CN105699953B - Frequency diversity MIMO radar is apart from the decoupling Beamforming Method of angle - Google Patents

Frequency diversity MIMO radar is apart from the decoupling Beamforming Method of angle Download PDF

Info

Publication number
CN105699953B
CN105699953B CN201610058784.2A CN201610058784A CN105699953B CN 105699953 B CN105699953 B CN 105699953B CN 201610058784 A CN201610058784 A CN 201610058784A CN 105699953 B CN105699953 B CN 105699953B
Authority
CN
China
Prior art keywords
mrow
msub
theta
signal
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610058784.2A
Other languages
Chinese (zh)
Other versions
CN105699953A (en
Inventor
朱圣棋
许京伟
兰岚
廖桂生
王成浩
冯阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunshan Yu Yu Information Technology Co Ltd
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610058784.2A priority Critical patent/CN105699953B/en
Publication of CN105699953A publication Critical patent/CN105699953A/en
Application granted granted Critical
Publication of CN105699953B publication Critical patent/CN105699953B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention discloses a kind of frequency diversity MIMO radar apart from the decoupling Beamforming Method of angle, mainly solve the problems, such as that existing frequency diversity array cannot be formed apart from the decoupling automated response of angle.Implementation step is:1. design frequency diversity array emitter signal frequency;2. obtain frequency diversity array emitter signal and receiving terminal echo-signal;3. pair receiving terminal echo-signal carries out vector output, the snap vector of echo-signal is obtained;4. pair snap vector carries out Adaptive beamformer, obtain forming directional diagram apart from the two dimensional beam of angle.The present invention makes full use of the frequency diversity array emitter free degree, form the controllable degrees of freedom tieed up based on frequency diversity MIMO radar system in distance and angle, and formed by the two dimensional beam that Adaptive beamformer technology is realized apart from angle, available for target apart from angle joint-detection, and suppress with apart from relevant interference signal.

