CN105695867A - 一种提高正火钢板综合性能的方法 - Google Patents

一种提高正火钢板综合性能的方法 Download PDF

Info

Publication number
CN105695867A
CN105695867A CN201610052320.0A CN201610052320A CN105695867A CN 105695867 A CN105695867 A CN 105695867A CN 201610052320 A CN201610052320 A CN 201610052320A CN 105695867 A CN105695867 A CN 105695867A
Authority
CN
China
Prior art keywords
steel plate
normalizing
steel
temperature
normalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610052320.0A
Other languages
English (en)
Other versions
CN105695867B (zh
Inventor
镇凡
张宽
杨浩
曲锦波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Original Assignee
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shagang Iron and Steel Research Institute Co Ltd filed Critical Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Priority to CN201610052320.0A priority Critical patent/CN105695867B/zh
Publication of CN105695867A publication Critical patent/CN105695867A/zh
Application granted granted Critical
Publication of CN105695867B publication Critical patent/CN105695867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Abstract

本发明涉及一种提高正火钢板综合性能的方法,钢的化学成分为:C:0.13~0.20%、Si:0.15~0.35%、Mn:1.0~2.0%,P≤0.012%,S≤0.010%,并可含有Cr、Ni、Mo、Nb、Ti、B、N等合金元素中的一种或一种以上,同时钢中必须含有0.05~0.09%V,其余为Fe和不可避免的杂质。本发明采用正火热处理工艺,但与常规正火热处理不同,需按钢中化学成分,测算Ac1、Ac3和VC析出相的溶解温度Tvc,并严格控制正火温度T满足Ac1≤T≤Ac3和T≤Tvc,正火后置于静止空气中自然冷却至室温。此工艺制得的钢板,其晶粒尺寸明显细化,强度、冲击韧性均有一定幅度提高。

