CN105714121B - 一种从酸性废液中回收铼和铋的方法 - Google Patents

一种从酸性废液中回收铼和铋的方法 Download PDF

Info

Publication number
CN105714121B
CN105714121B CN201610250762.6A CN201610250762A CN105714121B CN 105714121 B CN105714121 B CN 105714121B CN 201610250762 A CN201610250762 A CN 201610250762A CN 105714121 B CN105714121 B CN 105714121B
Authority
CN
China
Prior art keywords
bismuth
rhenium
ion exchange
waste liquid
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610250762.6A
Other languages
English (en)
Other versions
CN105714121A (zh
Inventor
陈昆昆
李进
吴永谦
张卜升
郭瑞
孟晗琪
吴贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN201610250762.6A priority Critical patent/CN105714121B/zh
Publication of CN105714121A publication Critical patent/CN105714121A/zh
Application granted granted Critical
Publication of CN105714121B publication Critical patent/CN105714121B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/06Obtaining bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B61/00Obtaining metals not elsewhere provided for in this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明提供了一种从酸性废液中回收铼和铋的方法,包括以下步骤:一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;二、采用氢氧化钠和酒石酸的混合溶液将吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,采用硫氰酸铵溶液将吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;三、将浓盐酸滴加到含铋解吸液中使铋发生沉淀反应,得到铋富集渣,将含铼解吸液加热浓缩后进行结晶处理,得到高铼酸铵。该方法能够高效分离回收酸性废液中的铼和铋,分离效果显著,工艺简单易行,设备投资少,易于工业化应用。

