CN105680717A - Blade-type composite pneumatic energy collector - Google Patents

Blade-type composite pneumatic energy collector Download PDF

Info

Publication number
CN105680717A
CN105680717A CN201610239093.2A CN201610239093A CN105680717A CN 105680717 A CN105680717 A CN 105680717A CN 201610239093 A CN201610239093 A CN 201610239093A CN 105680717 A CN105680717 A CN 105680717A
Authority
CN
China
Prior art keywords
blade
frame
friction layer
piezoelectric cantilever
flexible piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610239093.2A
Other languages
Chinese (zh)
Other versions
CN105680717B (en
Inventor
刘会聪
陈涛
孙立宁
夏月冬
刘文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201610239093.2A priority Critical patent/CN105680717B/en
Publication of CN105680717A publication Critical patent/CN105680717A/en
Priority to PCT/CN2016/110746 priority patent/WO2017181702A1/en
Application granted granted Critical
Publication of CN105680717B publication Critical patent/CN105680717B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters

Landscapes

  • Wind Motors (AREA)

Abstract

一种叶片式复合风动能量收集器,包括压电式能量采集模块和摩擦式能量采集模块;压电式能量采集模块包括叶片和柔性压电悬梁臂;叶片与柔性压电悬梁臂的自由端平行连接,叶片可带动柔性压电悬梁臂在框架内发生周期性振动;摩擦式能量采集模块包括粘贴于柔性压电悬梁臂表面的运动摩擦层和粘贴于框架内表面的固定摩擦层;运动摩擦层与固定摩擦层可在框架内发生周期性相对接触与分离。本收集器采用摩擦和压电两种能量收集方式,提高了能量输出密度。悬臂梁末端的叶片设计能够更好的响应风流体的扰动,提高了压电悬臂梁的振幅和压电电压输出。同时,框架双弧形阻流结构的设计能够增大摩擦层间的接触面积,提高摩擦电压输出。

A blade-type composite wind energy harvester, including a piezoelectric energy harvesting module and a frictional energy harvesting module; the piezoelectric energy harvesting module includes a blade and a flexible piezoelectric cantilever arm; the free end of the blade and the flexible piezoelectric cantilever arm Connected in parallel, the blades can drive the flexible piezoelectric cantilever to vibrate periodically in the frame; the friction energy harvesting module includes a moving friction layer pasted on the surface of the flexible piezoelectric cantilever and a fixed friction layer pasted on the inner surface of the frame; the moving friction The layer and the fixed friction layer can periodically contact and separate in the frame. The collector adopts two energy collection methods of friction and piezoelectricity, which improves the energy output density. The blade design at the end of the cantilever beam can better respond to the disturbance of the wind fluid, which improves the amplitude and piezoelectric voltage output of the piezoelectric cantilever beam. At the same time, the design of the double-arc current blocking structure of the frame can increase the contact area between the friction layers and improve the friction voltage output.

Description

一种叶片式复合风动能量收集器A blade-type composite wind energy harvester

技术领域technical field

本发明涉及能量收集转换设备领域,具体涉及一种叶片式复合风动能量收集器。The invention relates to the field of energy collection and conversion equipment, in particular to a blade-type composite wind energy collector.

背景技术Background technique

目前,无线传感器网络正广泛应用于环境监测、智能家居、交通运输、医疗健康等领域,但是无线传感节点的供电问题却成为制约其发展的关键因素。传统的电池供电方式存在着体积大,寿命短,更换难等问题,特别是在偏远的无人区。收集环境中的能量给无线传感节点供电是一种取代电池的有效方式。At present, wireless sensor networks are widely used in environmental monitoring, smart home, transportation, medical health and other fields, but the power supply problem of wireless sensor nodes has become a key factor restricting its development. The traditional battery power supply method has problems such as large volume, short life, and difficult replacement, especially in remote uninhabited areas. Harvesting energy from the environment to power wireless sensor nodes is an effective way to replace batteries.

风能作为一种无污染和可再生的清洁能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。即使在发达国家,风能作为一种高效清洁的新能源也日益受到重视。收集风能给在户外工作的无线传感网络、无线传感节点、嵌入式低功耗电子器件供电有着广阔的前景,正受到越来越广泛的研究,各种结构的风动能量收集器层出不穷。其中最常见的结构有风车结构、共振腔结构和悬臂梁结构。目前,能够取得高输出的风动能量收集器往往体积大、结构复杂。现有的悬臂梁结构风动能量采集器虽然结构简单,体积小,但其工作频率高,振幅小,导致电压输出低,难以取得理想的功率输出。As a non-polluting and renewable clean energy, wind energy has great potential for development, especially for coastal islands, remote mountainous areas with inconvenient transportation, sparsely populated grasslands and pastures, and rural areas that are far away from the power grid and are difficult to reach in the near future. , Frontier, as a reliable way to solve production and living energy, has very important significance. Even in developed countries, wind energy is increasingly valued as an efficient and clean new energy source. Harvesting wind energy to supply power to wireless sensor networks, wireless sensor nodes, and embedded low-power electronic devices working outdoors has broad prospects and is being studied more and more widely. Wind energy harvesters with various structures emerge in endlessly. The most common structures are windmill structure, resonant cavity structure and cantilever beam structure. At present, wind energy harvesters that can achieve high output are often bulky and complex in structure. Although the existing wind energy harvester with cantilever beam structure is simple in structure and small in size, its high operating frequency and small amplitude lead to low voltage output and it is difficult to obtain ideal power output.