Description

一种提高正火钢板综合性能的方法
技术领域
本发明属于钢板生产技术领域,特别涉及一种提高正火钢板综合性能的方法。
背景技术
正火型钢板可广泛应用于桥梁、船板、建筑、压力容器、风电等行业,具有不可替代的作用,这些行业在项目设计时有时强制要求使用正火钢板。船板钢AH32/36/40、DH32/36/40、EH32/36/40、FH32/36/40,桥梁钢Q370qD/E、Q420qD/E,压力容器用钢Q345R、Q370R等均可采用正火工艺交货。
常规正火钢是将钢加热到Ac3以上30~50℃保温,然后在室温的静止空气中自然冷却。常规正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。正火热处理具有使钢板组织和性能均匀稳定、合格率高、生产过程容易控制的优点。
经过正火工艺处理后的钢板,其强度通常比控轧后的强度低,有时处于标准值下限,偶尔也会出现强度不符的情况,为了解决这一问题,一般采用的方法是通过添加大量的Mn、Cr、Cu、Ni等固溶强化类合金元素来提高正火后钢板的强度,但过多的合金使得成本增加的同时,钢板的碳当量急剧升高,焊接性能降低。
对于现有技术来说,提高正火钢的综合性能,部分专利采用常规正火+弱水冷处理的方法,如专利CN101319270B、CN101307380B、CN102912091B,其将钢板置于淬火炉中,炉温为Ac3以上30~50℃,然后放入淬火机进行弱水冷处理;专利CN101831532A是将钢板加热至850~950℃进行正火,出炉后通过汽雾冷却和层流冷却结合的方式冷却至400~700℃;专利CN103667912A是将钢板加热至760~820℃亚温正火,然后通过高密度管层流或淬火机以2~35℃/s的冷速水冷至300~650℃。以上方法虽能提高钢板的力学性能,但钢板需入水冷却,表层在水冷情况下冷速较快,表层先相变,心部冷速较慢后相变,导致表层和心部组织不均匀,力学性能也会有一定的差异,且会有较大的组织内应力。
上述专利文献公开的提高正火钢综合性能的技术方案存在以下几点不足:1)采用常规正火热处理,需添加Mn、Cr、Cu、Ni等固溶强化类合金元素,导致成本增加,焊接性能下降;2)采用常规正火/亚温正火+水冷处理,导致钢板表层和心部组织性能有一定的差异,且有较大的内应力。
发明内容
为了解决上述技术方案的不足,本发明提出一种提高正火钢板综合性能的方法。钢板中含有0.05~0.09%的V,正火温度T满足Ac1≤T≤Ac3和T≤Tvc,正火后置于静止空气中自然冷却至室温。通过添加V可减少Cr、Ni、Mo等合金的添加量,降低成本,同时严格控制正火工艺,正火后无需水冷,钢板表层和心部组织性能均匀,无内应力。
为解决上述技术问题,本发明采用如下技术方案:
一种提高正火钢板综合性能的方法,钢板的化学成分按质量百分比计为:C:0.13~0.20%、Si:0.15~0.35%、Mn:1.0~2.0%,P≤0.012%,S≤0.010%,并含有Cr、Ni、Mo、Nb、Ti、B、N等合金元素中的一种或一种以上,同时钢板中必须含有0.05~0.09%的V,其余为Fe和不可避免的杂质,钢板的生产工艺包括:
1)根据上述化学成分冶炼、浇铸成板坯、并轧制成厚板,板厚为≥15mm;
2)热处理工艺,正火加热温度T满足Ac1≤T≤Ac3,同时要求正火温度T≤Tvc,正火后置于静止空气中自然冷却至室温。
进一步,所述的提高正火钢板综合性能的方法中,Ac1=723-10.7Mn-16.9Ni+29.1Si+16.9Cr+290As+62.8W,Ac3=910-203C1/2-15.2Ni+44.7Si+104V+31.5Mo+13.1W,Tvc=9500/(6.72-log([V][C]))-273。
V在钢中能起到析出强化作用,采用常规正火工艺生产时,正火温度一般高于Tvc,V的碳化物基本能完全溶于奥氏体中,在随后静止的空气中冷却时,析出量约为30%,析出强化效果较小;若采用常规正火+水冷处理工艺生产时,V的碳化物虽溶于奥氏体中,但由于后续冷却速度较大,抑制V碳化物的析出,致使析出量更小,析出强化效果小,大部分V未得到充分利用,同时快冷导致钢板表层和心部组织性能不均匀,并有内应力。
在本发明中,钢的化学成分中含有0.05~0.09%的V,在正火热处理时,加热温度T满足Ac1≤T≤Ac3和T≤Tvc。V在此温度下保温过程中能够大幅度析出,析出量较大,这些析出物可起到四方面的作用,第一,起到析出强化作用;第二,可阻碍奥氏体晶粒的长大,细化奥氏体晶粒;第三,在正火后空冷冷却相变过程中可成为铁素体形核核心,增加形核率;第四,可阻止相变后的铁素体晶粒长大,细化相变后的组织。
本发明由于采用了以上技术方案,使之与现有技术相比,至少具有以下有益效果:
1.本发明采用的正火工艺较常规正火温度低,钢板氧化程度低,能耗低,生产成本较低。同时,钢板在正火后直接于静止的空气中自然冷却至室温,钢板无需水冷,钢板表层和心部组织性能均匀,无内应力。
2.本发明的正火温度较常规正火低,奥氏体晶粒较细,同时充分利用V的析出,不但能达到析出强化的目的,还能利用析出物来充分的细化奥氏体和铁素体晶粒,来达到析出强化和晶粒细化双重效果。
3.采用本发明的正火工艺制得的钢板,各项力学性能均得到一定幅度提高,其屈服强度提高50MPa以上,抗拉强度提高40MPa以上,冲击功提高10%以上。
4.采用本发明的正火工艺制得的钢板,其晶粒较细,强度和韧性均较常规工艺高。采用此工艺,可适当降低钢板中合金含量(不包含V)而对钢板的力学性能不产生影响。