Description

一种从酸性废液中回收铼和铋的方法
技术领域
本发明属于稀贵金属湿法分离回收技术领域,具体涉及一种从酸性废液中回收铼和铋的方法。
背景技术
铼具有优异的物理化学性能,被广泛应用在石油炼制生产汽油的铂-铼重整催化剂、航空航天工业的镍基高温超耐热合金、电子工业的钼铼或钨铼结构材料及军事工业的高温铼涂层等领域。2012年全球铼消费量69t,航空航天领域的消费比例高达65%,铂-铼催化剂的消费比例为22%,这两大领域主导了铼的消费市场。铋是逆磁性最强的金属,具有导热率低、热电效应及半导体性质等,被广泛应用于半导体材料、超导体材料、助燃剂、颜料、电子陶瓷材料等方面。
铼和铋在地壳中含量均非常低,主要伴生在铜、钼等金属硫化矿中。在铜、钼冶炼过程中铼大部分以氧化挥发的方式进入烟气中,同时一部分铋也随之进入烟气中,经稀酸洗涤后进入酸性废液中。由于酸性废液的酸度较高,成分复杂,砷、铜含量高,铼、铋等金属离子的含量较低,导致铼和铋的分离回收困难。目前,铜冶炼企业一般采用硫化沉淀法从铜冶炼废酸液中回收铼、铋,通过添加硫化物或硫代硫酸盐沉淀铼和铋,但其他金属如砷、铜、锑同时析出,导致铼和铋的后续分离十分复杂和困难。日本专利(专利号JP2011007166)提出一种采用离子交换树脂从含铼和铋的废酸中回收铼的方法,先用阴离子交换树脂从废酸中同时吸附铼和铋,使铼铋与其他金属如砷、铜、铁等分离,再用盐酸和氯化锌混合溶液同时洗脱铼和铋,最后通过模拟移动床式色谱法分离铼和铋分别得到含铼富集液和含铋富集液,含铼富集液经硫化沉淀处理得到硫化铼富集渣。该工艺虽然实现了铼和铋的分离回收,但铼、铋的分离效果不佳且工艺繁杂冗长,设备要求高,生产成本高,使其难以在工业中推广应用。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种从酸性废液中回收铼和铋的方法。该方法能够高效分离回收酸性废液中的铼和铋,分离效果显著,工艺简单易行,设备投资少,易于工业化应用。
为解决上述技术问题,本发明采用的技术方案是:一种从酸性废液中回收铼和铋的方法,其特征在于,该方法包括以下步骤:
步骤一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;所述酸性废液为铜冶炼烟气或钼冶炼烟气经酸洗涤后得到的溶液,所述酸性废液中铼的浓度为10mg/L~1000mg/L,铋的浓度为10mg/L~100mg/L,所述酸性废液中氢离子的浓度为0.6mol/L~6mol/L;
步骤二、采用氢氧化钠和酒石酸的混合溶液对步骤一中吸附有铼和铋的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,然后采用硫氰酸铵溶液对吸附有铼的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;
步骤三、将浓盐酸滴加到步骤二中所述含铋解吸液中使铋发生沉淀反应,直至含铋解吸液的pH值为4~9为止,过滤后得到铋富集渣;将所述含铼解吸液加热浓缩至铼浓度为20g/L~50g/L后进行结晶处理,得到高铼酸铵。
上述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤一中所述离子交换树脂为强碱性阴离子交换树脂。
上述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤二中所述氢氧化钠和酒石酸的混合溶液以及硫氰酸铵溶液的体积均为离子交换树脂体积的6~12倍。
上述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤二中所述氢氧化钠和酒石酸的混合溶液中氢氧化钠的浓度为80g/L~320g/L,酒石酸的浓度为80g/L~140g/L。
上述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤二中所述硫氰酸铵溶液的质量百分比浓度为6%~10%。
上述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤三中所述浓盐酸的质量浓度为36%~38%。
本发明与现有技术相比具有以下优点:
1、本发明采用吸附与分步解吸工序,并利用酒石酸与铋能形成较稳定的配合物、能有效抑制铋水解的特点,从负载有铼和铋的离子交换树脂上优先解吸铋,之后再用硫氰酸铵解吸铼,最终实现铼和铋的高效分离回收。
2、本发明将含铼和铋的酸性废液直接经过离子交换树脂吸附,然后分步解吸分离回收铼和铋,省掉传统硫化沉淀法中沉淀、再浸出等繁琐工序,操作简单易行,试剂消耗少,成本低。
3、本发明对原料成分的变化适应性强,除了适用于含铼和铋的酸性溶液,同样适用于含铼和铋的碱性或中性溶液,且有价金属铼和铋的损失少,回收率高,有利于工业化应用。
4、本发明实现高效分离回收溶液中的铼和铋,分离效果显著,有利于后续铼、铋的进一步提纯。
综上所述,本发明从酸性废液中回收铼和铋的方法操作简单、流程短、成本低、铼和铋的回收率高,能有效解决现有铼、铋分离回收方法存在的工艺流程长、工序繁杂、铼铋分离不彻底等问题。
下面结合实施例对本发明作进一步详细说明。
具体实施方式
实施例1
本实施例从酸性废液中回收铼和铋的方法包括以下步骤:
步骤一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;所述酸性废液为铜冶炼烟气或钼冶炼烟气经酸洗涤后得到的溶液,所述酸性废液中铼的浓度为29.7mg/L,铋的浓度为47.2mg/L,所述酸性废液中氢离子的浓度为3mol/L,所述离子交换树脂为强碱性阴离子交换树脂,本实施例具体采用的是大孔型D296强碱性阴离子交换树脂;
步骤二、采用氢氧化钠和酒石酸的混合溶液对步骤一中吸附有铼和铋的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,然后采用硫氰酸铵溶液对吸附有铼的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;所述氢氧化钠和酒石酸的混合溶液以及硫氰酸铵溶液的体积均为离子交换树脂体积的10倍;所述氢氧化钠和酒石酸的混合溶液中氢氧化钠的浓度为160g/L,酒石酸的浓度为140g/L,所述硫氰酸铵溶液的质量百分比浓度为8%;
步骤一中所述离子交换吸附和步骤二中解吸都是常规操作,具体实施过程中,可将离子交换树脂装入交换柱中,再将酸性废液流经装有离子交换树脂的交换柱进行离子交换吸附,然后将氢氧化钠和酒石酸的混合溶液或者硫氰酸铵溶液流经吸附后的离子交换树脂进行解吸;
步骤三、将质量浓度为36%~38%的浓盐酸滴加到步骤二中所述含铋解吸液中使铋发生沉淀反应,并在滴加的过程中不断搅拌含铋解吸液,直至使含铋解吸液的pH值为7为止,过滤后得到主要由BiOCl、Bi2O3、Bi(OH)3组成的铋富集渣;将所述含铼解吸液加热浓缩至铼浓度为30g/L后进行结晶处理,得到高铼酸铵。
经检测,铋富集渣的含铋化合物的总质量含量为80.01%,高铼酸铵的质量纯度为97.15%。通过计算得出,经本实施例处理后铼和铋的回收率分别为95.32%和93.78%。
实施例2
本实施例从酸性废液中回收铼和铋的方法包括以下步骤:
步骤一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;所述酸性废液为铜冶炼烟气或钼冶炼烟气经酸洗涤后得到的溶液,所述酸性废液中铼的浓度为156.1mg/L,铋的浓度为63.4mg/L,所述酸性废液中氢离子的浓度为4mol/L所述离子交换树脂为强碱性阴离子交换树脂,本实施例具体采用的是凝胶型201×7强碱性阴离子交换树脂;
步骤二、采用氢氧化钠和酒石酸的混合溶液对步骤一中吸附有铼和铋的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,然后采用硫氰酸铵溶液对吸附有铼的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;所述氢氧化钠和酒石酸的混合溶液以及硫氰酸铵溶液的体积均为离子交换树脂体积的8倍;所述氢氧化钠和酒石酸的混合溶液中氢氧化钠的浓度为80g/L,酒石酸的浓度为120g/L,所述硫氰酸铵溶液的质量百分比浓度为9%;
步骤一中所述离子交换吸附和步骤二中解吸都是常规操作,具体实施过程中,可将离子交换树脂装入交换柱中,再将酸性废液流经装有离子交换树脂的交换柱进行离子交换吸附,然后将氢氧化钠和酒石酸的混合溶液或者硫氰酸铵溶液流经吸附后的离子交换树脂进行解吸;
步骤三、将质量浓度为36%~38%的浓盐酸滴加到步骤二中所述含铋解吸液中使铋发生沉淀反应,并在滴加的过程中不断搅拌含铋解吸液,直至使含铋解吸液的pH值为5为止,过滤后得到主要由BiOCl、Bi2O3、Bi(OH)3组成的铋富集渣;将所述含铼解吸液加热浓缩至铼浓度为40g/L后进行结晶处理,得到高铼酸铵。
经检测,铋富集渣的含铋化合物的总质量含量为78.37%,高铼酸铵的质量纯度为98.46%。通过计算得出,经本实施例处理后铼和铋的回收率分别为94.17%和94.06%。
实施例3
本实施例从酸性废液中回收铼和铋的方法包括以下步骤:
步骤一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;所述酸性废液为铜冶炼烟气或钼冶炼烟气经酸洗涤后得到的溶液,所述酸性废液中铼的浓度为865mg/L,铋的浓度为30mg/L,所述酸性废液中氢离子的浓度为5.6mol/L,所述离子交换树脂为强碱性阴离子交换树脂,本实施例具体采用的是大孔型D296强碱性阴离子交换树脂;
步骤二、采用氢氧化钠和酒石酸的混合溶液对步骤一中吸附有铼和铋的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,然后采用硫氰酸铵溶液对吸附有铼的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;所述氢氧化钠和酒石酸的混合溶液以及硫氰酸铵溶液的体积均为离子交换树脂体积的8倍;所述氢氧化钠和酒石酸的混合溶液中氢氧化钠的浓度为240g/L,酒石酸的浓度为80g/L,所述硫氰酸铵溶液的质量百分比浓度为10%;