鉴于以上问题,有必要提出一种能够在低风速的情况下,实现风能向电能高效转化,具有高振幅、高输出的特点的风动能量收集器,以解决上述问题。In view of the above problems, it is necessary to propose a wind energy harvester that can realize efficient conversion of wind energy into electric energy at low wind speed, and has the characteristics of high amplitude and high output, so as to solve the above problems.

发明内容Contents of the invention

有鉴于此,本发明提供一种高振幅、高输出的叶片式复合风动能量收集器。In view of this, the present invention provides a high-amplitude, high-output blade-type composite wind energy collector.

为达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:

一种叶片式复合风动能量收集器,其特征在于:包括压电式能量采集模块和摩擦式能量采集模块;A blade-type composite wind energy harvester, characterized in that it includes a piezoelectric energy harvesting module and a frictional energy harvesting module;

所述压电式能量采集模块包括叶片和柔性压电悬梁臂;所述叶片与柔性压电悬梁臂的自由端连接,叶片可带动柔性压电悬梁臂在框架内发生周期性振动;The piezoelectric energy harvesting module includes a blade and a flexible piezoelectric cantilever; the blade is connected to the free end of the flexible piezoelectric cantilever, and the blade can drive the flexible piezoelectric cantilever to periodically vibrate in the frame;

所述摩擦式能量采集模块包括粘贴于柔性压电悬梁臂表面的运动摩擦层和粘贴于框架内表面的固定摩擦层;所述运动摩擦层与固定摩擦层可在框架内发生周期性相对接触与分离;The frictional energy harvesting module includes a moving friction layer pasted on the surface of the flexible piezoelectric cantilever arm and a fixed friction layer pasted on the inner surface of the frame; the moving friction layer and the fixed friction layer can be in periodic relative contact with each other in the frame separation;

所述框架通过垫片与柔性压电悬梁臂在其末端进行固定;所述框架与固定摩擦层之间还粘贴有电极层。The frame is fixed at the end of the frame and the flexible piezoelectric cantilever arm through gaskets; an electrode layer is pasted between the frame and the fixed friction layer.

所述叶片与柔性压电悬梁臂的自由端通过合页平行连接。The blade is connected in parallel with the free end of the flexible piezoelectric cantilever arm through a hinge.

所述运动摩擦层为金属摩擦层,对称粘贴于柔性压电悬梁臂的上下表面。The moving friction layer is a metal friction layer, which is symmetrically pasted on the upper and lower surfaces of the flexible piezoelectric cantilever arm.

所述固定摩擦层为聚二甲基硅氧烷摩擦层,具有多个金字塔微结构摩擦单元。The fixed friction layer is a polydimethylsiloxane friction layer with multiple pyramid microstructure friction units.

所述叶片的形状可为正方形、长方形、圆形、菱形。The shape of the blade can be square, rectangular, circular, or rhombus.

所述框架为阻流体结构。The frame is a bluff body structure.

所述框架的形状为双弧形或梭形。The shape of the frame is double arc or shuttle.

与现有技术相比,本发明针对悬臂梁结构风动能量收集器低振幅、低输出的问题,设计了一种叶片式复合风动能量收集器。该收集器能够在低风速下,实现风能向电能的高效转化。摩擦和压电两种能量收集方式同时工作提高了该收集器的能量输出密度。悬臂梁末端的叶片设计能够更好的响应风流体的扰动,提高了压电悬臂梁的振幅和压电电压输出。同时,双弧形(梭形)阻流的结构设计能够增大摩擦材料间的接触面积,提高摩擦电压输出。Compared with the prior art, the present invention designs a blade type composite wind energy collector aiming at the problems of low amplitude and low output of the cantilever beam structure wind energy collector. The collector can realize high-efficiency conversion of wind energy into electric energy at low wind speed. The simultaneous operation of both friction and piezoelectric energy harvesting methods increases the energy output density of the harvester. The blade design at the end of the cantilever beam can better respond to the disturbance of the wind fluid, which improves the amplitude and piezoelectric voltage output of the piezoelectric cantilever beam. At the same time, the structural design of the double arc (shuttle) blocking current can increase the contact area between the friction materials and improve the friction voltage output.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为本发明提供的叶片式复合风动能量收集器结构示意图;Fig. 1 is the structural representation of blade type composite wind energy harvester provided by the present invention;