附图说明
图1为实施例1中的显微组织照片;
图2为对比实施例1中的显微组织照片;
图3为实施例2中的显微组织照片;
图4为对比实施例2中的显微组织照片;
图5为实施例3中的显微组织照片;
图6为对比实施例3中的显微组织照片。
具体实施方式
以下结合若干实施例对本发明的技术方案作进一步详细说明,但不限于此。
实施例1
正火钢由以下组分组成(wt%):C:0.15%,Si:0.25%,Mn:1.39%,P:0.0068%,S:0.0043%,Cr:0.021%,Ni:0.019%,Mo:0.014%,Nb:0.0055%,B:0.0003%,Ti:0.014%,N:0.0033%,V:0.056%,其余为Fe和不可避免的杂质。
1)根据上述化学成分冶炼、浇铸成板坯、并轧制成钢板,板厚≥15mm;
2)热处理工艺,正火加热温度T满足Ac1≤T≤Ac3,同时要求正火温度T≤Tvc。通过计算,其中Ac1=715℃,Ac3=848℃,Tvc=808℃。正火温度选为800℃,正火后置于静止空气中自然冷却至室温。
本实施例得到钢板的机械性能见表1,由图1可知其组织晶粒细小,平均晶粒尺寸为7.3μm。
对比实施例1
正火钢由以下组分组成(wt%):C:0.15%,Si:0.25%,Mn:1.39%,P:0.0068%,S:0.0043%,Cr:0.021%,Ni:0.019%,Mo:0.014%,Nb:0.0055%,B:0.0003%,Ti:0.014%,N:0.0033%,V:0.056%,其余为Fe和不可避免的杂质。
1)根据上述化学成分冶炼、浇铸成板坯、并轧制成钢板,板厚≥15mm;
2)热处理工艺,通过计算,其中Ac3=848℃,正火温度选为900℃,正火后置于静止空气中自然冷却至室温。
本对比例得到钢板的机械性能见表1,由图2可知其组织晶粒粗大,平均晶粒尺寸为11.7μm。
实施例2
正火钢由以下组分组成(wt%):C:0.15%,Si:0.25%,Mn:1.42%,P:0.0064%,S:0.0035%,Cr:0.018%,Ni:0.016%,Mo:0.015%,Nb:0.0058%,B:0.0004%,Ti:0.015%,N:0.0086%,V:0.059%,其余为Fe和不可避免的杂质。
1)根据上述化学成分冶炼、浇铸成板坯、并轧制成钢板,板厚≥15mm;
2)热处理工艺,正火加热温度T满足Ac1≤T≤Ac3,同时要求正火温度T≤Tvc。通过计算,其中Ac1=715℃,Ac3=849℃,Tvc=810℃。正火温度选为800℃,正火后置于静止空气中自然冷却至室温。
本实施例得到钢板的机械性能见表1,由图3可知其组织晶粒细小,平均晶粒尺寸为8.2μm。
对比实施例2
正火钢由以下组分组成(wt%):C:0.15%,Si:0.25%,Mn:1.42%,P:0.0064%,S:0.0035%,Cr:0.018%,Ni:0.016%,Mo:0.015%,Nb:0.0058%,B:0.0004%,Ti:0.015%,N:0.0086%,V:0.059%,其余为Fe和不可避免的杂质。
1)根据上述化学成分冶炼、浇铸成板坯、并轧制成钢板,板厚≥15mm;
2)热处理工艺,通过计算,Ac3=849℃,正火温度选为900℃,正火后置于静止空气中自然冷却至室温。
本对比例得到钢板的机械性能见表1,由图4可知其组织晶粒粗大,平均晶粒尺寸为11.8μm。
实施例3
正火钢由以下组分组成(wt%):C:0.17%,Si:0.26%,Mn:1.60%,P:0.0085%,S:0.0043%,Cr:0.013%,Ni:0.018%,Mo:0.016%,B:0.0003%,Nb:0.05%,Ti:0.016%,V:0.087%,N:0.0038%,其余为Fe和不可避免的杂质。
1)根据上述化学成分冶炼、浇铸成板坯、并轧制成钢板,板厚≥15mm;
2)热处理工艺,正火加热温度T满足Ac1≤T≤Ac3,同时要求正火温度T≤Tvc。通过计算,其中Ac1=713℃,Ac3=847℃,Tvc=838℃。正火温度选为830℃,正火后置于静止空气中自然冷却至室温。
本实施例得到钢板的机械性能见表1,由图5可知其组织晶粒细小,平均晶粒尺寸为8.4μm。
对比实施例3
正火钢由以下组分组成(wt%):C:0.17%,Si:0.26%,Mn:1.60%,P:0.0085%,S:0.0043%,Cr:0.013%,Ni:0.018%,Mo:0.016%,B:0.0003%,Nb:0.05%,Ti:0.016%,V:0.087%,N:0.0038%,其余为Fe和不可避免的杂质。
1)根据上述化学成分冶炼、浇铸成板坯、并轧制成钢板,板厚≥15mm;
2)热处理工艺,通过计算,Ac3=847℃,正火温度选为890℃,正火后置于静止空气中自然冷却至室温。
本对比例得到钢板的机械性能见表1,由图6可知其组织晶粒粗大,平均晶粒尺寸为11.7μm。
表1本发明实施例1-3及对比例1-3的力学性能
注:表1中,拉伸试样采用直径标距为40mm的棒状试样,取样位置为横向取样,板厚1/4处;夏比冲击试样尺寸为10×10×55mm,取样位置为纵向取样,板厚1/4处,上表括号中为平均值。
由表1可见,采用此正火工艺,与常规正火工艺相比,组织得到大幅度细化,各项力学性能均得到一定幅度提高,其屈服强度提高50MPa以上、抗拉强度提高40MPa以上、冲击功提高10%以上。
以上所述实施例仅表达了本发明的具体实施方式,但并不能因此理解为对本发明专利范围的限制。本领域的技术人员在本发明构思的启示下对本发明所做的任何变动均落在本发明的保护范围内。