Description

The decoupling Beamforming Method of frequency diversity MIMO radar distance-angle
Technical field
The invention belongs to signal processing technology field, more particularly to a kind of frequency diversity MIMO radar distance-angle decoupling Beamforming Method is closed, available for detection target and suppression and apart from relevant interference.
Background technology
Multiple-input and multiple-output MIMO radar can effectively utilize the transmitting free degree, in fact compared to traditional phased-array radar Existing send-receive Combined Treatment, it is possible to increase adaptive ability, improves radar parameter estimation performance.But traditional multi input Multi output MIMO radar only has the angle dimension free degree, without the distance dimension free degree, it is difficult to realizes with pressing down apart from relevant interference System.
The concept of frequency diversity array is proposed by Paul Antonik et al. in international radar meeting in 2006, with spirit Beam steering ability living, increasingly causes the concern of domestic and foreign scholars.Compared to traditional phased-array radar, it respectively launches array element Carrier frequency there are a small frequency interval, it is possible thereby to produce and distance-angle dependency antenna radiation pattern.Nearly ten years, Distance-angle two dimensional beam on frequency diversity array radar is formed, ground with characteristics such as the suppression apart from relevant interference Study carefully.But the distance of frequency diversity array pattern-angle two dimension dependence is determined by frequency increment, it is impossible to is adaptively formed Zero point and depression, it is poor to the rejection ability of complex environment and interference, the serious of target detection performance can be caused in these cases Decline, it is therefore desirable to adaptively form the beam pattern to match with environment, enhancing frequency diversity array pattern is multiple Adaptability under heterocycle border.
The content of the invention
Present invention aims at a kind of decoupling Beamforming Method of frequency diversity MIMO radar distance-angle is proposed, certainly Adaptation to the ground exists into the uncoupled beam pattern of distance-angle to match with environment, enhancing frequency diversity array pattern Adaptability under complex environment, improves target detection performance.
Be on the basis of the frequency diversity multiple-input and multiple-output MIMO radar system, to its distance-angle the two-dimensional field from Adapt to beam-forming technology studied, excavate its distance-angle joint domain carry out target detection and suppression with apart from phase Close the ability of interference.
The present invention basic ideas be:Under white Gaussian noise background, pass through each transmitting array element to being uniformly distributed linear array Between pull-in frequency interval, by frequency diversity array emitter orthogonal waveforms signal, pass through and produce and all relevant hair of distance, angle Steering vector is penetrated, by the Adaptive beamformer skill for using the undistorted response MVDR of minimum variance to echo-signal in receiving terminal Art, it is possible thereby to produce the antenna radiation pattern with angle, distance while dependence, and then carries out target in distance-angle joint domain Detection and AF panel.Its implementation is as follows:
(1) the pull-in frequency interval delta f between each transmitting array element of co-located uniform line-array, obtains frequency diversity array m-th Launch the emission signal frequency of array element:
fm=f0+ (m-1) Δ f, m=1,2 ..., M
Wherein, M is to launch array element number, f0For first antenna, the i.e. carrier frequency of reference antenna;
(2) according to transmitting signal gross energy E and the emission signal frequency f of frequency diversity arraym, obtain m-th of transmitting battle array The transmitting signal of member:
Wherein, E is to launch signal gross energy, φm(t) it is m-th of array element transmitted waveform, j represents imaginary number, when t is propagates Between;
(3) frequency diversity array received end echo-signal is obtained:
(3a) obtains the reception signal of n-th of array element of receiving terminal:
Wherein, ym,n(t) signal launched by m-th of array element, n=1,2 ..., N are received by n-th of array element, N is reception Array-element antenna number;
(3b) structure transmitting steering vector aL(θ, R) and receive steering vector aR(θ):
Wherein θ represents angle, and R represents distance, dL、dRRespectively launch, receive array element spacing, symbol ⊙ is Hadamard Hadamard is accumulated, symbol []TRepresent transposition computing;
The each array element received signal of receiving terminal is expressed as matrix form by (3c):
Wherein, Φ is the matrix of each array element transmitted waveform, and ξ is reflectance factor;
(3d) obtains the synthetic echo signal expression formula of receiving terminal according to (3c):
Wherein S be receive echo signal matrix, θ0And R0Respectively angle and distance where target, J are the interference received Signal matrix, θiAnd RiAngle and distance where respectively i-th interference source, D are interference source number, and N is white Gaussian noise, ξs And ξiRespectively echo signal and the reflectance factor of interference;
Synthetic echo signal X after the Waveform Matching of M roads, then is carried out vector output by (3e), obtains receiving the fast of signal Clap vector y;
(4) Wave beam forming is carried out according to the reception signal phasor y in (3e):
(4a) calculates interference plus noise covariance matrix according to the reception signal phasor y in (3e):
Wherein It is the power of i-th of interference,For noise covariance square Battle array, symbolIt is Kronecker Kronecker products;
(4b) obtains the solution of the undistorted response of minimum variance according to interference plus noise covariance matrix Q:
Wherein
(4c) obtains the reception beam pattern related with distance, angle according to the solution w of the undistorted response of minimum variance:
F (θ, R)=wTa(θ,R)
Wherein
The present invention has the following advantages compared with prior art:
First, the present invention is by pull-in frequency interval delta f between respectively launching array element in co-located uniform line-array, it is possible thereby to produce With distance and angle dependency antenna radiation pattern, therefore not only have angle dimension the free degree, but also with distance dimension the free degree.
Second, the present invention can carry out united beam shape by using MIMO technology to frequency diversity array in receiving terminal Into generation and distance, the uncoupled automated response of angle, can adaptively form the beam direction to match with environment Figure, adaptability of the enhancing frequency diversity array pattern under complex environment, improves target detection performance.
3rd, the Adaptive beamformer technology of the invention by using the undistorted response of minimum variance, it is possible to achieve away from Formed from, angle two dimensional beam, realize distance-angle joint-detection of target, it is particularly possible to suppress the interference apart from dependent form.
Brief description of the drawings
Fig. 1 is the usage scenario figure of the present invention;
The Wave beam forming that Fig. 2 is the present invention realizes flow chart;
Fig. 3 is the Wave beam forming power spectrum emulated with the present invention;
Fig. 4 is the Wave beam forming directional diagram emulated with the present invention.
Embodiment
The embodiment of the present invention and effect are described in further detail below in conjunction with the accompanying drawings.
With reference to Fig. 1, usage scenario of the invention is based on frequency diversity MIMO radar system:Assuming that target is located at far field, The elevation angle is θ, and transmitting terminal is made of M transmitting array element in frequency diversity MIMO radar system, and array element spacing is dL;Receiving terminal is by N A array element composition, array element spacing is dR;The signal frequency of m-th of array element is:
fm=f0+ (m-1) Δ f, m=1,2 ..., M
Wherein, f0For reference work frequency, Δ f frequency intervals between array element.
With reference to Fig. 2, step is as follows for of the invention realizing:
Step 1, the pull-in frequency interval delta f between each transmitting array element of co-located uniform line-array, obtains frequency diversity array m The emission signal frequency of a transmitting array element:
fm=f0+ (m-1) Δ f, m=1,2 ..., M
Wherein, M is to launch array element number, f0For first antenna, the i.e. carrier frequency of reference antenna.
Step 2, frequency diversity array emitter signal is obtained.
(2a) obtains the waveform φ of m-th of array element transmitting respectivelym(t) the waveform φ launched with k-th of array elementkAnd φ (t),m (t) and φk(t) mutually orthogonal, the expression formula of its orthogonality relation is as follows:
Wherein TpFor pulse width, k=1,2 ..., M, symbol []*For conjugate operation.
(2b) is according to the emission signal frequency f of frequency diversity arraymWith m-th of array element transmitted waveform φm(t), m is obtained The transmitting signal of a transmitting array element:
Wherein, E is transmitting signal gross energy, and j represents imaginary number, and t is the propagation time.
Step 3, frequency diversity array received end echo-signal is obtained.
(3a) calculates the transmitting-receiving round trip time delay for being transmitted to n-th of array element from m-th of array element and receiving:
Wherein θ represents angle, and R represents distance, dL、dRRespectively launch, receive array element spacing, n=1,2 ..., N, N is to connect Receive array-element antenna number;
(3b) is according to the round trip delay, τ in (3a)m,n, obtain n-th of array element and receive the signal launched by m-th of array element:
(3c) receives the signal y launched by m-th of array element according to n-th of array elementm,n(t), n-th gust of receiving terminal is obtained The reception signal of member:
(3d) structure transmitting steering vector aL(θ, R) and receive steering vector aR(θ):
Wherein θ represents angle, and R represents distance, and symbol ⊙ accumulates for Hadamard Hadamard, symbol []TRepresent transposition fortune Calculate;
According to above-mentioned transmitting, receive steering vector expression formula, transmitting steering vector aL(θ, R) depends on distance and angle, Receive steering vector aR(θ) only relies upon angle, therefore can effectively utilize the transmitting terminal distance dimension free degree and launch-connect Combined Treatment is received, realizes that distance-angle is decoupling.
The each array element received signal of receiving terminal is expressed as matrix form by (3e):
Wherein, Φ is the matrix of each array element transmitted waveform, and ξ is reflectance factor;
(3f) obtains the synthetic echo signal expression formula of receiving terminal according to (3e):
Wherein S be receive echo signal matrix, θ0And R0Respectively angle and distance where target, J are the interference received Signal matrix, θiAnd RiAngle and distance where respectively i-th interference source, D are interference source number, and N is white Gaussian noise, ξs And ξiRespectively echo signal and the reflectance factor of interference, it is related with the scattering properties of target and interference respectively.
Step 4, by the synthetic echo signal X in step (3f) after the Waveform Matching of M roads, then vector output is carried out, obtained To the snap vector y for receiving signal:
Wherein B is sampling number of snapshots, and g is zero mean Gaussian white noise, symbolIt is Kronecker Kronecker products.
Step 5, Wave beam forming is carried out according to the reception signal phasor y in step 4.
(5a) calculates interference plus noise covariance matrix according to the reception signal phasor y in step 4:
Wherein It is the power of i-th of interference,I is noise covariance square Battle array;
(5b) obtains the expression formula of the undistorted response of minimum variance according to interference plus noise covariance matrix Q:
WhereinFor steering vector, w is the solution of the undistorted response of minimum variance;
The undistorted response equation group of minimum variance in (5c) solution (5b), so as to obtain the undistorted response of minimum variance Solution:
Wherein
(5d) obtains the reception beam pattern related with distance, angle according to the solution w of the undistorted response of minimum variance:
F (θ, R)=wTa(θ,R)。
The effect of the present invention is described further below by emulation experiment.
1. simulation parameter:
If the array element of transmitting terminal is 8, array element spacing is dL=0.015m, frequency interval Δ f=3KHz;
If the array element of receiving terminal is 6, array element spacing is dR=0.015m;
Angle and distance where target is respectively θ0=0 ° and R0=30Km, Signal to Noise Ratio (SNR)=20dB;
If there are two interference sources, and the first interference source 1 relies only on and angle, it is θ that it, which disturbs angle,1=20 °, second is dry Disturb source 2 and depend on angle and distance, it is respectively θ that it, which disturbs angle and distance,0=45 ° and R0=40Km, dry make an uproar compare JNR=30dB.
Above-mentioned simulation parameter is as shown in table 1:
1 system emulation parameter of form
2. emulation content:
Emulation 1, under above-mentioned simulation parameter, using the method for the present invention, emulates power spectrum, the results are shown in Figure 3.
As seen from Figure 3, echo signal and the power spectrum of the second interference 2 show distance-angle coupled characteristic, and the The power spectrum analogous diagram of one disturbed one only depends on angle.
Emulation 2, under above-mentioned simulation parameter, using the method for the present invention, emulates, as a result such as to receiving beam pattern Shown in Fig. 4.
As seen from Figure 4, the decoupling Wave beam forming directional diagram of frequency diversity MIMO radar distance-angle of the present invention is not only It is the function of angle, and and distance dependent, and directional diagram forms main lobe at desired distance and angle, and the shape at interference Into null, show that the present invention has the ability suppressed with apart from relevant interference.
The correctness of the above-mentioned simulating, verifying present invention, validity and reliability.

Claims (5)

1. the decoupling Beamforming Method of frequency diversity MIMO radar distance-angle, including:
(1) the pull-in frequency interval delta f between each transmitting array element of co-located uniform line-array, obtains frequency diversity array and launches for m-th The emission signal frequency of array element:
fm=f0+ (m-1) Δ f, m=1,2 ..., M
Wherein, M is to launch array element number, f0For first antenna, the i.e. carrier frequency of reference antenna;
(2) according to transmitting signal gross energy E and the emission signal frequency f of frequency diversity arraym, obtain the hair of m-th of transmitting array element Penetrate signal:
<mrow> <msub> <mi>s</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mfrac> <mi>E</mi> <mi>M</mi> </mfrac> </msqrt> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mo>{</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>m</mi> </msub> <mi>t</mi> <mo>}</mo> </mrow>
Wherein, E is to launch signal gross energy, φm(t) it is m-th of array element transmitted waveform, j expression imaginary numbers, t is the propagation time;
(3) frequency diversity array received end echo-signal is obtained:
(3a) obtains the reception signal of n-th of array element of receiving terminal:
<mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>y</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
Wherein, ym,n(t) signal launched by m-th of array element, n=1,2 ..., N are received by n-th of array element, N is reception array element Number of antennas;
(3b) structure transmitting steering vector aL(θ, R) and receive steering vector aR(θ):
<mrow> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <msub> <mi>d</mi> <mi>R</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> </mrow> <mi>c</mi> </mfrac> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mfrac> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <msub> <mi>d</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> </mrow> <mi>c</mi> </mfrac> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow>
Wherein θ represents angle, and R represents distance, dL、dRRespectively launch, receive array element spacing, symbol ⊙ is Hadamard Hadamard is accumulated, symbol []TRepresent transposition computing;
The each array element received signal of receiving terminal is expressed as matrix form by (3c):
<mrow> <mi>Y</mi> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>y</mi> <mi>N</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>=</mo> <msub> <mi>&amp;xi;a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <msubsup> <mi>a</mi> <mi>L</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> <mi>&amp;Phi;</mi> </mrow>
Wherein, Φ is the matrix of each array element transmitted waveform, and ξ is reflectance factor;
(3d) obtains the synthetic echo signal expression formula of receiving terminal according to (3c):
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>X</mi> <mo>=</mo> <mi>S</mi> <mo>+</mo> <mi>J</mi> <mo>+</mo> <mi>N</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>&amp;xi;</mi> <mi>s</mi> </msub> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>a</mi> <mi>L</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mi>&amp;Phi;</mi> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>D</mi> </munderover> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>a</mi> <mi>L</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>&amp;Phi;</mi> <mo>+</mo> <mi>N</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein S be receive echo signal matrix, θ0And R0Respectively angle and distance where target, J are the interference signal received Matrix, θiAnd RiAngle and distance where respectively i-th interference source, D are interference source number, and N is white Gaussian noise, ξsAnd ξi Respectively echo signal and the reflectance factor of interference;
Synthetic echo signal X after the Waveform Matching of M roads, then is carried out vector output by (3e), obtains receiving the snap arrow of signal Measure y;
(4) Wave beam forming is carried out according to the reception signal phasor y in (3e):
(4a) calculates interference plus noise covariance matrix according to the reception signal phasor y in (3e):
<mrow> <mi>Q</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>D</mi> </munderover> <msubsup> <mi>&amp;sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mi>I</mi> </mrow>
Wherein It is the power of i-th of interference,For noise covariance matrix, symbol NumberIt is Kronecker Kronecker products;
(4b) obtains the solution of the undistorted response of minimum variance according to interference plus noise covariance matrix Q:
<mrow> <mi>w</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mi>Q</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>a</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msup> <mi>Q</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
Wherein <mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <msub> <mi>a</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
(4c) obtains the reception beam pattern related with distance, angle according to the solution w of the undistorted response of minimum variance:
F (θ, R)=wTa(θ,R)
Wherein <mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <msub> <mi>a</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
2. the decoupling Beamforming Method of frequency diversity MIMO radar distance-angle according to claim 1, wherein step (2) m-th of array element transmitted waveform in is φm(t), the waveform of its transmitting with other array elements is mutually orthogonal, i.e., with k-th of array element The waveform φ of transmittingk(t) orthogonal, the expression formula of the orthogonality relation is as follows:
<mrow> <msub> <mo>&amp;Integral;</mo> <msub> <mi>T</mi> <mi>p</mi> </msub> </msub> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msubsup> <mi>&amp;phi;</mi> <mi>k</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mi>m</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>&amp;NotEqual;</mo> <mi>m</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein TpFor pulse width, k=1,2 ..., M, symbol []*For conjugate operation.
3. the decoupling Beamforming Method of frequency diversity MIMO radar distance-angle according to claim 1, wherein step N-th of array element in (3a) receives the signal y launched by m-th of array elementM, n(t), its expression formula is:
<mrow> <msub> <mi>y</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mfrac> <mi>E</mi> <mi>M</mi> </mfrac> </msqrt> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>{</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> </mrow>
Wherein τm,nFor radar signal, round trip time delay is received, its expression formula is:
<mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <mi>R</mi> <mo>-</mo> <msub> <mi>d</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <mo>&amp;lsqb;</mo> <mi>R</mi> <mo>-</mo> <msub> <mi>d</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mo>&amp;rsqb;</mo> </mrow> <mi>c</mi> </mfrac> </mrow>
Wherein θ represents angle, and R represents distance, dLAnd dRRespectively launch, receive array element spacing, c is the light velocity.
4. the decoupling Beamforming Method of frequency diversity MIMO radar distance-angle according to claim 1, wherein step Reception signal snap vector y in (3e), its expression formula are:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>B</mi> </mfrac> <msup> <mi>X&amp;Phi;</mi> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>&amp;xi;</mi> <mi>s</mi> </msub> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <msub> <mi>a</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>D</mi> </munderover> <mrow> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mo>&amp;CircleTimes;</mo> <msub> <mi>a</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein B is sampling number of snapshots, and g is zero mean Gaussian white noise, symbolIt is Kronecker Kronecker products.
5. the decoupling Beamforming Method of frequency diversity MIMO radar distance-angle according to claim 1, wherein step According to interference plus noise covariance matrix Q in (4b), the solution w of the obtained undistorted response of minimum variance, is by solving as follows most The small undistorted response equation group of variance obtains:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>w</mi> </munder> <mo>{</mo> <msup> <mi>w</mi> <mi>H</mi> </msup> <mi>Q</mi> <mi>w</mi> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>w</mi> <mi>H</mi> </msup> <mi>a</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein <mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <msub> <mi>a</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
CN201610058784.2A 2016-01-28 2016-01-28 Frequency diversity MIMO radar is apart from the decoupling Beamforming Method of angle Active CN105699953B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610058784.2A CN105699953B (en) 2016-01-28 2016-01-28 Frequency diversity MIMO radar is apart from the decoupling Beamforming Method of angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610058784.2A CN105699953B (en) 2016-01-28 2016-01-28 Frequency diversity MIMO radar is apart from the decoupling Beamforming Method of angle

Publications (2)

Publication Number Publication Date
CN105699953A CN105699953A (en) 2016-06-22
CN105699953B true CN105699953B (en) 2018-04-17

Family

ID=56229506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610058784.2A Active CN105699953B (en) 2016-01-28 2016-01-28 Frequency diversity MIMO radar is apart from the decoupling Beamforming Method of angle

Country Status (1)

Country Link
CN (1) CN105699953B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054144B (en) * 2016-07-29 2018-05-04 西安电子科技大学 Main lobe pressing type disturbance restraining method based on frequency diversity MIMO radar
CN106324568A (en) * 2016-08-09 2017-01-11 电子科技大学 Method for forming transmitting beam of distributed array radar with nonlinear frequency increment
CN106529440B (en) * 2016-11-02 2019-08-13 西安电子科技大学 Coincidence frequency diversity battle array radar segmented matched filter method
CN106970534A (en) * 2017-05-26 2017-07-21 海南大学 The input of one kind two two exports network decoupling and controlling system and does not know time delay IMC methods
CN107657070B (en) * 2017-07-31 2021-05-25 西安电子科技大学 Decoupling method and antenna based on frequency diversity conformal array beam of genetic algorithm
CN108594186B (en) * 2017-08-25 2020-04-07 西安电子科技大学 Method for inhibiting main lobe deceptive interference by FDA-MIMO radar
CN107656257B (en) * 2017-09-28 2021-03-23 西安电子科技大学 Optimization design method for missile-borne MIMO radar waveform covariance matrix
CN108196239B (en) * 2018-01-18 2022-03-18 西安电子科技大学 Unambiguous parameter estimation method for frequency diversity MIMO radar
CN108776337B (en) * 2018-04-24 2021-11-05 桂林电子科技大学 MIMO-FDA ground penetrating radar near-target two-dimensional imaging method
CN108919205B (en) * 2018-07-12 2022-07-08 中国船舶重工集团公司第七二四研究所 Frequency diversity array deception jamming suppression method based on auxiliary array elements
CN109633572B (en) * 2018-12-20 2022-09-06 桂林电子科技大学 Complex environment fixed-point interference signal design method based on frequency diversity array
CN109901149B (en) * 2019-03-25 2022-10-28 西安电子科技大学 Target parameter estimation method based on FDA-MIMO radar
CN109917340B (en) * 2019-04-25 2023-05-09 浙江力邦合信智能制动系统股份有限公司 MIMO radar waveform modulation and demodulation method
CN110346764B (en) * 2019-08-21 2022-03-29 上海无线电设备研究所 MIMO radar target distance angle decoupling method
CN110687937B (en) * 2019-10-14 2021-09-28 东北大学 Water tank liquid level control method based on multivariable generalized minimum variance decoupling control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297734A (en) * 2014-10-20 2015-01-21 西安电子科技大学 Deception interference rejection method for MIMO radar based on frequency diversity array
CN104931948A (en) * 2015-05-25 2015-09-23 西安电子科技大学 FDA radar first receiving scheme improvement method based on ordinary beam scanning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297734A (en) * 2014-10-20 2015-01-21 西安电子科技大学 Deception interference rejection method for MIMO radar based on frequency diversity array
CN104931948A (en) * 2015-05-25 2015-09-23 西安电子科技大学 FDA radar first receiving scheme improvement method based on ordinary beam scanning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array;Jingwei Xu et al.;《IEEE TRANSACTIONS ON SIGNAL PROCESSING》;20150701;第63卷(第13期);第3396-3409页 *
一类最小方差无失真响应波束的形成方法;邵朝 等;《西安邮电大学学报》;20140531;第19卷(第3期);第22-25页 *

Also Published As

Publication number Publication date
CN105699953A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105699953B (en) Frequency diversity MIMO radar is apart from the decoupling Beamforming Method of angle
Gui et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis
Aubry et al. MIMO radar beampattern design via PSL/ISL optimization
Xu et al. Joint range and angle estimation using MIMO radar with frequency diverse array
Khabbazibasmenj et al. Efficient transmit beamspace design for search-free based DOA estimation in MIMO radar
Hassanien et al. Transmit/receive beamforming for MIMO radar with colocated antennas
CN103969633B (en) In clutter, detect the grading design method of target MIMO radar emission waveform
CN101349748B (en) Method for positioning multi-input multi-output radar system target
US20120225624A1 (en) Over-the-Air Test
Hassanien et al. Why the phased-MIMO radar outperforms the phased-array and MIMO radars
CN104297734A (en) Deception interference rejection method for MIMO radar based on frequency diversity array
CN105785328A (en) Subarray-division-based FDA distance-angle decoupling wave beam formation method
Liu et al. Low angle estimation in MIMO radar
CN104678372A (en) Joint estimation method for super-resolution distance value and angle value by using orthogonal frequency division multiplexing radar
CN103076596A (en) Prior-information-based method for designing transmitting direction diagram of MIMO (Multiple Input Multiple Output) radar
CN103885045B (en) Based on the circulation associating Adaptive beamformer method of Subarray partition
CN103245942B (en) MIMO-array-based undistorted sector-scan imaging method
Zhu et al. Cooperative range and angle estimation with PA and FDA radars
Li et al. A robust deceptive jamming suppression method based on covariance matrix reconstruction with frequency diverse array MIMO radar
CN104931942A (en) Method for eliminating multipath interference in radar
CN102175995B (en) Adaptive method for realizing transmission zero-setting by digital array radar
Huang et al. Phased array radar-based channel modeling and sparse channel estimation for an integrated radar and communication system
Nicolaescu et al. Smart antennas for wireless communications systems
Ding et al. A joint array parameters design method based on FDA-MIMO radar
CN106054122A (en) Time domain broadband signal frequency domain closed loop direction-finding method based on digital signal processor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhu Shengqi

Inventor after: Xu Jingwei

Inventor after: Lan Lan

Inventor after: Liao Guisheng

Inventor after: Wang Chenghao

Inventor after: Feng Yang

Inventor before: Liao Guisheng

Inventor before: Xu Jingwei

Inventor before: Lan Lan

Inventor before: Wang Chenghao

Inventor before: Feng Yang

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190627

Address after: 215300 No. 58 new energy road, Yushan Town, Kunshan, Suzhou, Jiangsu

Patentee after: Kunshan Yu Yu Information Technology Co., Ltd.

Address before: No. 2 Taibai Road, Xi'an, Shaanxi Province, Shaanxi

Patentee before: Xidian University