步骤一中所述离子交换吸附和步骤二中解吸都是常规操作,具体实施过程中,可将离子交换树脂装入交换柱中,再将酸性废液流经装有离子交换树脂的交换柱进行离子交换吸附,然后将氢氧化钠和酒石酸的混合溶液或者硫氰酸铵溶液流经吸附后的离子交换树脂进行解吸;
步骤三、将质量浓度为36%~38%的浓盐酸滴加到步骤二中所述含铋解吸液中使铋发生沉淀反应,并在滴加的过程中不断搅拌含铋解吸液,直至使含铋解吸液的pH值为6为止,过滤后得到主要由BiOCl、Bi2O3、Bi(OH)3组成的铋富集渣;将所述含铼解吸液加热浓缩至铼浓度为50g/L后进行结晶处理,得到高铼酸铵。
经检测,铋富集渣的含铋化合物的总质量含量为75.92%,高铼酸铵的质量纯度为98.63%。通过计算得出,经本实施例处理后铼和铋的回收率分别为96.51%和95.02%。
实施例4
本实施例从酸性废液中回收铼和铋的方法包括以下步骤:
步骤一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;所述酸性废液为铜冶炼烟气或钼冶炼烟气经酸洗涤后得到的溶液,所述酸性废液中铼的浓度为10mg/L,铋的浓度为10mg/L,所述酸性废液中氢离子的浓度为0.6mol/L,所述离子交换树脂为强碱性阴离子交换树脂,本实施例具体采用的是凝胶型201×7强碱性阴离子交换树脂;
步骤二、采用氢氧化钠和酒石酸的混合溶液对步骤一中吸附有铼和铋的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,然后采用硫氰酸铵溶液对吸附有铼的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;所述氢氧化钠和酒石酸的混合溶液以及硫氰酸铵溶液的体积均为离子交换树脂体积的6倍;所述氢氧化钠和酒石酸的混合溶液中氢氧化钠的浓度为80g/L,酒石酸的浓度为80g/L,所述硫氰酸铵溶液的质量百分比浓度为6%;
步骤一中所述离子交换吸附和步骤二中解吸都是常规操作,具体实施过程中,可将离子交换树脂装入交换柱中,再将酸性废液流经装有离子交换树脂的交换柱进行离子交换吸附,然后将氢氧化钠和酒石酸的混合溶液或者硫氰酸铵溶液流经吸附后的离子交换树脂进行解吸;
步骤三、将质量浓度为36%~38%的浓盐酸滴加到步骤二中所述含铋解吸液中使铋发生沉淀反应,并在滴加的过程中不断搅拌含铋解吸液,直至使含铋解吸液的pH值为9为止,过滤后得到主要由BiOCl、Bi2O3、Bi(OH)3组成的铋富集渣;将所述含铼解吸液加热浓缩至铼浓度为50g/L后进行结晶处理,得到高铼酸铵。
经检测,铋富集渣的含铋化合物的总质量含量为76.88%,高铼酸铵的质量纯度为97.34%。通过计算得出,经本实施例处理后铼和铋的回收率分别为97.65%和96.12%。
实施例5
本实施例从酸性废液中回收铼和铋的方法包括以下步骤:
步骤一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;所述酸性废液为铜冶炼烟气或钼冶炼烟气经酸洗涤后得到的溶液,所述酸性废液中铼的浓度为1000mg/L,铋的浓度为100mg/L,所述酸性废液中氢离子的浓度为6mol/L所述离子交换树脂为强碱性阴离子交换树脂,本实施例具体采用的是大孔型D296强碱性阴离子交换树脂;
步骤二、采用氢氧化钠和酒石酸的混合溶液对步骤一中吸附有铼和铋的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,然后采用硫氰酸铵溶液对吸附有铼的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;所述氢氧化钠和酒石酸的混合溶液以及硫氰酸铵溶液的体积均为离子交换树脂体积的12倍;所述氢氧化钠和酒石酸的混合溶液中氢氧化钠的浓度为320g/L,酒石酸的浓度为140g/L,所述硫氰酸铵溶液的质量百分比浓度为10%;
步骤一中所述离子交换吸附和步骤二中解吸都是常规操作,具体实施过程中,可将离子交换树脂装入交换柱中,再将酸性废液流经装有离子交换树脂的交换柱进行离子交换吸附,然后将氢氧化钠和酒石酸的混合溶液或者硫氰酸铵溶液流经吸附后的离子交换树脂进行解吸;
步骤三、将质量浓度为36%~38%的浓盐酸滴加到步骤二中所述含铋解吸液中使铋发生沉淀反应,并在滴加的过程中不断搅拌含铋解吸液,直至使含铋解吸液的pH值为4为止,过滤后得到主要由BiOCl、Bi2O3、Bi(OH)3组成的铋富集渣;将所述含铼解吸液加热浓缩至铼浓度为20g/L后进行结晶处理,得到高铼酸铵。
经检测,铋富集渣的含铋化合物的总质量含量为88.54%,高铼酸铵的质量纯度为98.76%。通过计算得出,经本实施例处理后铼和铋的回收率分别为97.24%和95.32%。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (6)

1.一种从酸性废液中回收铼和铋的方法,其特征在于,该方法包括以下步骤:
步骤一、采用离子交换树脂对酸性废液进行离子交换吸附处理,使酸性废液中的铼和铋吸附到离子交换树脂上;所述酸性废液为铜冶炼烟气或钼冶炼烟气经酸洗涤后得到的溶液,所述酸性废液中铼的浓度为10mg/L~1000mg/L,铋的浓度为10mg/L~100mg/L,所述酸性废液中氢离子的浓度为0.6mol/L~6mol/L;
步骤二、采用氢氧化钠和酒石酸的混合溶液对步骤一中吸附有铼和铋的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铋解吸至液相,得到含铋解吸液,然后采用硫氰酸铵溶液对吸附有铼的离子交换树脂进行解吸处理,使吸附于离子交换树脂上的铼解吸至液相,得到含铼解吸液;
步骤三、将浓盐酸滴加到步骤二中所述含铋解吸液中使铋发生沉淀反应,直至含铋解吸液的pH值为4~9为止,过滤后得到铋富集渣;将所述含铼解吸液加热浓缩至铼浓度为20g/L~50g/L后进行结晶处理,得到高铼酸铵。
2.根据权利要求1所述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤一中所述离子交换树脂为强碱性阴离子交换树脂。
3.根据权利要求1所述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤二中所述氢氧化钠和酒石酸的混合溶液以及硫氰酸铵溶液的体积均为离子交换树脂体积的6~12倍。
4.根据权利要求1所述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤二中所述氢氧化钠和酒石酸的混合溶液中氢氧化钠的浓度为80g/L~320g/L,酒石酸的浓度为80g/L~140g/L。
5.根据权利要求1所述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤二中所述硫氰酸铵溶液的质量百分比浓度为6%~10%。
6.根据权利要求1所述的一种从酸性废液中回收铼和铋的方法,其特征在于,步骤三中所述浓盐酸的质量浓度为36%~38%。
CN201610250762.6A 2016-04-21 2016-04-21 一种从酸性废液中回收铼和铋的方法 Active CN105714121B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610250762.6A CN105714121B (zh) 2016-04-21 2016-04-21 一种从酸性废液中回收铼和铋的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610250762.6A CN105714121B (zh) 2016-04-21 2016-04-21 一种从酸性废液中回收铼和铋的方法

Publications (2)

Publication Number Publication Date
CN105714121A CN105714121A (zh) 2016-06-29
CN105714121B true CN105714121B (zh) 2017-11-28

Family

ID=56160388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610250762.6A Active CN105714121B (zh) 2016-04-21 2016-04-21 一种从酸性废液中回收铼和铋的方法

Country Status (1)

Country Link
CN (1) CN105714121B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770696B (zh) * 2016-07-06 2019-11-15 东华理工大学 一种阳离子树脂微色谱柱分离富集,硫氰酸盐光度法测定碱性铀溶液中微量铼的分析方法
CN107686900B (zh) * 2017-07-10 2019-09-17 核工业北京化工冶金研究院 一种用离子交换树脂综合回收浸出液中铀铼的方法
CN107475517A (zh) * 2017-09-29 2017-12-15 洛阳栾川钼业集团股份有限公司 一种铼回收系统过滤装置
CN108640390B (zh) * 2018-05-31 2021-10-22 阳谷祥光铜业有限公司 一种含锑废水的处理方法
CN109321756A (zh) * 2018-12-03 2019-02-12 中南大学 一种冶炼烟气洗涤污酸中高效回收铼的装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1028658C (zh) * 1992-12-02 1995-05-31 北京有色金属研究总院 一种铜电解液净化的工艺方法
JP5284378B2 (ja) * 2011-01-17 2013-09-11 パンパシフィック・カッパー株式会社 廃酸からのレニウム回収方法及びシステム
CN103539283B (zh) * 2013-10-11 2014-11-05 金川集团股份有限公司 去除铜电解液中锑铋杂质的综合处理方法
CN103789552B (zh) * 2014-02-27 2015-07-01 西北有色金属研究院 一种从高温合金酸浸液中回收铼的方法
CN104593604A (zh) * 2015-01-09 2015-05-06 紫金矿业集团股份有限公司 一种铜冶炼废酸和白烟尘综合回收的工艺

Also Published As

Publication number Publication date
CN105714121A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
CN105714121B (zh) 一种从酸性废液中回收铼和铋的方法
AU779496B2 (en) Resin-in-pulp method for recovery of nickel and cobalt from oxidic ore leach slurry
CN105970007B (zh) 一种从砂岩型铀矿地浸采铀工艺贫树脂中回收伴生铼资源的方法
Zhang et al. Recovery of rhenium from copper leach solutions using ion exchange with weak base resins
CN106191463B (zh) 一种锌湿法冶炼浸出液的净化方法
Li et al. Removal of V (V) from aqueous Cr (VI)-bearing solution using anion exchange resin: Equilibrium and kinetics in batch studies
CN107488789B (zh) 一种从强碱性阴离子交换树脂上协同解吸金硫代硫酸根配离子的方法
CN113249571B (zh) 树脂吸附法从红土镍矿回收镍钴的方法
CN109182791B (zh) 一种有机酸络合-固相吸附从稀土料液中除铝的方法
CN108342583A (zh) 一种从钼精矿焙烧收尘灰中回收铼和钼的方法
Liu et al. Clean separation and purification for strategic metals of molybdenum and rhenium from minerals and waste alloy scraps–A review
CN107519948B (zh) 一种复合胺基弱碱性阴离子交换树脂及从硫化砷渣浸出液中回收铼的方法
CN105087933A (zh) 一种从含钒、铬混合液中分离钒、铬的方法
CN107190155A (zh) 一种从含钒铬混合液中提取钒、铬的方法
CN107354300B (zh) 一种从铜冶炼废酸中富集铼的方法
CN107090546B (zh) 一种从硫酸镍溶液中除砷的方法
CN113416856A (zh) 一种从硫化镍精矿中选择性提取钴和镍的方法
CN100355917C (zh) 对铂系金属的回收
CN113430385B (zh) 一种从硫化砷渣中回收硫铼及砷无害化处置的方法
CN109852811A (zh) 一种锌铁高效分离方法
Virolainen et al. Ion exchange purification of a silver nitrate electrolyte
WO2021059940A1 (ja) スカンジウムの回収方法、並びにイオン交換処理方法
CN108707766B (zh) 一种从石煤酸浸液中分离回收铀和钼的方法
CN107400778B (zh) 一种从强碱性阴离子交换树脂上解吸金硫代硫酸根配离子的方法
CN111635996A (zh) 含砷金精矿的回收方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant