200、将配好的原料放入电弧炉中,并将电弧炉抽真空,最后充入高纯度惰性气体作为保护气体;
S300、在步骤S200的电弧炉环境中开始熔炼原料,为保证合金成分均匀,将熔炼所得的铸锭反复熔炼多次;
S400、将制备所得的铸锭进行包裹封入真空石英管中,进行热处理,随炉冷却,便得到铸锭样品。
6.根据权利要求5所述的方法,其特征在于:所述S100中Ni,Mn及In三种原料纯度大于99.9%。
7.根据权利要求5所述的方法,其特征在于:所述S100中Ni,Mn及In三种原料按照Ni50Mn50-xInx的化学计量比进行配比时Mn过量添加5%。
8.根据权利要求5所述的方法,其特征在于:所述S300中将熔炼所得的铸锭反复熔炼5-6次。
9.根据权利要求5所述的方法,其特征在于:所述S400中利用钼片将所得的铸锭进行包裹。
10.根据权利要求5所述的方法,其特征在于:所述S400中热处理的温度为900~1000℃,热处理时间为24~48h。
CN201610236829.0A 2016-04-15 2016-04-15 一种Ni-Mn-In室温磁制冷材料及其制备方法 Pending CN105755346A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610236829.0A CN105755346A (zh) 2016-04-15 2016-04-15 一种Ni-Mn-In室温磁制冷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610236829.0A CN105755346A (zh) 2016-04-15 2016-04-15 一种Ni-Mn-In室温磁制冷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN105755346A true CN105755346A (zh) 2016-07-13

Family

ID=56335083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610236829.0A Pending CN105755346A (zh) 2016-04-15 2016-04-15 一种Ni-Mn-In室温磁制冷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105755346A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058848A (zh) * 2017-05-04 2017-08-18 大连大学 一种高强度Ni50Mn34In16磁记忆合金的制备方法
CN107142389A (zh) * 2017-05-04 2017-09-08 大连大学 一种高强、高塑性Ni50Mn34In16‑xCox磁记忆合金的制备方法
CN108677078A (zh) * 2018-05-30 2018-10-19 东北大学 一种富Mn的Mn-Ni-In-Co-Cu磁制冷材料及其制备方法
CN111304565A (zh) * 2020-02-28 2020-06-19 哈尔滨工业大学 一种Ni-Co-Mn-In合金磁制冷材料及其制备方法
CN112059181A (zh) * 2020-08-28 2020-12-11 中国地质大学(武汉) 一种镍锰铟形状记忆合金零件及其4d成形方法
CN114093663A (zh) * 2021-12-03 2022-02-25 天津城建大学 室温磁热材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137785A1 (en) * 2002-01-24 2003-07-24 Alps Electric Co., Ltd. Magnetic sensing element containing half-metallic alloy
CN101235459A (zh) * 2008-02-29 2008-08-06 哈尔滨工业大学 一种多晶Ni-Mn-Ga-RE合金及其制备方法
CN101923933A (zh) * 2009-06-16 2010-12-22 中国科学院物理研究所 氢化NiMn基合金磁制冷材料、其制备方法及用途
CN102851545A (zh) * 2012-10-11 2013-01-02 河北工业大学 一种Ni-Mn-Ge系磁性形状记忆合金及其制备方法
DE102012213837B3 (de) * 2012-08-03 2013-11-28 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Seltenerdfreie und korrosionsbeständige Permanent- oder Weichmagnete
CN103981397A (zh) * 2014-05-12 2014-08-13 太原理工大学 一种Ni-Fe-Mn-Al合金材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137785A1 (en) * 2002-01-24 2003-07-24 Alps Electric Co., Ltd. Magnetic sensing element containing half-metallic alloy
CN101235459A (zh) * 2008-02-29 2008-08-06 哈尔滨工业大学 一种多晶Ni-Mn-Ga-RE合金及其制备方法
CN101923933A (zh) * 2009-06-16 2010-12-22 中国科学院物理研究所 氢化NiMn基合金磁制冷材料、其制备方法及用途
DE102012213837B3 (de) * 2012-08-03 2013-11-28 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Seltenerdfreie und korrosionsbeständige Permanent- oder Weichmagnete
CN102851545A (zh) * 2012-10-11 2013-01-02 河北工业大学 一种Ni-Mn-Ge系磁性形状记忆合金及其制备方法
CN103981397A (zh) * 2014-05-12 2014-08-13 太原理工大学 一种Ni-Fe-Mn-Al合金材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAILE YAN ET AL.: "《Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys》", 《ACTA MATERIALIA》 *
SUNIL WILFRED D"SOUZA ET AL.: "《Magnetic interactions and electronic structure of Ni-Mn-In》", 《JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058848A (zh) * 2017-05-04 2017-08-18 大连大学 一种高强度Ni50Mn34In16磁记忆合金的制备方法
CN107142389A (zh) * 2017-05-04 2017-09-08 大连大学 一种高强、高塑性Ni50Mn34In16‑xCox磁记忆合金的制备方法
CN108085523A (zh) * 2017-05-04 2018-05-29 大连大学 一种高强、高塑性Ni50Mn34In11Co5磁记忆合金的制备方法
CN107142389B (zh) * 2017-05-04 2018-11-02 大连大学 一种高强、高塑性Ni50Mn34In16-xCox磁记忆合金的制备方法
CN108085523B (zh) * 2017-05-04 2019-09-13 大连大学 一种高强、高塑性Ni50Mn34In11Co5磁记忆合金的制备方法
CN108677078A (zh) * 2018-05-30 2018-10-19 东北大学 一种富Mn的Mn-Ni-In-Co-Cu磁制冷材料及其制备方法
CN108677078B (zh) * 2018-05-30 2020-01-07 东北大学 一种富Mn的Mn-Ni-In-Co-Cu磁制冷材料及其制备方法
CN111304565A (zh) * 2020-02-28 2020-06-19 哈尔滨工业大学 一种Ni-Co-Mn-In合金磁制冷材料及其制备方法
CN111304565B (zh) * 2020-02-28 2021-08-10 哈尔滨工业大学 一种Ni-Co-Mn-In合金磁制冷材料及其制备方法
CN112059181A (zh) * 2020-08-28 2020-12-11 中国地质大学(武汉) 一种镍锰铟形状记忆合金零件及其4d成形方法
CN112059181B (zh) * 2020-08-28 2022-02-01 中国地质大学(武汉) 一种镍锰铟形状记忆合金零件及其4d成形方法
CN114093663A (zh) * 2021-12-03 2022-02-25 天津城建大学 室温磁热材料及其制备方法

Similar Documents

Publication Publication Date Title
CN105755346A (zh) 一种Ni-Mn-In室温磁制冷材料及其制备方法
CN102093850B (zh) 高温稳定的具有大磁熵变的La(Fe,Si)13基多间隙原子氢化物磁制冷材料及其制备方法
Spichkin et al. Preparation, crystal structure, magnetic and magnetothermal properties of (Gd x R 5− x) Si 4, where R= Pr and Tb, alloys
CN103710605B (zh) 一种具有大熵变的MnCoGe基铁磁马氏体相变材料及制备方法和用途
Sarlar et al. Magnetocaloric properties in a FeNiGaMnSi high entropy alloy
Lai et al. Microstructure formation and magnetocaloric effect of the Fe2P-type phase in (Mn, Fe) 2 (P, Si, B) alloys
CN108300882B (zh) 在MnCoGe基合金中实现磁结构耦合相变的方法
KR20170028446A (ko) 다중 열량 망간니켈규소 합금
Ali et al. Structural transformation and inverse magnetocaloric effect in Ni50Mn33In17
Stein et al. Equiatomic intermetallic compounds REPtMg (RE= Y, Eu, Tb-Tm, Lu)–Structure and magnetism
CN109680200B (zh) 一种Mn基磁相变合金及其制备方法和应用
Zhang et al. Tunable magnetostructural coupling and large magnetocaloric effect in Mn1− xNi1− xFe2xSi1− xGax
Xie et al. Influence of boron on the giant magnetocaloric effect of La (Fe0. 9Si0. 1) 13
CN102881394B (zh) 稀土提纯中间产物制备的La(Fe,Si)13基磁性材料、制备方法和用途
CN107574347B (zh) 一种镨钴基合金磁制冷材料及其制备方法和应用
Zhao et al. Tunable magnetostructural phase transition and magnetocaloric effect in Mn1− xNi1− xCo2xSi1− xGex system
CN109402454B (zh) 一种实现磁场驱动变磁性逆马氏体相变的CoVGa基Heusler合金
Chen et al. Magnetic properties and magnetocaloric effect of Nd (Mn1− xFex) 2Ge2 compounds
Grandjean et al. Magnetic and Mössbauer spectral evidence for the suppression of the magnetic spin reorientation in Tm 2 Fe 17 by deuterium
CN105390223B (zh) 一种室温磁制冷合金材料及制备方法
CN105671396B (zh) 用于室温磁制冷的铽‑锗‑锑材料及其制备方法
Roger et al. The ternary RE–Si–B systems (RE= Dy, Ho, Er and Y) at 1270 K: Solid state phase equilibria and magnetic properties of the solid solution REB2− xSix (RE= Dy and Ho)
CN106702245A (zh) 一种Gd‑Co基非晶纳米晶磁制冷材料及其制备方法
Jin et al. Research for room‐temperature magnetic refrigerants in RxCe2− xFe17 series
CN105861860B (zh) 一种铽‑锗‑铋材料、制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160713

RJ01 Rejection of invention patent application after publication