Claims (2)

1.一种提高正火钢板综合性能的方法,钢板的化学成分按质量百分比计为:C:0.13~0.20%、Si:0.15~0.35%、Mn:1.0~2.0%,P≤0.012%,S≤0.010%,并含有Cr、Ni、Mo、Nb、Ti、B、N等合金元素中的一种或一种以上,同时钢板中必须含有0.05~0.09%的V,其余为Fe和不可避免的杂质,其特征在于,钢板的生产工艺包括:
1)根据钢板化学成分冶炼、浇铸成板坯、并轧制成厚板,板厚为≥15mm;
2)热处理工艺,正火加热温度T满足Ac1≤T≤Ac3,同时要求正火温度T≤Tvc,正火后置于静止空气中自然冷却至室温。
2.根据权利要求1所述的提高正火钢板综合性能的方法,其特征在于,所述热处理工艺中,Ac1=723-10.7Mn-16.9Ni+29.1Si+16.9Cr+290As+62.8W,Ac3=910-203C1/2-15.2Ni+44.7Si+104V+31.5Mo+13.1W,Tvc=9500/(6.72-log([V][C]))-273。
CN201610052320.0A 2016-01-26 2016-01-26 一种提高正火钢板综合性能的方法 Active CN105695867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610052320.0A CN105695867B (zh) 2016-01-26 2016-01-26 一种提高正火钢板综合性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610052320.0A CN105695867B (zh) 2016-01-26 2016-01-26 一种提高正火钢板综合性能的方法

Publications (2)

Publication Number Publication Date
CN105695867A true CN105695867A (zh) 2016-06-22
CN105695867B CN105695867B (zh) 2019-01-11

Family

ID=56229531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610052320.0A Active CN105695867B (zh) 2016-01-26 2016-01-26 一种提高正火钢板综合性能的方法

Country Status (1)

Country Link
CN (1) CN105695867B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481356A (zh) * 2021-07-02 2021-10-08 重庆长征重工有限责任公司 用于改善42CrMo合金钢锻件粗大晶粒的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871077A (zh) * 2010-06-08 2010-10-27 武汉钢铁(集团)公司 一种正火型高强度压力容器钢及其制造方法
JP2011063840A (ja) * 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd 耐hic特性に優れた鋼板およびuoe鋼管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063840A (ja) * 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd 耐hic特性に優れた鋼板およびuoe鋼管
CN101871077A (zh) * 2010-06-08 2010-10-27 武汉钢铁(集团)公司 一种正火型高强度压力容器钢及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481356A (zh) * 2021-07-02 2021-10-08 重庆长征重工有限责任公司 用于改善42CrMo合金钢锻件粗大晶粒的方法

Also Published As

Publication number Publication date
CN105695867B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN103014554B (zh) 一种低屈强比高韧性钢板及其制造方法
CN101168826B (zh) 高性能低碳贝氏体结构钢及其生产方法
CN105543704B (zh) 一种高强度抗震耐火耐蚀钢板及制造方法
CN109207846A (zh) 一种高耐蚀节镍高氮奥氏体不锈钢
CN104264064B (zh) 一种特厚规格q690高强度结构钢板及其制造方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN104195458B (zh) 一种低相对磁导率的不锈钢热轧板及其制备方法
CN112746217B (zh) 一种高强度低膨胀因瓦合金线材及其制造方法
CN109280857B (zh) 一种1200MPa级超快冷冷轧双相钢板及其制备方法
CN104328353A (zh) 一种稀土型0Cr17Ni4Cu4Nb马氏体沉淀硬化不锈钢及其制备方法
CN107779740B (zh) 屈服强度700MPa级耐大气腐蚀热轧钢带及制造方法
CN102644024B (zh) 一种低合金低屈强比海洋工程结构用钢及其生产方法
CN102605296A (zh) 一种核电压力容器用钢及其制造方法
CN109161789B (zh) 一种lpg船用低温钢板及其生产方法
CN106756567A (zh) 一种强塑积≥40GPa·%的热轧低密度钢的制备方法
CN103695796A (zh) 一种高强高韧不锈钢及制造方法
CN105331905B (zh) 一种新型无磁不锈钢及其制备方法
CN113737091A (zh) 一种低磁高强度耐蚀紧固件用钢以及紧固件
CN106756509A (zh) 一种耐高温合金结构钢及其热处理工艺
CN105695869A (zh) 屈服强度450MPa级桥梁用热轧钢板及其制造方法
CN108690939B (zh) 一种高成形含氮奥氏体不锈钢及其制造方法
CN103882312A (zh) 低成本高韧性-140℃低温用钢板及其制造方法
CN103469097B (zh) 高强度马氏体铁素体双相不锈钢耐腐蚀油套管及其制造方法
CN105568113A (zh) 一种高强度Fe-Ni-Cr基高温耐蚀合金的复合强韧化工艺
CN105506502A (zh) 一种耐硫酸用铁素体不锈钢及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant