New! Search for patents from more than 100 countries including Australia, Brazil, Sweden and more

CN105752280A - Robot ship system used for acquiring water-area information and control method of robot ship system - Google Patents

Robot ship system used for acquiring water-area information and control method of robot ship system Download PDF

Info

Publication number
CN105752280A
CN105752280A CN201510969261.9A CN201510969261A CN105752280A CN 105752280 A CN105752280 A CN 105752280A CN 201510969261 A CN201510969261 A CN 201510969261A CN 105752280 A CN105752280 A CN 105752280A
Authority
CN
CHINA
Prior art keywords
robot
ship
control
server
terminal
Prior art date
Application number
CN201510969261.9A
Other languages
Chinese (zh)
Other versions
CN105752280B (en
Inventor
魏松杰
程浩
时召伟
赵春霞
陆建峰
王泰瑞
乔著汉
席泽生
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to CN201510969261.9A priority Critical patent/CN105752280B/en
Publication of CN105752280A publication Critical patent/CN105752280A/en
Application granted granted Critical
Publication of CN105752280B publication Critical patent/CN105752280B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
    • B63B35/00Vessels or like floating structures adapted for special purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/02Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP]
    • H04L67/025Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP] for remote control or remote monitoring of the application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/12Network-specific arrangements or communication protocols supporting networked applications adapted for proprietary or special purpose networking environments, e.g. medical networks, sensor networks, networks in a car or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72522With means for supporting locally a plurality of applications to increase the functionality
    • H04M1/72527With means for supporting locally a plurality of applications to increase the functionality provided by interfacing with an external accessory
    • H04M1/72533With means for supporting locally a plurality of applications to increase the functionality provided by interfacing with an external accessory for remote control of appliances

Abstract

The invention discloses a robot ship system used for acquiring water-area information and a control method of the robot ship system. The robot ship system comprises robot ship terminals, a control server, a user terminal and a communication network, wherein the robot ship terminals are used for carrying sensors to carry out remote control or automatic sailing in a water-area environment, and receiving an instruction of the server and uploading monitoring results; the control server is responsible for organizing and managing all the robot ship terminals, calculating a track, storing data and providing a utilization and manipulation interface and a control pipeline for a user; the user of the user terminal does information monitoring and control operation by adopting a Web browser manner through accessing a Web page provided by the server; the communication network adopts an Internet framework based on a TCP/IP (Transmission Control Protocol/Internet Protocol) network protocol; the control server has a fixed IP address and domain name; the terminal user obtains services by accessing the server through a Web browser; each robot ship terminal is communicated with the server through a wireless communication module of a carried smartphone so as to acquire the control instruction and uploading the monitoring data.

Description

一种用于水域信息采集的机器人船系统及其控制方法 Boat waters robot system for information collection and control method

技术领域 FIELD

[0001]本发明涉及水域物联网和机器人船领域,具体涉及一种小型的、低成本的、可搭载配置不同传感器、具有协同编组能力、自主航行能力和远程监控能力的自动机器人船平台和控制系统。 [0001] The present invention relates to the field of robotics and things water vessel, particularly to a small, low cost, may be configured with different sensors mounted a synergistic grouping capability, internet Autonomous Robot ship navigation capability and remote monitoring and control capabilities system.

背景技术 Background technique

[0002]自动机器人船平台是水域物联网和传感器网络构建的基本网络终端,能够以河川、湖泊、海岸、港湾等水域为工作对象,在勘测水体资源、监控水域态势、保护水体环境等方面有着广泛的应用基础。 [0002] automatic robot ship platform is a basic network terminal waters of Things and sensor networks built, able to rivers, lakes, coastal, harbor and other waters for the object, has in surveying water resources, monitoring waters situation, protection of water environment, etc. broad application base. 目前水域传感网络的网络节点主要包括静态节点和运动节点两种。 The current network nodes waters sensor network node includes static and motion node two kinds. 静态节点(包括传感节点、汇聚节点、控制节点等)被布设在固定水域位置,通过搭载传感、通讯、计算等单元来实现不同功能。 Static nodes (including sensor nodes, the convergence nodes, control nodes, etc.) is laid in a fixed position waters, to achieve different functions by mounting sensing, communications, computing unit. 水域运动网络节点包括自主漂浮和无线遥控两类,在运动过程中完成对途经水域的感知任务。 Water sports network node includes two types of self-floating and wireless remote control, complete the task of passing through the waters of perception in the course of the campaign. 它们都局限于网络节点昂贵、组网复杂、扩展性差、节点机动监测能力不足、监测范围小、系统管理维护麻烦等局限性。 They are limited to expensive network nodes, network complexity, poor scalability, mobility node insufficient monitoring capacity, small scope of monitoring, system management and maintenance problems and other limitations. 机器人船系统设计子系统和设备较多,已有的控制系统和通讯系统设计兼容性和扩展性较差,计算能力不足,缺乏完全自主能力。 Robot ship design system more subsystems and equipment, the existing design compatibility and scalability, control and communication systems is poor, lack of computing power, the lack of full autonomy. 如果采用船体搭载射频点对点遥控、船体搭载工控机、导航芯片等架构,则会增加成本,限制水域传感网络节点的布设数量和速度。 If the hull is mounted radio remote point, hull mounted IPC, navigation chip architecture, the cost will increase, limiting the number and speed of laying the water sensor network nodes.

[0003]为了扩大水域物联网的应用领域,优化水域传感器网络的建设速度和建设成本,目前急需一种具有通用性、扩展性、可靠性的水域无线传感网络架构,以及适应该网络的灵活、廉价、可快速构建扩容的机器人船终端。 [0003] In order to expand the application fields of water things, optimization of the construction and the speed of network construction cost water sensor, the current need for a versatile, scalable, water wireless sensor network architecture reliability, flexibility and adaptation of the network , cheap, fast to build a robot ship terminal expansion.

发明内容 SUMMARY

[0004]本发明的目的在于针对水域物联网的发展应用需求,提供一种用于水域信息采集的机器人船系统及其控制方法。 [0004] The object of the present invention is the development of things for water applications, to provide a control method for a robot system and the ship for the water collected information.

[0005]实现本发明目的的技术解决方案为:整个系统由机器人船终端、控制服务器、用户终端、通讯网络四部分组成。 [0005] The purpose of the present invention for the technical solutions: the whole system by the robot ship terminal, the control server, the user terminal four parts, communication networks.

[0006]其中所述机器人船终端是一种功能模块化、能够快速搭建、扩展的水面机器人平台,用以搭载传感器在水域环境中进行远程控制或自主航行,接收服务器指令并将监测结果上传。 [0006] wherein the robot is a functional modular ship terminal to quickly build, extended surface robot platform for mounting the sensor for remote control or autonomous navigation in a water environment, the server receives the instructions and the monitoring result upload. 机器人船终端由动力模块、控制模块、通讯模块、传感模块四大部分组成。 Robot ship terminal by the power module, control module, four major communication module, a sensing module.

[0007]所述的机器人船动力模块负责推进船体运动,船体采用双螺旋桨结构,两个螺旋桨对称分布于船体尾部,分别由两个电机负责驱动,通过调节电机的转速达到对船体航行速度和航行方向的调节控制。 [0007] The robot power module is responsible for vessel propulsion hull motion, double hull structures propellers, two propellers to the hull symmetrically tails are undertaken by the two motor-driven, by regulating the motor speed reaches the speed of the hull and sail sailing controlling the direction of adjustment. 电池单元用于存储能量并向驱动电机供电。 Cell for storing energy to the drive motor. 电机驱动单元负责将控制模块的驱动控制命令转化为电信号,以实现对电机转速的调节控制。 Motor drive unit of the control module is responsible for drive control commands into electrical signals to effect control of the motor speed regulation. 电机驱动单元同时通过接收电机转速、电池电压信息,向控制模块实时报告当前的机器人船动力模块的状态。 Motor drive unit simultaneously by receiving the motor speed, the battery voltage information, real-time reporting of the current state of the robot ship power module to the control module.

[0008]所述的机器人船控制模块由单片机和智能手机两部分组成。 [0008] The robot control vessel MCU module composed of two parts and smart phones. 单片机作为整个终端系统的集成模块,连接智能手机、动力模块、传感模块,负责接收控制指令驱动动力模块,负责从传感器读取数据并存储。 MCU as the entire terminal system integration module, connected smart phone, power module, sensing module, is responsible for driving the power module to receive control commands, is responsible for reading data from the sensors and stored. 智能手机在控制模块里提供三个功能,通讯、计算和存储。 Smartphone provides three functions, communications, computing and stored in the control module. 首先可以通过机载无线通讯功能,接收服务器端推送的控制指令,并把接收的控制指令转发给单片机,由单片机负责解释执行。 First, by the wireless communication function airborne, receive control commands push server, and forwards the received control command to the microcontroller, the microcontroller responsible interpreted. 其次负责计算任务,例如对船体航迹的计算、对传感数据的处理压缩。 Secondly, responsible for computing tasks such as calculating the hull of the track, the sensing processing of the compressed data. 第三负责数据的存储,主要是利用手机上的存储卡和数据库,进行航行数据、传感数据的组织存储。 The third is responsible for storing data, mainly using a memory card and a database on the phone, a navigation data, sensor data storage organization.

[0009]所述的机器人船通讯模块,负责机器人船之间以及船与控制服务器之间的基于TCP/IP网络协议的无线连接通讯。 [0009] The robot ship communication module, a wireless communication connection based on the TCP / IP network protocol between ships and between ship and is responsible for the robot control server.

[0010]所述的机器人船的传感模块,通过船体搭载的各类传感器,对船体自身以及周边水体状态进行检测采样。 [0010] The robot of the sensor vessel, by various sensors mounted in the hull, the hull of the state itself and the surrounding body of water samples for testing. 传感器通过USB或串口连接到单片机主板,分为三类,位置传感器,采用手机自带的卫星定位系统、电子罗盘、陀螺仪等,提供船体在水域中的位置、速度、姿态等空间状态;视频传感器,采用手机自带的摄像头、麦克风,对船体周围环境进行影音采集;水文传感器,负责采集相应的水质参数。 Sensor connection via USB or serial interface to the microcontroller motherboard, divided into three categories, a position sensor, using the phone comes satellite positioning system, electronic compass, gyroscope, etc., provided in the hull waters position, speed, attitude and other state space; video sensor, using the built-in camera phone, microphone, to collect audio-visual environment around the hull; hydrology sensor, is responsible for collecting the corresponding quality parameters.

[0011]控制服务器为整个机器人船系统的集成控制单元,负责组织管理所有的机器人船终端,计算轨迹,存储数据,为用户提供使用操控界面和控制管道。 [0011] The control server is integrated control unit of the robot system throughout the boat, the organization responsible for managing all terminal vessels robot, the trajectory calculation, storing data, provides user control interface and control conduit. 控制服务器由四部分组成,分别为Web页面、Restful接口、数据库和计算单元。 The control server consists of four parts, namely a Web page, the Restful interfaces, databases and computing unit.

[0012]所述控制服务器的Web页面,面向终端用户提供基于浏览器的对机器人船的控制和管理功能。 [0012] The control server Web page for the end user to provide control and management functions of the robot ship-based browser. 系统主页内嵌地图,在地图上显示当前范围内的所有机器人船的位置图标。 Embedded systems Home map location icon displayed all the robot ship within the current range on the map. 地图可以用鼠标进行缩放和拖动。 Map can zoom and drag with the mouse. 在下拉菜单中选择或在地图中点击任意一个船,可以显示该机器人船的具体信息,包括位置信息、运动信息、轨迹信息、控制信息。 Select the map or click on any ship in a drop-down menu, you can display detailed information about the ship's robot, including location information, motion information, track information, control information. 航行模式包括远程遥控和自主航行两种。 Navigation modes, including remote control and autonomous navigation two kinds. 在远程遥控模式下,用户通过调节页面中的选中船的速度和方向,可以远程控制机器人船终端的运动状态。 In the remote control mode, the user selected by adjusting the speed and direction of the ship pages, can be remotely controlled robot motion state of the terminal vessels. 在自主航行模型下,用户首先在地图上画出折线轨迹或闭合区域并设置为船的运动约束,机器人船终端在收到指令后,将自我控制沿着折线航行,或在闭合区域内进行往复巡航。 In the autonomous navigation model, the user first fold line on the map shown in the closed area or trajectory and motion constraints to the ship, the ship robot terminal after receiving the instruction, the self-control of navigation along the fold line, or back and forth in a closed area cruise. 页面中同时将显示最新的传感数据以及采集时间。 Page at the same time show the latest sensing and data acquisition time.

[0013]所述控制服务器的Restful接口向机器人船提供远程交互访问服务器资源的渠道。 [0013] The control server Restful interface provides interactive remote access server channel resources to the robot ship. 接口API采用HTTP标准URL格式,GET或POST请求方式,返回结果为JSON格式。 Interface (API) using a standard HTTP URL format, GET, or POST request method, the result is returned JSON format. 服务器提供的接口功能包括如下几类: Interface server functions include the following categories:

[0014]信息报告(POST方式),用于机器人船向服务器报告自身位置和状态。 [0014] Information Report (POST mode) for robot ship reporting their position and status to the server.

[0015]数据推送(POST方式),用于机器人船向服务器推送数据块,例如传感数据。 [0015] Push Data (POST mode), the data blocks for the robot to push the ship to the server, for example, sensing data.

[0016]请求命令(GET方式),用于机器人船向服务器查询指令。 [0016] request command (GET mode) for robot ship query instruction to the server.

[0017]数据下载(GET方式),用于机器人船从服务器下载数据或程序更新代码。 [0017] data download (GET mode) for downloading data or program the robot ship to update the code from the server.

[0018]所述控制服务器的数据库采用不同的数据表,记录所有的机器人船信息、船运动信息、用户信息、控制命令、监测数据。 [0018] The database server using different control data tables, records all information robots boat, vessel motion information, user information, a control command, monitoring data. 其数据内容如下: Its data as follows:

[0019]机器人船数据表:〈船标识符,IP地址,设备配置〉 [0019] Robot Ship Table: <vessel identifier, IP address, device configuration>

[0020]船运动数据表:〈船标识符,时间,位置,速度,角度,运动模式,设备状态〉 [0020] Table vessel motion data: <vessel identifier, time, location, speed, angle, motion mode, device status>

[0021 ]用户数据表:〈用户名,登陆状态,用户类型,IP地址〉 [0021] The subscriber data table: <username, login status, user type, IP address>

[0022]控制命令数据表:〈命令序号,用户名,船标识符,命令时间,命令内容〉 [0022] The control command data table: <command number, user name, boats identifier, time command, the command content>

[0023]监控数据表:〈数据序号,数据时间,数据类型,船标识符,数据内容〉 [0023] Monitoring Data Sheet: <data number, time data, data type, boats identifier, content data>

[0024]所述控制服务器的计算单元负责所有的服务器端的计算工作,包括对船轨迹的计算和控制命令的生成,对用户请求的响应,对传感数据的处理。 [0024] The control calculation unit of the server is responsible for calculating the work of all the server, and generating comprises computing the trajectory of the vessel control commands in response to user requests, processing of the sensed data.

[0025]用户终端为机器人船的控制和使用者接入系统使用服务器控制功能的终端平台。 [0025] the user terminal using the terminal platform server control function to control the robot and the user access to the ship systems. 使用者采用Web浏览器的方式,通过访问服务器提供的Web页面,进行信息监控和控制操作。 Users using the Web browser of way, access to Web pages provided by the server, information monitoring and control operations.

[0026] 通讯网络采用基于TCP/IP网络协议的互联网架构。 [0026] communications network using Internet-based architecture TCP / IP network protocol. 控制服务器具有固定的IP地址和域名。 The control server has a fixed IP address and domain name. 终端用户采用Web浏览器访问服务器域名来获得服务。 End-user uses a Web browser to access the server to obtain the domain name service. 每个机器人船终端通过其搭载的智能手机的WIF1、3G/4G-LTE、Zigbee等无线技术,通过具有DHCP服务的接入点连接到互联网并获得IP地址。 Each robot smartphone ship terminal which is mounted WIF1,3G / 4G-LTE, Zigbee wireless technologies, connected to the Internet through an access point having a DHCP server and obtains an IP address. 机器人船与服务器之间建立TCP连接并持续一个会话阶段。 TCP connection is established between the stage and continue a conversation with the robot ship server. 在此期间机器人船通过Restful接口访问服务器资源,服务器也可以通过主动推送方式向机器人船传递数据。 During this period the robot ship by Restful interface to access server resources, the server can also pass data to the robot ship by active push mode.

[0027]本发明与现有技术相比,其显著优点为:(I)本发明提出了一种小型的、低成本的、可搭载配置不同传感器、具有协同编组能力、自主航行能力和远程监控能力的自动机器人船平台及其控制系统;(2)针对目前水域传感网络中网络节点复杂、昂贵的缺点,本发明中的网络节点具有小型化、低成本的优势;(3)针对目前水域传感网络中网络节点扩展性差的缺点,本发明中的网络节点可实现按航行任务需求搭载配置不同传感器;(4)本发明中的网络节点机器人船终端具有协同编组能力,可实现机器人船之间的协同工作和监测数据共享;(5)本发明中的机器人船具有完全的自主航行能力,机器人船终端在收到自主航行指令后,将自我控制沿着折线航行,或在闭合区域内进行往复巡航。 [0027] Compared with the prior art, which is significant advantages: (I) the present invention provides a small, low cost, may be configured with different sensors mounted a synergistic grouping capabilities, independent and remote monitoring of navigability robot control system and Ship internet capability; (2) water for today's complex network node in a sensor network, an expensive disadvantage, in the present invention is a network node having a compact, low-cost advantage; (3) for the current water sensor networks poor scalability network node disadvantage, in the present invention, a network node may be implemented by the navigation task needs mounted configured with different sensors; (4) network node robot ship of the present invention is a terminal having a synergistic grouping capability, enabling the robot ship's work monitoring and sharing of data between; (5) the robot in the vessel of the present invention are entirely independent navigation capabilities, the robot ship autonomous navigation terminal after receiving the instruction, the self-control of navigation along the fold line, or in a closed area reciprocating cruise.

附图说明 BRIEF DESCRIPTION

[0028]图1是本发明机器人船及其控制系统的系统结构图。 [0028] FIG. 1 is a system configuration diagram of a robot control system and the ship of the present invention.

[0029]图2是本发明机器人船终端的系统结构图。 [0029] FIG. 2 is a configuration diagram of a robot system of the present invention the ship terminal.

[0030]图3是本发明系统的模块连接和信息流图。 [0030] FIG. 3 is a connector module system of the present invention, and FIG stream.

[0031 ]图4是本发明基于浏览器的用户界面示意图。 [0031] FIG. 4 is a schematic view of a user interface of the present invention is a browser-based.

[0032]图5是本发明机器人船自主航行示意图。 [0032] FIG. 5 is a schematic view of the robot autonomous navigation vessel according to the present invention.

[0033]图6是本发明机器人船系统的工作流程图。 [0033] FIG. 6 is a flowchart of the robot system of the invention the ship.

具体实施方式 Detailed ways

[0034]下面结合附图对本发明作进一步详细描述。 [0034] The following figures of the present invention will be further described in detail with.

[0035]图1所示为机器人船及其控制系统的系统结构图,包括机器人船终端、控制服务器、用户终端以及连接前三者的通讯网络。 [0035] FIG. 1 is a system configuration diagram of a robot control system and the ship, the ship includes a robot terminal, a control server, a user terminal connected to the communication network and the former three. 机器人船系统通过设备组网和远程监控技术,实现机器人船的自主航行和监测数据共享。 Autonomous navigation and vessel monitoring system data of the robot by remote monitoring equipment and network technology, the robot ship share. 机器人船系统的接入点、控制服务器、用户终端之间通过TCP/IP网络协议进行通信,而接入点与机器人船之间采用基于WIFI或者3G/4G-LTE的移动无线通信技术进行连接。 Ship access point of the robot system, the control server, communication between the user terminal through the TCP / IP network protocol, and based on the WIFI connections or 3G / 4G-LTE mobile radio communication technology used between the access point and the robot ship. 本发明主要实现以下功能: The present invention is mainly the following functions:

[0036] I)智能手机与服务器的连接和数据通讯; [0036] I) connect your smartphone to the server and data communications;

[0037] 2)智能手机与单片机的连接和数据通讯; [0037] 2) connected with the microcontroller smart phones and data communications;

[0038] 3)控制参数的设置、控制信号的计算与处理、监控数据的存储与传输。 [0038] 3) the control parameter settings, the signal control calculation processing, storage and transmission of data is monitored.

[0039]图2所示为机器人船终端的系统结构,机器人船终端逻辑上由动力模块、控制模块、通讯模块、传感模块四大部分组成,具体由船体、电机驱动芯片、电机、电池、单片机电路板、智能手机等部件负责实现。 [0039] Figure 2 shows the system configuration of the ship terminal robot, the robot ship termination logic by the power module, control module, four major communication module, a sensing module, particularly by the hull, a motor driver chip, motor, battery, MCU board, smart phones and other components responsible for implementation.

[0040]机器人船终端的船体采用双体船结构,两个螺旋桨对称分布于船体尾部两侧,同时为了减轻船体的重量而提高它的速度,应尽量采用料薄、韧性强的船体,实施过程中,拟采用加强型聚氯乙烯塑料(PVC塑料)船体。 [0040] The hull of a ship terminal robot uses catamaran configuration, symmetrically distributed on both sides of the two propellers aft hull, while the hull to reduce weight and increase its speed, thin material should be used, the strength and toughness of the hull, the implementation process , the intended use of reinforced PVC (PVC plastic) of the hull. 船体的中空结构,主要用于安放智能手机、单片机电路板以及驱动电池组。 A hollow hull structure, mainly for housing smartphones, the MCU board and a driving battery.

[0041]实施过程中为了增强机器人船终端的动力模块,采用双直流电机控制航行方向的模式。 [0041] The process to enhance the power module terminal robot ship, dual DC motor control mode direction of travel. 实施过程中,拟采用L298N电机驱动芯片驱动两路380直流电机以实现对航行速度和航行方向的调整。 Implementation, the proposed L298N motor driver chip driving two DC motor 380 to effect adjustment of the cruising speed and the direction of travel. 动力模块中的电池单元为整个系统提供电力供应保障,同时向电机驱动单元反馈电池电压信息,从节能环保、降低成本的角度,建议采用高性能的可充电电池,实施过程中,拟采用1000mAh锂电池。 Power module battery power supply unit provides protection for the entire system, while the battery voltage feedback information to the motor drive unit, the energy saving, cost reduction angle, performance suggested a rechargeable battery, the implementation process, the proposed 1000mAh Li battery.

[0042]单片机电路板作为整个系统的集成电路板,连接智能手机、动力模块、各类传感器。 [0042] MCU board as an integrated circuit board of the system, connected to the smart phone, a power module, various types of sensors. 负责驱动动力模块,同时负责从传感器读取数据。 Responsible for driving the power module, is also responsible for reading data from the sensor. 宜采用易于接线以及性能稳定的Arduino系列单片机,实施过程中,拟采用Arduino Mega 2560单片机。 Should adopt stable performance and easy wiring Arduino MCU, the implementation process, the proposed Arduino Mega 2560 microcontroller.

[0043]智能手机用于船体的位置和状态检测、运动控制、传感器数据接收和存储。 [0043] Smartphone for detecting the position and status of the hull, motion control, sensor data received and stored. 智能手机通过机载的GPS定位系统、陀螺仪、指南针、摄像头来检测船体位置和状态,同时负责简单的避障和船体控制决策。 Smartphone through an onboard GPS positioning system, gyroscope, compass, cameras to detect the position of the hull and the state, it is also responsible for a simple obstacle avoidance control decision-making and hull. 智能手机与单片机通过串口通信协议进行通信,通信方式灵活自由,包括USB连接以及蓝牙连接等方式。 Smartphone communicate with the microcontroller, flexible and free means of communication, including USB connection and Bluetooth connectivity by a serial communication protocol.

[0044]图3所示为系统的模块连接和信息流图,服务器具有固定的IP地址和域名。 [0044] FIG. 3 is a flow diagram of the connection module and the information system, a server with a fixed IP address and the domain name. 终端用户采用Web浏览器访问服务器域名来获得服务。 End-user uses a Web browser to access the server to obtain the domain name service. 每个机器人船通过其搭载的智能手机的WIF1、3G/4G-LTE、Zigbee等无线技术,通过具有DHCP服务的接入点连接到互联网并获得IP地址。 Each robot ship through their smart phones equipped with the WIF1,3G / 4G-LTE, Zigbee wireless technology to connect to the Internet through an access point has DHCP server and obtain an IP address. 智能手机与服务器之间建立TCP连接并持续一个会话阶段。 TCP connection is established and sustained a session stage between smart phones and servers. 在此期间机器人船搭载的智能手机通过Restful接口访问服务器资源,服务器也可以通过主动推送方式向机器人船传递数据。 During this period the robot ship equipped smartphone by Restful interface to access server resources, the server can also pass data to the robot ship by active push mode. 单个机器人船体中的智能手机与单片机主板之间采用蓝牙或USB相连接实现串口通信,由智能手机向主板传递获取自服务器的具体动力控制命令,同时由主板向手机端发送传感器数据并上传至服务器。 Is connected using Bluetooth or USB serial communications acquired from the server to the smart phone motherboard specific power control command is transmitted simultaneously transmitting sensor data to the mobile terminal and uploaded to the server from the main board between the smartphone and a single-chip computer motherboard robot hull .

[0045]服务器对机器人船采用集中式管理,负责单个机器人船的任务分配,人为干预,状态监测,路径规划以及多个机器人船之间的任务协调和协作。 [0045] server using the robot ship centralized management, task assignment responsible for a single robot ship, human intervention, task coordination and collaboration between state monitoring, route planning and more robots boat. 作为拥有协同编组能力的机器人船系统,机器人船与机器人船之间可直接通过TCP/IP网络协议进行通讯。 As the robot ship system has the ability to co-grouping, between the robot and the robot ship boat can communicate directly via TCP / IP network protocol.

[0046]图4所示为基于浏览器的用户界面,用户通过用户终端上的浏览器登录机器人船首页,可以在地图上查看机器人船的位置信息及其它基本信息,点击某一条船的图标便进入显示该机器人船的状态信息、控制信息和运动信息的页面。 [0046] Figure 4 shows the browser-based user interface, the user location information through a browser on the user terminal to log ship home robot, the robot can be viewed on a map of the ship and other basic information, then click on the icon of a boat the robot ship entering the display of status information, control information and motion information page. 在此页面上用户能监测机器人船传回给服务器的水文信息及外景图片和视频,在内嵌的地图上还有该机器人船的历史航行轨迹显示。 On this page the user can monitor the robot ship back to the server location of hydrological information and pictures and videos, on the embedded map the trajectory of the robot as well as the history of sailing the boat show. 用户首先要在下拉框中选择一个机器人船的标识符,然后就可以对其进行控制操作及返回信息的检测了。 First, choose a user identifier robot ship in the drop-down box, then you can gain control over the operation and return to the detection information. 控制方式有两种选择,包括远程控制和自主航行两个单选按钮。 There are two control options, including remote control and autonomous navigation two radio buttons. 若用户选择远程控制模式,则需要修改该机器人船的航行速度和航行方向进行实时控制,用户可以直接在文本框中修改具体的数值,也可以点击两侧的按钮来加减速度和调节方向;若用户选择自主航行模式,则可以点击地图下方的按钮进行操作。 If the user selects the remote control mode, the cruising speed and the need to modify the direction of travel of the ship in real time control of the robot, the user can modify the specific numerical values ​​directly into the text box, or click the button on both sides to the adjustment direction and deceleration; If the user selects the autonomous navigation mode, you can click the button below the map to operate. 点击“放大”和“缩小”按钮可以调节地图的比例尺,当然也可以用鼠标的滚轮来缩放地图,点击“矢量图”和“卫星图”可以自由切换地图的形式以便于观察,点击“折线”、“矩形”、“多边形”、“圆形”等按钮后可以在地图上划折线或相应的图形区域,并以此作为设定的航行路线或航行范围的限制。 Click "zoom in" and "zoom out" buttons to adjust the scale of a map, of course, can also use the mouse wheel to zoom the map, click on the "vector" and "satellite map" may be switched so as to observe the form of the map, click on the "polyline" after "rectangle", "polygonal", "round" or other button can be assigned a respective fold line pattern area on the map, and as to limit the scope of navigation routes or navigation set. 无论选择哪种控制模式,一旦点击“确定”按钮后,之前作出的数据的修改、路径或范围的设置都会被保存到数据库中,并向由服务器通过Restful接口向该机器人船传递用户作出的相应操作的参数。 Whatever the control mode selected, once clicking the "OK" button, modify, or scope of the path data before making settings will be saved to the database, and passed to the user interface to the robot via Restful boat made by the respective server parameters of the operation.

[0047]图5(a)所示为机器人船自主航行路径图,图5(b)所示为机器人船自主航行原理图,实施过程中由于船载位置传感器获取的机器人船位置状态信息存在一定的误差和时延,机器人船的实际航行路径和规划路径并非完全一致,有一定的偏差,但总体趋势仍然是沿着设定的规划路径航行。 [0047] FIG. 5 (a) shows the ship autonomous navigation robot path, and FIG. 5 (b) shows the autonomous navigation robot ship schematic embodiment process due to the position sensor onboard the ship robot acquires certain location status information errors and delays, the actual navigation path and path planning robot ship is not exactly the same, there is a certain bias, but the overall trend is still set sail along the planned route. 机器人船在航行过程中会不断计算自身与各规划路径航线段的距离以确定自身当前在规划路径段中的位置,具体方法是比较机器人船当前位置与各规划航线段的距离,通常认为距离最小者即是当前机器人船正在航行中的规划路径,以此为依据,通过PID控制算法计算所需的电机转速,然后分别调节船体尾部两侧电机的转速,使其达到计算出的目标值,最终实现机器人船调整自身航向,不断向该规划路径靠近以减小航行偏差的目的。 Robot ship during the voyage will continue to calculate their distance from each planned path route segments to determine their current position in the planned path segment, the specific method is from the more robotic boat current position with the planning route segments, generally considered the minimum distance That is currently planned path by the robot in the ship is sailing, as a basis, the algorithm calculates the desired motor speed by PID control, and then were adjusted hull aft sides of the motor speed, so as to achieve the calculated target value, the final for robot ship to adjust its course, continue to the planned path close to the purpose of reducing the error in navigation.

[0048]服务器向机器人船终端提供了几个Restful接口以便于数据的交互和资源的访问。 [0048] server provides an interface for access to several Restful interaction and resource data to the robot ship terminal. 首先机器人船终端要与服务器建立通信链接,服务器收到请求后会返回一个船的标识符,表示该机器人船终端已与服务器建立连接;接下来机器人船终端就周期性的向服务器汇报自身的状态信息,包括经度、玮度、速度、方向、当前时间等等,服务器成功接收到有用的数据后就返回确认接收的信息,否则返回相应错误信息,如信息过时等;此外,机器人船会定时向服务器传送水文信息、环境信息、图像采集等数据;然后,机器人船向服务器发送获取用户控制信息及参数的请求,服务器会从数据库中取得相应的数据,并以JSON数据格式封装好后返回给机器人船终端,一条数据记录中可能会有航行模式(module)、区域范围类型(range_type)、顶点经度(longitude)、顶点玮度(latitude)、航行速度(speed)、航行方向(direct1n)等信息;还有一个接口,当程序代码、实现功能有更新 First, the robot ship terminal to establish a communication link with the server, the server receives the request returns a vessel identifier, indicating that the connection has been established robot ship terminal with a server; next robot on the ship terminal periodically report its status to the server after information including longitude, Wei, speed, direction, current time, etc., the server successfully received useful data returns acknowledgment information received, otherwise returns corresponding error information, such as information about obsolete; in addition, the robot ship regularly the server transmits data hydrological information, environmental information, image acquisition and the like; then, the robot ship transmits an acquisition request for user control information and parameters to the server, the server will obtain the corresponding data from the database, and to the good JSON data format of package returned to the robot Ship terminal, a data record may be cruise mode (Module1), regional type (RANGE_TYPE), vertices longitude (longitude), the apex of Wei (Latitude), the sailing speed (speed), the direction of travel (direct1n) and other information; there is also a port, when the program code, functional updates ,用于给机器人船终端访问并获取更新资源。 For access to the robot ship terminal and get updates resources.

[0049]所有用户做出的设置及输入的参数,还有机器人船发回的数据、信息都会被及时保存到服务器端的数据库中。 [0049] parameter settings and all user input to make, as well as the robot ship sent back data, information will be saved to the server database in a timely manner. 数据库共需要五张表,机器人船数据表记录了服务器分配给每条机器人船的标识符、机器人船终端的IP地址、机器人船的硬件配置(包括船体、型号、驱动芯片类型、电机类型等);船运动数据表记录了船的标识符、在某个历史时间点的经度、玮度、速度、方向、航行模式(“远程控制”或“自主航行”)、时间戳的值、设备的各个组成部分的工作状态(包括电池的电量、电机的转速、传感器采集到的数据等);用户数据表记录了用户的昵称、当前的登陆状态(“是”或“否”)、用户的类型(“普通用户”、“会员”或者“管理员”等)、用户登陆设备的IP地址;控制命令数据表记录了命令的序号、用户的昵称、船的标识符、用户设置命令的时间、控制类型(“远程控制”或“自主航行”)、设置的速度、设置的航行方向、自主航行的路线或范围的类型(“折线”、 Require a total of five database table, the robot ship data table records the server identifier assigned to each robot ship, IP address, terminal ship robot, robot hardware configuration boat (hull including make, model, Device Type, the motor type, etc.) ; ship motion data table records the identifier of the ship, longitude point in time a history, Wei, speed, direction, navigation mode ( "remote control" or "autonomous navigation"), the respective time stamp values, the device composition operating state portion (including data battery power, motor speed, collected by the sensor, etc.); subscriber data table records the user's nickname, the current login status ( "yes" or "No"), the type of user ( "average user", "member" or "administrator", etc.), user login IP address of the device; the control command data table records the number of commands, the user's nickname, the identifier of the ship, the time set by the user's command, control type ( "remote control" or "autonomous navigation"), the speed setting, the direction of travel is provided, the type of route or scope of the autonomous navigation ( "dogleg", 矩形”、“多边形”或“圆形”);自主航行模式下的路线或范围的顶点坐标经玮度;监控数据表记录了数据的序号、船的标识符、船发回数据的时间、数据的类型(“水温”、“水位”、“流速”、“图片”等);该类型数据的值或图片的保存路径。 Rectangle "," polygonal "or" round "); Wei by the vertex coordinates of the route or scope of the autonomous navigation mode; monitoring data table records the number of data, an identifier of the ship, the ship back to the time data, the data type ( "water", "water", "flow rate", "Photo" and the like); save path or picture values ​​the data type.

[0050]控制服务器的计算单元负责服务器端的所有计算工作,主要包括对船轨迹的计算和控制命令的生成,如在自主航行模式下,是否超出了限制范围、根据下一点的坐标如何调整航行的方向和速度等;另外,还要响应用户发出的请求及判断设置的参数是否合理;计算单元也需要对机器人船发回的传感数据进行处理,包括水文信息的处理及图片的保存等。 [0050] The control server for all calculations calculating unit is responsible for the server, including the calculation and the generation of the ship trajectory control command, as in the autonomous cruise mode, is beyond the limits, navigation how the coordinates of the next point is adjusted according to direction and speed; also, in response to the request and determines whether the setting of the parameters sent by the user is reasonable; calculation means of the robot also needs the sensor data back to the processing vessel, and includes processing to save the image hydrological information and the like. [0051 ]用户终端为客户登陆服务器实现检测机器人船状态及发布控制命令的终端平台,具体实施方式同服务器的Web页面。 [0051] The user terminal implemented as a client server detects landing ship terminal state of the robot and publishing platform control command, the specific embodiments of the same Web page server.

[0052]图6所示为以上机器人船系统的工作流程图。 [0052] FIG. 6 is a flowchart of the ship above the robot system.

[0053] 具体步骤如下: [0053] The specific steps are as follows:

[0054]步骤I:机器人船终端执行开机通电等必要的初始化工作; [0054] Step I: robot ship terminal performs necessary initialization Power-up and the like;

[0055] 步骤2:机器人船终端通过机载无线通讯模块连接Internet,访问控制服务器并注册自身信息; [0055] Step 2: Ship robot onboard terminal connected to the Internet through wireless communication module, and the access control server registration information itself;

[0056]步骤3:机器人船终端从控制服务器的数据库中获得指令; [0056] Step 3: Ship terminal acquires an instruction from the robot control server database;

[0057]步骤5:机器人船终端获得指令后判断指令类型以执行特定动作,若获得控制指令,执行步骤6 ;若获得传感指令,执行步骤9 ;若获得结束指令,执行步骤15 ; [0057] Step 5: After obtaining the robot ship terminal determines an instruction type instruction to perform a specific operation, if the control command is obtained, step 6; obtained if a sensing instruction, step 9; if obtaining an end instruction, executing step 15;

[0058]步骤6:机器人船终端获得控制指令后判断指令中的控制模式,若为自主航行模式,执行步骤7;若为远程控制模式,直接执行步骤8; [0058] Step 6: After obtaining the robot control command ship terminal determines instruction control mode, if it is autonomous cruise mode, step 7; if the remote control mode, perform Step 8;

[0059]步骤7:机器人船终端计算自主航行模式下船体的航行路线; [0059] Step 7: terminal calculates navigation routes robot ship hull autonomous navigation mode;

[0060]步骤8:机器人船终端计算电机控制指令,根据指令计算结果调整电机控制参数,然后执行步骤14; [0060] Step 8: robot ship terminal calculates motor control command, according to an instruction calculates motor control parameters are adjusted, then step 14;

[0061]步骤9:机器人船终端获得传感指令后判断指令中的传感器类型,若为位置传感器,执行步骤10;若为视频传感器,执行步骤11;若为水文传感器,执行步骤12; [0061] Step 9: After obtaining the robot ship terminal type sensor for sensing instruction in the instruction, if the position sensor, step 10; if it is a video sensor, executes step 11; if hydrological sensors, step 12 is performed;

[0062]步骤10:机器人船终端通过位置传感器获取机器人船终端的位置信息,然后执行步骤13; [0062] Step 10: the robot Ship Ship terminal acquires the position information by the position sensor robot terminal, then the step 13;

[0063]步骤11:机器人船终端通过视频传感器获取机器人船终端周围水域环境的视频信息,然后执行步骤13; [0063] Step 11: the robot ship terminal acquires video information of the robot surrounding water around the ship terminal through a video sensor, then step 13;

[0064]步骤12:机器人船终端通过水文传感器获取机器人船终端所在水域的水文信息; [0064] Step 12: the robot robot Ship Ship hydrological information terminal acquires the terminal location sensor hydrological waters;

[0065]步骤13:机器人船终端获取的传感信息,保存在机器人船终端本地存储单元的同时上传至服务器; [0065] Step 13: the robot sensor information obtained by the terminal ship, while the robot is stored in the local storage unit ship terminal uploaded to the server;

[0066]步骤14:机器人船终端获取系统状态上传至服务器,返回步骤4; [0066] Step 14: the robot Ship terminal acquires the system state uploaded to the server, returns to step 4;

[0067]步骤15:若获得结束指令,则机器人船终端将结束任务,停止航行。 [0067] Step 15: When obtaining an end instruction, the robot ship terminal end of their mission, to stop sailing.

Claims (8)

1.一种用于水域信息采集的机器人船系统,其特征在于:包括机器人船终端、控制服务器、用户终端以及通讯网络; 机器人船终端,用以搭载传感器在水域环境中进行远程控制、自主航行,接收控制服务器指令并将传感模块获得的监测数据上传, 控制服务器,负责组织管理所有的机器人船终端,计算机器人船终端远程控制模式下的航行轨迹,存储传感模块获得的监测数据,为用户提供使用操控界面和控制管道,包括Web页面、Restful接口、数据库和计算单元; 用户终端,用户采用Web浏览器的方式,通过访问控制服务器提供的Web页面,进行信息监控和控制操作; 通讯网络采用基于TCP/IP网络协议的互联网架构,终端用户通过Web浏览器访问服务器获得服务,机器人船终端通过其搭载的智能手机的无线通讯模块与控制服务器通讯获取控制指令和上传监测数据 1. A robot system water vessel for collecting information, characterized by: a robot ship terminal, the control server, the user terminal and communication networks; robot ship terminal for remote control sensor is mounted in a water environment, the autonomous navigation monitoring data received and the sensor control server instruction obtained uploading, the control server, the organization responsible for managing all terminal vessels robots, robot trajectory calculation sail boat remote control terminal, the monitoring data obtained by the sensor is stored for provides user control interface and control conduit, including Web pages, the Restful interfaces, databases and computation unit; user terminal, a user using a Web browser manner, a Web page provided by the access control server, the information to monitor and control operation; communication network Internet-based architecture TCP / IP network protocol, end-user access to services through a Web browser to access the server, the robot ship terminal through its smartphones equipped with a wireless communication module control server communication and access control instructions and upload monitoring data
2.根据权利要求1所述的用于水域信息采集的机器人船系统,其特征在于:所述机器人船终端,包括动力模块、控制模块、通讯模块和传感模块,动力模块负责推进船体运动,船体采用双体船结构,分别由动力模块的两个电机负责驱动;控制模块包括单片机和智能手机,智能手机通过机载无线通讯模块接收控制服务器端推送的控制指令,单片机接收控制指令驱动动力模块,同时从传感模块读取传感数据并存储,通过智能手机计算单元实现对船体航迹的计算以及对传感数据的压缩处理,通过智能手机存储单元进行航行数据、传感数据的组织存储;通讯模块,负责机器人船之间以及船与控制服务器之间的基于TCP/IP网络协议的无线连接通讯。 The robot system for a water vessel information collection according to claim 1, wherein: said robot ship terminal, comprising a power module, control module, a sensing module and a communication module, the power module is responsible for promoting movement of the hull, hull made catamaran configuration, are undertaken by the two motors driving the power module; control module comprises a microcontroller and smart phones, smart phones through the onboard wireless communication module control instruction reception control server-side push, the microcontroller driving the power module to receive control commands while reading sensor data from the sensor and stored is calculated by the calculation unit is implemented smartphone hull of the track and the sensed data compression processing performed by the smart phone voyage data storage unit, stores the sensed data organization ; communication module, a wireless communication connection based on TCP / IP network protocol between the ship and the ship between the robot in charge of the control server.
3.根据权利要求2所述的用于水域信息采集的机器人船系统,其特征在于:所述传感模块包括位置传感器、视频传感器和水文传感器,传感数据包括水文传感器负责采集的水温、水位、水体含氧量等水文水体数据,位置传感器负责采集的船体在水域中的位置、速度、姿态空间状态数据,视频传感器负责采集的船体周围水域环境的影音图像数据。 The robot system for a water vessel collecting the information as claimed in claim 2, wherein: said position sensing module comprises a sensor, a video sensor and hydrological sensor, sensor data including sensor temperature hydrology responsible for collecting the water level , video image data is responsible for the collection of water around the hull of the water environment of the oxygen content in water hydrological data, the position sensor is responsible for collecting the waters in the hull position, speed, attitude spatial state data, video sensor.
4.根据权利要求1所述的用于水域信息采集的机器人船系统,其特征在于:所述Web页面,面向终端用户提供基于浏览器的对机器人船的控制和管理功能;所述Restful接口用于实现机器人船终端与控制服务器之间的远程交互访问;所述数据库采用不同的数据表,记录所有的机器人船信息、船运动信息、用户信息、控制命令和监测数据;所述计算单元负责所有的服务器端的计算工作,包括对船轨迹的计算和控制命令的生成,对用户请求的响应,对传感数据的处理。 The robot system for a water vessel information collection according to claim 1, wherein: said Web page, the end user provides control and management functions for the robot ship based browser; Restful the interface with the remote access to the interaction between the robot and the ship terminal control server; database using the different data tables, records all information robots boat, vessel motion information, user information, control commands and monitoring data; the computing unit is responsible for all computing job server, and generating comprises computing the trajectory of the vessel control command, a response to the user request, the processing of the sensor data.
5.根据权利要求4所述的用于水域信息采集的机器人船系统,其特征在于:所述控制服务器的Restful接口向机器人船提供远程交互访问服务器资源的渠道,接口API采用HTTP标准URL格式,GET或POST请求方式,返回结果为JSON格式,服务器提供的接口功能包括如下几类: 信息报告(POST方式),用于机器人船向服务器报告自身位置和状态; 数据推送(POST方式),用于机器人船向服务器推送数据块,例如传感数据; 请求命令(GET方式),用于机器人船向服务器查询指令; 数据下载(GET方式),用于机器人船从服务器下载数据或程序更新代码。 The robot system for a water vessel information collection according to claim 4, wherein: said control server Restful remote channel interface provides interactive access to server resources robot ship interface (API) using standard HTTP URL format, GET or POST request method, the result is returned JSON format, the server interface functions include the following categories: information of (POST mode), the position for the robot and the ship itself reporting status to the server; data push (POST mode), for Ship robot push block data to the server, for example, sensing data; request command (GET method), a robot ship inquiry command to the server; data download (GET mode), updating the code for the robot ship data or programs downloaded from the server.
6.根据权利要求4所述的用于水域信息采集的机器人船系统,其特征在于:所述机器人船信息包括每条机器人船全局唯一的标识符、机器人船终端的IP地址、机器人船的硬件配置;船运动信息包括船的标识符,船在某个历史时间点的经度、玮度、速度、方向、航行模式、时间戳的值、设备的各个组成部分的工作状态;用户信息指用户的昵称、当前的登陆状态、用户的类型、用户登陆设备的IP地址。 The robot system for a water vessel information collection according to claim 4, wherein: said hardware includes a robot vessel information IP address Ship globally unique identifier for each robot, the robot terminal boat, ship robot configuration; Ship motion information includes operation state of each part of an identifier of the ship, the ship at a certain longitude historical point in time, Wei, speed, direction, navigation mode, the timestamp value device; refers to the user information of the user IP addresses nickname, the current log-in status, the type of user, user login equipment.
7.—种用于水域信息采集的机器人船系统的控制方法,其特征在于:机器人船终端在执行完必要的初始化后,通过机载无线通讯模块连接Internet,访问具有固定IP地址和域名的服务器并向服务器注册自身信息,然后从服务器的数据库中获得指令,机器人船终端获得指令后判断指令类型以执行特定动作,若获得控制指令则继续判断指令中的控制模式,在自主航行模式下机器人船终端首先计算航线,然后计算电机控制指令,根据计算结果调整电机控制参数,而在远程控制模式下机器人船终端不需要计算航线,直接计算电机控制指令,根据计算结果调整电机控制参数即可,两种控制模式下,机器人船终端最终都需获取系统状态上传至服务器,然后继续访问服务器获取新的指令;若获得传感指令则继续判断指令中的传感器类型,位置传感器用于获取机器人船终 7.- The method of controlling a system for water vessels seed information collection robot, characterized in that: the robot terminal Ship After performing necessary initialization, connect to the Internet through the onboard wireless communication module, a fixed IP address and access to the domain name server and the information registration server itself, the instruction is then obtained from the database server, the terminal obtains the ship robot determines an instruction type instruction to perform a specific action, obtained when the control command is determined to continue the instruction control mode, the robot ship sailing in the autonomous mode the terminal is first calculated route, and then calculates the motor control command to adjust the motor control parameters based on the calculation result, and in the remote control terminal need not calculate these robot ship, directly calculate the motor control command to adjust the motor control parameters based on the calculation result, two the control modes, the robot ship terminal needs to obtain the final system state are uploaded to the server, and then continue to access the server to obtain a new instruction; obtained if the sensor is determined to continue the instruction type instruction sensor, a position sensor for acquiring the ship robot end 的位置信息,视频传感器用于获取机器人船终端周围水域环境的视频信息,水文传感器用于获取机器人船终端所在水域的水文信息,获取的传感信息,保存在机器人船终端本地存储单元的同时将上传至服务器以实现对水域的实时监测,最后,机器人船终端获取系统状态上传至服务器,然后继续访问服务器获取新的指令;若获得结束指令,则机器人船终端将结束任务,停止航行。 Position information, video sensor for obtaining video information around the robot terminal ship water environment, hydrology hydrological information for acquiring a sensor robot ship terminal is located waters, the acquired sensor information, stored in the terminal while the robot ship the local storage unit uploaded to the server in order to achieve real-time monitoring of waters, finally, the robot ship terminal acquires the system status uploaded to the server, and then continue to access the server to obtain new instructions; if obtaining an end instruction, the robot ship terminal end of their mission, to stop sailing.
8.根据权利要求7所述的用于水域信息采集的机器人船系统的控制方法,其特征在于:机器人船终端连接Internet访问控制服务器获取指令,在水域环境中进行远程控制或自主航行,利用其搭载的传感器监测船体自身以及对周边水体状态进行检测抽样,并将监测结果上传至服务器。 The control method of claim 7 for water vessel system information collection robot according to claim, wherein: the robot ship terminal access control server connected to Internet acquisition instruction, remote control or autonomous navigation in a water environment, with its monitoring sensor mounted outside the hull of the water itself and detects a state of sampling and monitoring results uploaded to the server.
CN201510969261.9A 2015-12-18 2015-12-18 Boat waters robot system for information collection and control method CN105752280B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510969261.9A CN105752280B (en) 2015-12-18 2015-12-18 Boat waters robot system for information collection and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510969261.9A CN105752280B (en) 2015-12-18 2015-12-18 Boat waters robot system for information collection and control method

Publications (2)

Publication Number Publication Date
CN105752280A true CN105752280A (en) 2016-07-13
CN105752280B CN105752280B (en) 2018-01-23

Family

ID=56342128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510969261.9A CN105752280B (en) 2015-12-18 2015-12-18 Boat waters robot system for information collection and control method

Country Status (1)

Country Link
CN (1) CN105752280B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959623A (en) * 2017-02-17 2017-07-18 中国人民解放军海军工程大学 Beidou satellite based ship hydro meteorological data transmission control system and method
CN107229278A (en) * 2017-06-02 2017-10-03 华中科技大学 Unmanned ship monitoring system based on cloud network
CN107271625A (en) * 2017-05-26 2017-10-20 宁波天勤电子科技有限公司 Offshore water area environment intelligent monitoring and data analysis system and method thereof
WO2018137088A1 (en) * 2017-01-24 2018-08-02 深圳企管加企业服务有限公司 Information exchange method and system combining internet of things and robot
WO2018137087A1 (en) * 2017-01-24 2018-08-02 深圳益创信息科技有限公司 Danger warning system and method based on robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100145514A1 (en) * 2008-12-08 2010-06-10 Electronics And Telecommunications Research Institute Apparatus and method for controlling multi-robot linked in virtual space
CN201966955U (en) * 2010-12-31 2011-09-07 中国科学院沈阳自动化研究所 Manned underwater vehicle surface of water monitor
EP2416227A1 (en) * 2010-08-02 2012-02-08 Sogenai S.p.A. Monitoring system
CN102394917A (en) * 2011-10-19 2012-03-28 上海海洋大学 Ocean environment monitoring and early warning system
CN202306258U (en) * 2011-07-13 2012-07-04 浙江海洋学院 Dynamically monitoring and managing system of offshore ship
CN104503414A (en) * 2014-12-29 2015-04-08 广州文冲船厂有限责任公司 Intelligent ship information monitoring system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100145514A1 (en) * 2008-12-08 2010-06-10 Electronics And Telecommunications Research Institute Apparatus and method for controlling multi-robot linked in virtual space
EP2416227A1 (en) * 2010-08-02 2012-02-08 Sogenai S.p.A. Monitoring system
CN201966955U (en) * 2010-12-31 2011-09-07 中国科学院沈阳自动化研究所 Manned underwater vehicle surface of water monitor
CN202306258U (en) * 2011-07-13 2012-07-04 浙江海洋学院 Dynamically monitoring and managing system of offshore ship
CN102394917A (en) * 2011-10-19 2012-03-28 上海海洋大学 Ocean environment monitoring and early warning system
CN104503414A (en) * 2014-12-29 2015-04-08 广州文冲船厂有限责任公司 Intelligent ship information monitoring system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137088A1 (en) * 2017-01-24 2018-08-02 深圳企管加企业服务有限公司 Information exchange method and system combining internet of things and robot
WO2018137087A1 (en) * 2017-01-24 2018-08-02 深圳益创信息科技有限公司 Danger warning system and method based on robot
CN106959623A (en) * 2017-02-17 2017-07-18 中国人民解放军海军工程大学 Beidou satellite based ship hydro meteorological data transmission control system and method
CN107271625A (en) * 2017-05-26 2017-10-20 宁波天勤电子科技有限公司 Offshore water area environment intelligent monitoring and data analysis system and method thereof
CN107229278A (en) * 2017-06-02 2017-10-03 华中科技大学 Unmanned ship monitoring system based on cloud network
CN107229278B (en) * 2017-06-02 2018-12-07 华中科技大学 The unmanned boat monitoring system based on cloud network

Also Published As

Publication number Publication date
CN105752280B (en) 2018-01-23

Similar Documents

Publication Publication Date Title
Johnson et al. Mobile emulab: A robotic wireless and sensor network testbed
Newman et al. Ubiquitous tracking for augmented reality
Meier et al. PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision
US7149625B2 (en) Method and system for distributed navigation and automated guidance
Alvarez et al. Folaga: A low-cost autonomous underwater vehicle combining glider and AUV capabilities
Chaimowicz et al. Experiments in multirobot air-ground coordination
CN201429796Y (en) Unmanned helicopter automatic flight control system circuit
CN105222760A (en) Unmanned aerial vehicle autonomous obstacle detection system and method based on binocular vision
CN102980570A (en) Live-scene augmented reality navigation system
CN104808675A (en) Intelligent terminal-based somatosensory flight operation and control system and terminal equipment
CN101033971A (en) Mobile robot map building system and map building method thereof
CN102707725A (en) Fixed-wing automatic navigation flight control system and using method thereof
CN104808674A (en) Multi-rotor aircraft control system, terminal and airborne flight control system
CN102117071A (en) Multi-underwater robot semi-physical simulation system and control method thereof
CN102707675A (en) Swarm-robot controller, swarm-robot control method and controller terminal
CN204316545U (en) Unmanned plane data link system based on mobile communication network
CN203786564U (en) Dual-redundancy flight control system
CN104267815A (en) Motion capturing system and method based on inertia sensor technology
Marques et al. AUV control and communication using underwater acoustic networks
CN104822133A (en) Method and device for controlling positioning mode of intelligent terminal
US20160147223A1 (en) System and Method for Control of Autonomous Marine Vessels
Stilwell et al. Design elements of a small low-cost autonomous underwater vehicle for field experiments in multi-vehicle coordination
Marco et al. Current developments in underwater vehicle control and navigation: The NPS ARIES AUV
CN201732262U (en) Semi-physical simulation system of multiple underwater robots
CN102263800A (en) Cloud computing to build geographic information systems and applications based on Internet of Things

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01