图2为本发明提供的叶片式复合风动能量收集器工作原理图;Fig. 2 is the working principle diagram of the blade type composite wind energy harvester provided by the present invention;

图3为本发明提供的叶片式复合风动能量收集器中摩擦式能量采集模块电荷转移图;Fig. 3 is the charge transfer diagram of the frictional energy harvesting module in the blade type composite wind energy harvester provided by the present invention;

图4为本发明提供的叶片式复合风动能量收集器的输出特性测试图表。Fig. 4 is a test chart of the output characteristics of the blade-type composite wind energy harvester provided by the present invention.

附图中涉及的附图标记和组成部分说明:Reference signs and component parts involved in the accompanying drawings:

1、框架;2、垫片;3、柔性压电悬梁臂;4、电极层;5、固定摩擦层;6、运动摩擦层;7、叶片;8、漩涡。1. Frame; 2. Gasket; 3. Flexible piezoelectric cantilever arm; 4. Electrode layer; 5. Fixed friction layer; 6. Moving friction layer; 7. Blade; 8. Vortex.

具体实施方式detailed description

现有技术中风动能量收集器能够取得高输出的往往体积大、结构复杂。现有的悬臂梁结构风动能量采集器虽然结构简单,体积小,但其工作频率高,振幅小,导致电压输出低,难以取得理想的功率输出。In the prior art, wind energy harvesters that can achieve high output are usually large in size and complex in structure. Although the existing wind energy harvester with cantilever beam structure is simple in structure and small in size, its high operating frequency and small amplitude lead to low voltage output and it is difficult to obtain ideal power output.

针对现有技术的不足,本发明提供了能够在低风速的情况下,实现风能向电能高效转化,具有高振幅、高输出的特点的风动能量收集器。一种叶片式复合风动能量收集器,具有两种电压输出方式相互配合,压电式和摩擦式,包括压电式能量采集模块和摩擦式能量采集模块。Aiming at the deficiencies of the prior art, the present invention provides a wind energy collector capable of efficiently converting wind energy into electric energy at low wind speeds and featuring high amplitude and high output. A blade-type composite wind energy harvester has two voltage output modes that cooperate with each other, a piezoelectric type and a friction type, and includes a piezoelectric energy harvesting module and a frictional energy harvesting module.

压电式能量采集模块中包括叶片和柔性压电悬梁臂,叶片与柔性压电悬梁臂的自由端连接,叶片可带动柔性压电悬梁臂在框架内发生周期性振动。The piezoelectric energy harvesting module includes blades and flexible piezoelectric cantilever arms, the blades are connected to the free ends of the flexible piezoelectric cantilever arms, and the blades can drive the flexible piezoelectric cantilever arms to vibrate periodically in the frame.

摩擦式能量采集模块包括粘贴于柔性压电悬梁臂表面的运动摩擦层和粘贴于框架内表面的固定摩擦层,运动摩擦层与固定摩擦层可在框架内发生周期性相对接触与分离。The frictional energy harvesting module includes a moving friction layer pasted on the surface of the flexible piezoelectric cantilever arm and a fixed friction layer pasted on the inner surface of the frame. The moving friction layer and the fixed friction layer can periodically contact and separate within the frame.

框架通过垫片与柔性压电悬梁臂在其末端进行固定,框架与固定摩擦层之间还粘贴有电极层。The frame is fixed at its end by a gasket and a flexible piezoelectric cantilever arm, and an electrode layer is pasted between the frame and the fixed friction layer.

其中,叶片与柔性压电悬梁臂的自由端通过合页平行连接。Wherein, the blade is connected in parallel with the free end of the flexible piezoelectric cantilever arm through a hinge.

作为优选的,运动摩擦层为金属摩擦层,对称粘贴于柔性压电悬梁臂的上下表面,固定摩擦层为聚二甲基硅氧烷摩擦层,具有多个金字塔微结构摩擦单元。Preferably, the moving friction layer is a metal friction layer, which is symmetrically pasted on the upper and lower surfaces of the flexible piezoelectric cantilever arm, and the fixed friction layer is a polydimethylsiloxane friction layer, which has a plurality of pyramidal microstructure friction units.

叶片的形状可为正方形、长方形、圆形、菱形,形状可多样,并不限定于该四种形状之一的任意一种。框架为阻流体结构,可为双弧形或者梭形,形状也可多样,并不限定该两种形状之一的任意一种。The shape of the blade can be square, rectangular, circular, or rhombus, and the shapes can be various, and are not limited to any one of these four shapes. The frame is a bluff body structure, which can be double-curved or shuttle-shaped, and can have various shapes, and it is not limited to any one of the two shapes.

下面将通过具体实施方式对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below through specific embodiments. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

参见图1所示:叶片式复合风动能量收集器,包括压电式能量采集模块和摩擦式能量采集模块,压电式能量采集模块包括叶片7和柔性压电悬梁臂3,叶片7与柔性压电悬梁臂3的自由端通过合页平行连接,其连接方式不限,叶片7能够更好的响应风流体的扰动,在风的驱动下,叶片7可带动柔性压电悬梁臂7在框架1内发生周期性振动,从而使得柔性压电悬梁臂7发生形变,实现电能输出,叶片的形状不限,叶片的存在提高了柔性压电悬梁臂的振幅,从而也提高了压电电压的输出强度。See Fig. 1: blade type composite wind energy harvester, including piezoelectric energy harvesting module and frictional energy harvesting module, piezoelectric energy harvesting module includes blade 7 and flexible piezoelectric cantilever arm 3, blade 7 and flexible piezoelectric cantilever arm 3 The free ends of the piezoelectric cantilever arm 3 are connected in parallel through hinges, and the connection method is not limited. The blade 7 can better respond to the disturbance of the wind fluid. Driven by the wind, the blade 7 can drive the flexible piezoelectric cantilever arm 7 in the frame. Periodic vibration occurs in 1, so that the flexible piezoelectric cantilever 7 is deformed to realize electric energy output. The shape of the blade is not limited, and the existence of the blade improves the amplitude of the flexible piezoelectric cantilever, thereby also improving the output of the piezoelectric voltage. strength.

摩擦式能量采集模块包括粘贴于柔性压电悬梁臂3表面的运动摩擦层6和粘贴于框架1内表面的固定摩擦层5,运动摩擦层6与固定摩擦层5可在框架1内发生周期性相对接触与分离,将风能转换为电能。The frictional energy harvesting module includes a moving friction layer 6 pasted on the surface of the flexible piezoelectric cantilever arm 3 and a fixed friction layer 5 pasted on the inner surface of the frame 1. The moving friction layer 6 and the fixed friction layer 5 can be periodically Relative contact and separation to convert wind energy into electrical energy.

压电式能量采集和摩擦式能量采集两种能量采集方式同时工作,提高风能收集器在低风速环境下的能量密度输出。The two energy harvesting methods of piezoelectric energy harvesting and frictional energy harvesting work simultaneously to improve the energy density output of the wind energy harvester in a low wind speed environment.

收集器的框架1为阻流体结构,且可为双弧形或梭型结构,减少了气流的阻力,保证了气流的稳定,同时弧形内壁的设计,提高了运动摩擦层6与固定摩擦层5的接触面积,使得运动摩擦层6和固定摩擦层5碰撞时充分贴合和挤压,提高摩擦电压输出。框架1通过垫片2与柔性压电悬梁臂3在其末端进行固定,与固定摩擦层5之间还粘贴有电极层4。The frame 1 of the collector is a bluff body structure, and can be a double-arc or shuttle-shaped structure, which reduces the resistance of the airflow and ensures the stability of the airflow. At the same time, the design of the arc-shaped inner wall improves the friction between the moving friction layer 6 and the fixed friction layer. The contact area of 5 makes the moving friction layer 6 and the fixed friction layer 5 fully fit and squeeze when they collide, so as to improve the friction voltage output. The frame 1 is fixed at its end by the gasket 2 and the flexible piezoelectric cantilever arm 3 , and the electrode layer 4 is pasted between the fixed friction layer 5 .

柔性压电悬臂梁3的振动主要由卡门涡街效应引起。卡门涡街是流体力学中的重要现象,在一定条件下,当流体绕过阻流体时,阻流体后面两侧会周期性地脱落出方向相反、排列规则的双列漩涡。在本收集器中,当风从如图2所示方向吹过双弧形阻流结构的框架1时,叶片7的两侧会产生方向相反漩涡8和气压差,从而形成与叶片7垂直的压力并驱动其上下振动,叶片7的振动会带动与之相连的柔性压电悬臂梁3以较大的振幅振动。柔性压电悬臂梁3由于发生形变则会产生电压输出。同时,柔性压电悬臂梁3振动的时候会带动固定摩擦层5与运动摩擦层6发生周期性的碰撞,运动摩擦层6优选为金属摩擦层,固定摩擦层5优选为均匀分布多个金字塔微结构摩擦单元的聚二甲基硅氧烷摩擦层。根据摩擦起电和静电感应原理,两种摩擦材料的相互接触、分离会产生电能输出,两种摩擦材料碰撞时的接触面积是影响摩擦输出的关键因素,本收集器的的双弧形结构框架1能够使摩擦层碰撞时充分贴合,从而提高电压输出。The vibration of the flexible piezoelectric cantilever beam 3 is mainly caused by the Karman vortex street effect. Karman vortex street is an important phenomenon in fluid mechanics. Under certain conditions, when the fluid bypasses the bluff body, double-row vortices with opposite directions and regular arrangement will periodically fall off on both sides behind the bluff body. In this collector, when the wind blows through the frame 1 of the double arc-shaped flow blocking structure from the direction shown in Figure 2, the two sides of the blade 7 will produce a vortex 8 in the opposite direction and an air pressure difference, thereby forming a vortex 8 perpendicular to the blade 7 The pressure drives it to vibrate up and down, and the vibration of the blade 7 will drive the flexible piezoelectric cantilever beam 3 connected to it to vibrate with a relatively large amplitude. The flexible piezoelectric cantilever beam 3 will generate a voltage output due to deformation. At the same time, when the flexible piezoelectric cantilever beam 3 vibrates, it will drive the fixed friction layer 5 to periodically collide with the moving friction layer 6. The moving friction layer 6 is preferably a metal friction layer, and the fixed friction layer 5 is preferably a plurality of pyramid microstructures evenly distributed. Polydimethylsiloxane friction layer for structural friction units. According to the principles of friction electrification and electrostatic induction, the mutual contact and separation of two friction materials will generate electric energy output. The contact area when the two friction materials collide is the key factor affecting the friction output. The double arc structure frame of this collector 1 It can fully fit the friction layer when it collides, thereby increasing the voltage output.

聚二甲基硅氧烷摩擦层和金属摩擦层周期性碰撞过程中会发生电荷转移,其工作原理是基于摩擦生电与静电感应的耦合效应。粘贴在柔性压电悬臂梁3表面的金属摩擦层在风的驱动下与上下两侧的聚二甲基硅氧烷摩擦层发生周期性的碰撞。金属摩擦层易失电子,聚二甲基硅氧烷摩擦层易得电子。两者相互接触、分离的过程中电势差的改变会驱动电子在外电路转移,从而形成交流电输出,参见如图3所示。Charge transfer occurs during periodic collisions between the polydimethylsiloxane friction layer and the metal friction layer, and its working principle is based on the coupling effect of triboelectric generation and electrostatic induction. Driven by the wind, the metal friction layer pasted on the surface of the flexible piezoelectric cantilever 3 periodically collides with the polydimethylsiloxane friction layers on the upper and lower sides. The metal friction layer is easy to lose electrons, and the polydimethylsiloxane friction layer is easy to gain electrons. The change of the potential difference during the process of contacting and separating the two will drive the transfer of electrons to the external circuit, thereby forming an alternating current output, as shown in Figure 3.

同时,本叶片式复合风动能量收集器在风洞设备中进行输出性能测试,风洞设备可以提供0m/s~15m/s的稳定风速。摩擦式能量采集部分和压电式能量采集部分电压输出情况如图4所示。当风速低于4m/s时,柔性压电悬臂梁3几乎不发生振动,因此两部分均没有电压的输出。当风速大于4m/s时,随着风速的增加,两部分的电压输出近似成线性增加。当风速为10m/s时,压电和摩擦部分的输出电压峰值分别为16V和13.4V。At the same time, the output performance test of the blade-type composite wind energy harvester is carried out in the wind tunnel equipment, which can provide a stable wind speed of 0m/s to 15m/s. The voltage output of the friction energy harvesting part and the piezoelectric energy harvesting part are shown in Figure 4. When the wind speed is lower than 4m/s, the flexible piezoelectric cantilever beam 3 hardly vibrates, so the two parts have no voltage output. When the wind speed is greater than 4m/s, as the wind speed increases, the voltage output of the two parts increases approximately linearly. When the wind speed is 10m/s, the peak output voltages of the piezoelectric and friction parts are 16V and 13.4V, respectively.

本发明提供的一种叶片式复合风动能量收集器,通过将摩擦式和压电式能量采集模块进行结合设计,提高了能量输出密度。增加柔性压电悬梁臂末端的叶片能够更好的响应风流体的扰动,提高了压电式能量采集部分的振幅和压电电压输出。框架双弧形阻流体结构的设计增大了各个摩擦层的接触面积,从而提高了摩擦电压的输出。The invention provides a blade-type composite wind energy collector, which improves the energy output density by combining friction and piezoelectric energy collection modules. Adding the blade at the end of the flexible piezoelectric cantilever arm can better respond to the disturbance of the wind fluid, and improve the amplitude and piezoelectric voltage output of the piezoelectric energy harvesting part. The design of the frame's double-arc bluff body structure increases the contact area of each friction layer, thereby increasing the output of the friction voltage.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (7)

1.一种叶片式复合风动能量收集器,其特征在于:包括压电式能量采集模块和摩擦式能量采集模块;1. A blade-type composite wind energy harvester, characterized in that: comprising a piezoelectric energy harvesting module and a frictional energy harvesting module; 所述压电式能量采集模块包括叶片和柔性压电悬梁臂;所述叶片与柔性压电悬梁臂的自由端连接,叶片可带动柔性压电悬梁臂在框架内发生周期性振动;The piezoelectric energy harvesting module includes a blade and a flexible piezoelectric cantilever; the blade is connected to the free end of the flexible piezoelectric cantilever, and the blade can drive the flexible piezoelectric cantilever to periodically vibrate in the frame; 所述摩擦式能量采集模块包括粘贴于柔性压电悬梁臂表面的运动摩擦层和粘贴于框架内表面的固定摩擦层;所述运动摩擦层与固定摩擦层可在框架内发生周期性相对接触与分离;The frictional energy harvesting module includes a moving friction layer pasted on the surface of the flexible piezoelectric cantilever arm and a fixed friction layer pasted on the inner surface of the frame; the moving friction layer and the fixed friction layer can be in periodic relative contact with each other in the frame separation; 所述框架通过垫片与柔性压电悬梁臂在其末端进行固定;所述框架与固定摩擦层之间还粘贴有电极层。The frame is fixed at the end of the frame and the flexible piezoelectric cantilever arm through gaskets; an electrode layer is pasted between the frame and the fixed friction layer. 2.根据权利要求1所述的一种叶片式复合风动能量收集器,其特征在于:所述叶片与柔性压电悬梁臂的自由端通过合页平行连接。2. A blade-type composite wind energy harvester according to claim 1, characterized in that: the blade is connected in parallel with the free end of the flexible piezoelectric cantilever arm through a hinge. 3.根据权利要求1所述的一种叶片式复合风动能量收集器,其特征在于:所述运动摩擦层为金属摩擦层,对称粘贴于柔性压电悬梁臂的上下表面。3. A blade-type composite wind energy harvester according to claim 1, characterized in that: the moving friction layer is a metal friction layer, which is symmetrically pasted on the upper and lower surfaces of the flexible piezoelectric cantilever arm. 4.根据权利要求1所述的一种叶片式复合风动能量收集器,其特征在于:所述固定摩擦层为聚二甲基硅氧烷摩擦层,具有多个金字塔微结构摩擦单元。4. A blade type composite wind energy collector according to claim 1, characterized in that: said fixed friction layer is a polydimethylsiloxane friction layer with a plurality of pyramidal microstructure friction units. 5.根据权利要求1所述的一种叶片式复合风动能量收集器,其特征在于:所述叶片的形状可为正方形、长方形、圆形、菱形。5 . The blade-type composite wind energy collector according to claim 1 , wherein the shape of the blades can be square, rectangular, circular, or rhombus. 6.根据权利要求1所述的一种叶片式复合风动能量收集器,其特征在于:所述框架为阻流体结构。6. The blade-type composite wind energy collector according to claim 1, wherein the frame is a bluff body structure. 7.根据权利要求6所述的一种叶片式复合风动能量收集器,其特征在于:所述框架的形状为双弧形或梭形。7. The blade type composite wind energy collector according to claim 6, characterized in that: the shape of the frame is double arc or shuttle.
CN201610239093.2A 2016-04-18 2016-04-18 A kind of vane type composite wind pwoer energy harvester Active CN105680717B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610239093.2A CN105680717B (en) 2016-04-18 2016-04-18 A kind of vane type composite wind pwoer energy harvester
PCT/CN2016/110746 WO2017181702A1 (en) 2016-04-18 2016-12-19 Combination vane-type wind energy collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610239093.2A CN105680717B (en) 2016-04-18 2016-04-18 A kind of vane type composite wind pwoer energy harvester

Publications (2)

Publication Number Publication Date
CN105680717A true CN105680717A (en) 2016-06-15
CN105680717B CN105680717B (en) 2017-06-20

Family

ID=56309199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610239093.2A Active CN105680717B (en) 2016-04-18 2016-04-18 A kind of vane type composite wind pwoer energy harvester

Country Status (2)

Country Link
CN (1) CN105680717B (en)
WO (1) WO2017181702A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286139A (en) * 2016-08-08 2017-01-04 上海大学 A kind of concentrated wind energy piezoelectric energy collecting device
CN106787945A (en) * 2017-02-27 2017-05-31 重庆大学 A kind of piezoelectricity friction electricity combined wide-band miniature energy collector
WO2017181702A1 (en) * 2016-04-18 2017-10-26 苏州大学张家港工业技术研究院 Combination vane-type wind energy collector
CN107681864A (en) * 2017-11-10 2018-02-09 苏州大学 Combined type rotating energy collector
CN108436965A (en) * 2018-04-04 2018-08-24 南京航空航天大学 A kind of underwater full open model articulation mechanism and its working method
CN108809140A (en) * 2018-06-19 2018-11-13 厦门大学 Wind power generation plant and electricity-generating method
CN108843506A (en) * 2018-06-19 2018-11-20 厦门大学 Wind generator system and wind power generation method
CN110725773A (en) * 2019-11-06 2020-01-24 北京纳米能源与系统研究所 Underwater energy collecting device and underwater operation equipment
CN110752773A (en) * 2019-05-18 2020-02-04 浙江师范大学 A kind of airflow-induced vibration piezoelectric generator
CN110752774A (en) * 2019-05-18 2020-02-04 浙江师范大学 A Piezoelectric Harvester for River Monitoring System
CN110768574A (en) * 2019-05-18 2020-02-07 浙江师范大学 Wind-induced vibration piezoelectric generator
CN110768575A (en) * 2019-05-18 2020-02-07 浙江师范大学 Tunnel airflow vibration generator
CN110798099A (en) * 2019-05-18 2020-02-14 浙江师范大学 A Piezoelectric Harvester for River Power Generation
CN111082704A (en) * 2020-01-20 2020-04-28 湖南工程学院 A geometrically nonlinear piezoelectric-friction composite wind energy harvester
CN112152508A (en) * 2020-11-15 2020-12-29 浙江师范大学 Rotary excitation friction-piezoelectric composite generator
CN112187104A (en) * 2020-11-15 2021-01-05 浙江师范大学 Rotary piezoelectric-friction composite generator
CN112332700A (en) * 2020-11-15 2021-02-05 浙江师范大学 Self-generating power supply for monitoring wind driven generator blade
CN115189627A (en) * 2022-07-15 2022-10-14 西安理工大学 Piezoelectric-photovoltaic-triboelectric hybrid power generation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525544B (en) * 2020-04-01 2022-07-12 国家电网有限公司 Composite self-powered wireless transmission system for power Internet of things
CN114755448B (en) * 2022-04-26 2024-05-10 重庆大学 Water flow velocity sensor based on Kamen vortex street effect and friction nano power generation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124887A (en) * 2013-04-24 2014-10-29 纳米新能源(唐山)有限责任公司 Wind power generator
CN105186922A (en) * 2015-10-27 2015-12-23 南昌工程学院 Piezoelectric-triboelectric combined MEMS wideband-energy harvester and preparation method thereof
US9444031B2 (en) * 2013-06-28 2016-09-13 Samsung Electronics Co., Ltd. Energy harvester using mass and mobile device including the energy harvester
CN205725515U (en) * 2016-04-18 2016-11-23 苏州大学 A blade-type composite wind energy harvester

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140265733A1 (en) * 2013-03-15 2014-09-18 Arjun Balasingam Flexure-enhancing system for improved power generation in a wind-powered piezoelectric system
CN203377812U (en) * 2013-06-27 2014-01-01 纳米新能源(唐山)有限责任公司 Piezoelectricity and friction electricity mixed generator
CN204361933U (en) * 2015-01-09 2015-05-27 纳米新能源(唐山)有限责任公司 A kind of based on piezoelectricity and the electric energy collecting device that rubs
CN105680717B (en) * 2016-04-18 2017-06-20 苏州大学 A kind of vane type composite wind pwoer energy harvester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124887A (en) * 2013-04-24 2014-10-29 纳米新能源(唐山)有限责任公司 Wind power generator
US9444031B2 (en) * 2013-06-28 2016-09-13 Samsung Electronics Co., Ltd. Energy harvester using mass and mobile device including the energy harvester
CN105186922A (en) * 2015-10-27 2015-12-23 南昌工程学院 Piezoelectric-triboelectric combined MEMS wideband-energy harvester and preparation method thereof
CN205725515U (en) * 2016-04-18 2016-11-23 苏州大学 A blade-type composite wind energy harvester

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181702A1 (en) * 2016-04-18 2017-10-26 苏州大学张家港工业技术研究院 Combination vane-type wind energy collector
CN106286139A (en) * 2016-08-08 2017-01-04 上海大学 A kind of concentrated wind energy piezoelectric energy collecting device
CN106286139B (en) * 2016-08-08 2019-10-11 上海大学 A concentrated wind energy piezoelectric energy harvesting device
CN106787945A (en) * 2017-02-27 2017-05-31 重庆大学 A kind of piezoelectricity friction electricity combined wide-band miniature energy collector
CN107681864A (en) * 2017-11-10 2018-02-09 苏州大学 Combined type rotating energy collector
CN107681864B (en) * 2017-11-10 2023-11-24 苏州大学 Composite rotating energy collector
CN108436965A (en) * 2018-04-04 2018-08-24 南京航空航天大学 A kind of underwater full open model articulation mechanism and its working method
CN108436965B (en) * 2018-04-04 2023-06-09 南京航空航天大学 An underwater fully open joint mechanism and its working method
CN108809140A (en) * 2018-06-19 2018-11-13 厦门大学 Wind power generation plant and electricity-generating method
CN108843506A (en) * 2018-06-19 2018-11-20 厦门大学 Wind generator system and wind power generation method
CN110768575A (en) * 2019-05-18 2020-02-07 浙江师范大学 Tunnel airflow vibration generator
CN110798099B (en) * 2019-05-18 2021-11-12 浙江师范大学 Piezoelectric energy harvester for river power generation
CN110752774A (en) * 2019-05-18 2020-02-04 浙江师范大学 A Piezoelectric Harvester for River Monitoring System
CN110798099A (en) * 2019-05-18 2020-02-14 浙江师范大学 A Piezoelectric Harvester for River Power Generation
CN110752773A (en) * 2019-05-18 2020-02-04 浙江师范大学 A kind of airflow-induced vibration piezoelectric generator
CN110768574A (en) * 2019-05-18 2020-02-07 浙江师范大学 Wind-induced vibration piezoelectric generator
CN110752774B (en) * 2019-05-18 2021-11-12 浙江师范大学 Piezoelectric energy harvester for river monitoring system
CN110768574B (en) * 2019-05-18 2021-11-12 浙江师范大学 Wind-induced vibration piezoelectric generator
CN110768575B (en) * 2019-05-18 2021-11-12 浙江师范大学 Tunnel airflow vibration generator
CN110752773B (en) * 2019-05-18 2021-11-12 浙江师范大学 Airflow vibration piezoelectric generator
CN110725773B (en) * 2019-11-06 2020-09-04 北京纳米能源与系统研究所 Underwater energy collecting device and underwater operation equipment
CN110725773A (en) * 2019-11-06 2020-01-24 北京纳米能源与系统研究所 Underwater energy collecting device and underwater operation equipment
CN111082704A (en) * 2020-01-20 2020-04-28 湖南工程学院 A geometrically nonlinear piezoelectric-friction composite wind energy harvester
CN112332700A (en) * 2020-11-15 2021-02-05 浙江师范大学 Self-generating power supply for monitoring wind driven generator blade
CN112187104A (en) * 2020-11-15 2021-01-05 浙江师范大学 Rotary piezoelectric-friction composite generator
CN112152508A (en) * 2020-11-15 2020-12-29 浙江师范大学 Rotary excitation friction-piezoelectric composite generator
CN115189627A (en) * 2022-07-15 2022-10-14 西安理工大学 Piezoelectric-photovoltaic-triboelectric hybrid power generation device

Also Published As

Publication number Publication date
WO2017181702A1 (en) 2017-10-26
CN105680717B (en) 2017-06-20

Similar Documents

Publication Publication Date Title
CN105680717B (en) A kind of vane type composite wind pwoer energy harvester
CN205725515U (en) A blade-type composite wind energy harvester
CN105680723B (en) A kind of combined type wind energy collecting device
CN106357159B (en) A kind of Nonlinear Vortex-induced energy collecting device of power-electricity-flow coupling
CN206164399U (en) Power fluid coupling's non -linear vortex induced vibration energy gatherer
CN110138258B (en) A kind of wind chime type triboelectric nanogenerator and its making method
CN108512390A (en) A kind of pendulum model electromagnetism-friction energy composite energy collector
CN104481807B (en) Wind speed self-adjusting piezoelectric wind energy collecting device capable of being started at low wind speed
CN111313754B (en) Bionic wind power generation array and wind power generation device
CN106452181B (en) A kind of wind-induced vibration energy collecting device based on polycylindser wake-stream function
CN113067495B (en) Breeze energy harvesting triboelectric nanogenerator based on bluff body flow effect and its application
CN102611351A (en) Piezoelectricity-magnetic electricity mixed energy collection device
CN104578908B (en) Wind power generation device
Yu et al. Vibration-coupled TENGs from weak to ultra-strong induced by vortex for harvesting low-grade airflow energy
CN208106652U (en) A kind of novel piezoelectric Wind energy collecting device
CN107859588B (en) Oscillating water column self-excited wave energy composite power generation device based on Karman vortex street effect
CN205725522U (en) A composite wind energy collector
CN115459622A (en) Vortex-induced vibration power generation device
CN113364351A (en) Device and method for collecting electric energy by using double-cone streaming vortex-induced vibration
CN107634676A (en) A tiny energy-harvesting piezoelectric tree
CN204419457U (en) A kind of wind generating unit
CN108035850A (en) A kind of adaptive Wind energy collecting device of wind direction
Fang et al. An efficient electromagnetic wind energy harvester for self-powered wireless sensor node
CN114785086A (en) A rolling magnet tri-stable electromagnetic energy harvesting device
CN204190648U (en) wind magnetic piezoelectric generating device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant