CN105601205B - 一种铸造废砂自密实混凝土 - Google Patents

一种铸造废砂自密实混凝土 Download PDF

Info

Publication number
CN105601205B
CN105601205B CN201610076889.0A CN201610076889A CN105601205B CN 105601205 B CN105601205 B CN 105601205B CN 201610076889 A CN201610076889 A CN 201610076889A CN 105601205 B CN105601205 B CN 105601205B
Authority
CN
China
Prior art keywords
parts
cast waste
waste sand
compacting concrete
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610076889.0A
Other languages
English (en)
Other versions
CN105601205A (zh
Inventor
何智海
杜时贵
何玲玲
胡云进
黄曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihai Dazheng Concrete Co Ltd
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201610076889.0A priority Critical patent/CN105601205B/zh
Publication of CN105601205A publication Critical patent/CN105601205A/zh
Application granted granted Critical
Publication of CN105601205B publication Critical patent/CN105601205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

本发明公开了一种铸造废砂自密实混凝土,其特征在于:按照重量份计,由水泥320‑360份、粉煤灰90‑120份、铸造废砂粉45‑60份、铸造废砂220‑250份、河砂540‑600份、碎石880‑950份、减水剂3.5‑4.5份和水150‑195份混合组成。本发明通过优化设计骨料和粉体角度,最大规模地资源化再生回收利用铸造废砂,最大程度地实现了铸造废砂在自密实混凝土中的高附加值利用,所制备的铸造废砂自密实混凝土,其工作性能和强度与常规自密实混凝土相比无明显区别,并具有更低的成本和更好的生态环保效应。

Description

一种铸造废砂自密实混凝土
技术领域:
本发明属于建筑材料领域,具体是涉及一种铸造废砂自密实混凝土。
背景技术:
我国是一个铸造业大国,铸件年产量在1000万t以上,其产量已居世界前列,据统计每生产1t铸件就会产生约1t铸造废砂,其中以铸造废硅砂为主。目前,除了少量铸造废砂再生回收利用外,大部分以丢弃为主,对有限的资源是一种极大的浪费,而且造成了严重的环境污染。因此,铸造废砂的再生回收高附加值利用已成为我国迫切需要解决的行业关键技术问题。当前,铸造废砂的资源化利用途径主要为制造聚合物基复合材料、和粉煤灰一起制备化学键合陶瓷复合材料、制造高强烧结材料和烧结发泡材料以及在建筑行业中的应用。而采用铸造废砂制备混凝土是其在建筑行业中应用的最主要途径之一,然而由于铸造废砂自身物理化学性质决定了其所制备的混凝土品种较为单一,仅限于普通混凝土,其强度也较低,主要为低强度混凝土,极大地限制了铸造废砂在混凝土中的使用范围。因此,十分有必要开展铸造废砂在新型混凝土中的研究和应用,最大程度地实现铸造废砂在混凝土中的高附加值利用,最大规模地资源化再生回收利用铸造废砂,同时展现很好的生态环保效应。
自密实混凝土是指拌和物具有很高的流动性,在传统的坍落度试验中,坍落度达到250mm以上,坍落扩展度达600mm以上,并且在浇筑过程中不离析、不泌水,属于高流动性混凝土的高端部分,是一种新型的特种混凝土。自密实混凝土施工程序简单,提高了施工效率,缩短了施工工期,其高工作性能,有效解决了传统混凝土施工中的漏振、过振以及钢筋密集难以插捣密实和远程泵送极易堵泵、离析等问题,保证了钢筋、埋件和预应力孔道的位置不因振捣而移位,提高了混凝土的浇筑质量,同时降低了环境噪声,改善了自然环境和工作安全性,是混凝土行业优先推广发展的先进技术之一。
目前,已有人采用铸造废砂来制备低强度的混凝土,但采用铸造废砂制备自密实混凝土还未见相关研究和报道,究其原因是:自密实混凝土对原材料质量要求较为严格,且较为敏感,由于铸造废砂自身物理化学性质所限,采用常规配方和工艺制备的“铸造废砂自密实混凝土”,其工作性能中的坍落扩展度均低于550mm,U型仪试验中的Δh均大于30mm,L型仪试验中的H2/H1均小于0.8,很难达到常规自密实混凝土工作性的要求。
发明内容:
本发明的目的是提供一种采用铸造废砂制备的自密实混凝土。
本发明为实现上述目的采取的技术方案为:
一种铸造废砂自密实混凝土,按照重量份计,由水泥320-360份、粉煤灰90-120份、铸造废砂粉45-60份、铸造废砂220-250份、河砂540-600份、碎石880-950份、减水剂3.5-4.5份和水150-195份混合组成。
在以下优选方案的条件下,可以获得更好的工作性能和抗压性能:
所述的水泥为硅酸盐水泥或普通硅酸盐水泥,强度不低于42.5强度等级。
所述的粉煤灰为Ⅰ级粉煤灰。
所述的铸造废砂粉为铸造废砂经粉磨而成,其SiO2质量百分比含量≥90%,其比表面积不小于350m2/kg,需水量比不大于100%。
所述的铸造废砂与铸造废砂粉来自同一产源,细度模数为2.4-3.0。
所述的河砂细度模数为2.4-3.0,颗粒级配为2区,含泥量小于0.4%。
所述的碎石粒径为5-20mm的连续级配,其针片状含量小于碎石总质量的3%,含泥量小于0.3%。
所述的减水剂为具有高减水和保水功能的聚羧酸减水剂,固含量大于25%。
本发明的原理如下:
如前所述,自密实混凝土对原材料质量要求较为严格,且较为敏感,因此,如果只是简单的将铸造废砂掺进制备自密实混凝土,对自密实混凝土的工作性能尤其是抗压强度将有很大影响,申请人经多年研究和试验,根据铸造废砂的物理化学性质,将铸造废砂进行预先处理,控制其物理化学性能(将铸造废砂进行粉磨,SiO2质量百分比含量≥90%,比表面积不小于350m2/kg,需水量比不大于100%),并按一定质量比例与细度模数为2.4-3.0的铸造废砂、河砂进行配比,有效改善了细骨料颗粒级配,解决了单一铸造废砂颗粒级配不好,难以制备自密实混凝土的技术难题,从骨料角度优化设计制备自密实混凝土。此外,将铸造废砂粉磨成铸造废砂粉,根据制备自密实混凝土的需要调整铸造废砂粉的细度,通过掺用铸造废砂粉调节胶凝材料颗粒级配和粒度分布,从粉体角度优化设计制备自密实混凝土。基于骨料和粉体角度,最大程度地实现了铸造废砂在自密实混凝土中的高附加值利用,拓展了铸造废砂在混凝土中的使用范围,展现了很好的生态环保效应。
本发明与现有技术相比,其有益效果如下:
(1)将铸造废砂粉磨成铸造废砂粉,根据制备自密实混凝土需要调整其细度,实现了铸造废砂粉细度可控化操作,掺用铸造废砂粉可有效调整胶凝材料颗粒级配和粒度分布,基于优化设计胶凝材料角度,制备自密实混凝土。
(2)针对单一的铸造废砂颗粒级配不好,难以制备自密实混凝土的技术难题,将铸造废砂按一定质量比例取代河砂,有效改善了细骨料颗粒级配,基于优化设计骨料角度,制备自密实混凝土。
(3)基于优化设计骨料和粉体角度,最大规模地资源化再生回收利用铸造废砂,最大程度地实现了铸造废砂在自密实混凝土中的高附加值利用,相比于同等效果的常规自密实混凝土技术,其具有更好的生态环保效应。
以下结合具体实施方式对本发明作进一步详细说明。
具体实施方式:
本发明提供的一种铸造废砂自密实混凝土:按照重量份计,由水泥320-360份、粉煤灰90-120份、铸造废砂粉45-60份、铸造废砂220-250份、河砂540-600份、碎石880-950份、减水剂3.5-4.5份和水150-195份混合组成。其中:水泥为硅酸盐水泥或普通硅酸盐水泥,强度不低于42.5强度等级;粉煤灰为Ⅰ级粉煤灰;铸造废砂粉为铸造废砂经粉磨而成,其SiO2质量百分比含量≥90%,其比表面积不小于350m2/kg,需水量比不大于100%;铸造废砂与铸造废砂粉来自同一产源,细度模数为2.4-3.0;河砂细度模数为2.4-3.0,颗粒级配为2区,含泥量小于0.4%;碎石粒径为5-20mm的连续级配,其针片状含量小于碎石总质量的3%,含泥量小于0.3%;减水剂为具有高减水和保水功能的聚羧酸减水剂,固含量大于25%。
基于上述配方,调整不同组分的用量得到实施例1-3,并分别检测不同铸造废砂自密实混凝土的工作性和28d抗压强度。
实施例1:
按重量组分计算,包括水泥330份,粉煤灰90份,铸造废砂粉45份,铸造废砂230份,河砂595份,碎石930份,减水剂3.8份和水175份。
性能检测:工作性和28d抗压强度见表1。
实施例2:
按重量组分计算,包括水泥340份,粉煤灰110份,铸造废砂粉50份,铸造废砂225份,河砂575份,碎石920份,减水剂4份和水180份。
性能检测:工作性和28d抗压强度见表1。
实施例3:
按重量组分计算,包括水泥350份,粉煤灰120份,铸造废砂粉55份,铸造废砂240份,河砂550份,碎石910份,减水剂4.2份和水173份。
性能检测:工作性和28d抗压强度见表1。
对比实施例4:制备常规自密实混凝土
具体配比如下:按重量组分计算,包括水泥320份,粉煤灰145份,河砂820份,碎石940份,减水剂3.8份和水176份。
性能检测:工作性和28d抗压强度见表1。
表1、本发明铸造废砂自密实混凝土与常规自密实混凝土性能对照
如表1所示:
(1)本发明针对单一的铸造废砂颗粒级配不好,难以制备自密实混凝土的技术难题,根据铸造废砂的物理化学性质,将铸造废砂进行预先处理,控制其物理化学性能(将铸造废砂进行粉磨,控制其SiO2质量百分比含量≥90%,比表面积不小于350m2/kg,需水量比不大于100%),并按一定质量比例与细度模数为2.4-3.0河砂、铸造废砂进行配比,有效改善了细骨料颗粒级配,解决了单一铸造废砂颗粒级配不好,难以制备自密实混凝土的技术难题,从骨料角度优化设计制备自密实混凝土。此外,将铸造废砂粉磨成铸造废砂粉,根据制备自密实混凝土的需要调整铸造废砂粉的细度,通过掺用铸造废砂粉调节胶凝材料颗粒级配和粒度分布,从粉体角度优化设计制备自密实混凝土。这对于自密实混凝土领域,是全新的突破,具有巨大的工业应用价值和广泛的应用前景。
(2)本发明通过优化设计骨料和粉体角度,最大规模地资源化再生回收利用铸造废砂,最大程度地实现了铸造废砂在自密实混凝土中的高附加值利用,所制备的铸造废砂自密实混凝土,其工作性能和强度与常用自密实混凝土相比,无明显区别;而由于使用废弃的铸造废砂(粉),价格低廉,与相同强度等级的常规自密实混凝土相比,显然具有更低的成本和更好的生态环保效应(相同强度等级下,单方自密实混凝土本发明比常规节约15元左右)。

Claims (7)

1.一种铸造废砂自密实混凝土,其特征在于:按照重量份计,由水泥320-360份、粉煤灰90-120份、铸造废砂粉45-60份、铸造废砂220-250份、河砂540-600份、碎石880-950份、减水剂3.5-4.5份和水150-195份混合组成;所述的铸造废砂粉为铸造废砂经粉磨而成,其SiO2质量百分比含量≥90%,其比表面积不小于350m2/kg,需水量比不大于100%。
2.如权利要求1所述的一种铸造废砂自密实混凝土,其特征在于:所述的水泥为硅酸盐水泥或普通硅酸盐水泥,强度不低于42.5强度等级。
3.如权利要求1所述的一种铸造废砂自密实混凝土,其特征在于:所述的粉煤灰为Ⅰ级粉煤灰。
4.如权利要求1所述的一种铸造废砂自密实混凝土,其特征在于:所述的铸造废砂与铸造废砂粉来自同一产源,细度模数为2.4-3.0。
5.如权利要求1所述的一种铸造废砂自密实混凝土,其特征在于:所述的河砂细度模数为2.4-3.0,颗粒级配为2区,含泥量小于0.4%。
6.如权利要求1所述的一种铸造废砂自密实混凝土,其特征在于:所述的碎石粒径为5-20mm的连续级配,其针片状含量小于碎石总质量的3%,含泥量小于0.3%。
7.如权利要求1所述的一种铸造废砂自密实混凝土,其特征在于:所述的减水剂为具有高减水和保水功能的聚羧酸减水剂,固含量大于25%。
CN201610076889.0A 2016-02-03 2016-02-03 一种铸造废砂自密实混凝土 Active CN105601205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610076889.0A CN105601205B (zh) 2016-02-03 2016-02-03 一种铸造废砂自密实混凝土

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610076889.0A CN105601205B (zh) 2016-02-03 2016-02-03 一种铸造废砂自密实混凝土

Publications (2)

Publication Number Publication Date
CN105601205A CN105601205A (zh) 2016-05-25
CN105601205B true CN105601205B (zh) 2018-02-23

Family

ID=55981638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610076889.0A Active CN105601205B (zh) 2016-02-03 2016-02-03 一种铸造废砂自密实混凝土

Country Status (1)

Country Link
CN (1) CN105601205B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106348686B (zh) * 2016-08-24 2018-10-19 绍兴文理学院 采用铸造废砂制备的快速修补混凝土
CN106587890A (zh) * 2016-11-30 2017-04-26 成都嘉新特种精密铸造有限公司 一种铸造废砂再利用方法
CN111662027A (zh) * 2020-06-19 2020-09-15 滨州建华建材有限公司 一种骨料替代品及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033120A (zh) * 2007-02-05 2007-09-12 刘洪军 铸造废砂生产混凝土砖的配方及其生产方法
CN102320803A (zh) * 2011-09-10 2012-01-18 中国十七冶集团有限公司 一种铁矿尾矿自密实混凝土及其制备方法
CN104402337A (zh) * 2014-11-20 2015-03-11 中国铁道科学研究院铁道建筑研究所 一种板式无砟轨道自密实混凝土用干粉砂浆的制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033120A (zh) * 2007-02-05 2007-09-12 刘洪军 铸造废砂生产混凝土砖的配方及其生产方法
CN102320803A (zh) * 2011-09-10 2012-01-18 中国十七冶集团有限公司 一种铁矿尾矿自密实混凝土及其制备方法
CN104402337A (zh) * 2014-11-20 2015-03-11 中国铁道科学研究院铁道建筑研究所 一种板式无砟轨道自密实混凝土用干粉砂浆的制备与应用

Also Published As

Publication number Publication date
CN105601205A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
Li et al. Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete
Liu et al. Optimization of autogenous shrinkage and microstructure for Ultra-High Performance Concrete (UHPC) based on appropriate application of porous pumice
Wang et al. A novel design of low carbon footprint Ultra-High Performance Concrete (UHPC) based on full scale recycling of gold tailings
Karim et al. Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide
Li et al. Effect of limestone fines content in manufactured sand on durability of low-and high-strength concretes
Jin et al. Rheology control of self-consolidating cement-tailings grout for the feasible use in coal gangue-filled backfill
WO2017067411A1 (zh) 一种crts ⅲ型板式无砟轨道充填层用自密实混凝土及其制备方法
Chen et al. Investigating the properties of lightweight concrete containing high contents of recycled green building materials
Tian et al. Experimental study on the properties of concrete mixed with iron ore tailings
CN105036621A (zh) 一种特细铁尾矿混合砂高强混凝土
Ren et al. Fresh and hardened properties of self-compacting concrete using silicon carbide waste as a viscosity-modifying agent
CN103288398A (zh) 高性能机制砂海工混凝土及其制备方法
CN107352894A (zh) 一种铁尾矿砂干混砌筑砂浆
CN104692720A (zh) 一种铜尾矿免烧砖及其制备方法
Cyr et al. Reduction of ASR-expansion using powders ground from various sources of reactive aggregates
CN105601205B (zh) 一种铸造废砂自密实混凝土
Liu et al. Preparation and characterization of majority solid waste based eco-unburned permeable bricks
Wang et al. High-efficiency utilization of limestone tailings: Used as cementitious materials and fine aggregate to prepare karst structure filling material
CN107746196A (zh) 高性能混凝土用骨料和高性能混凝土
CN107140907B (zh) 一种掺杂石英石人造石材废渣和粉煤灰的混凝土
CN107244851A (zh) 一种掺杂石英石人造石材废渣的混凝土
Dun et al. Laboratory Tests on Performance of Waste‐Clay‐Brick‐Powder Cement Grouting Materials for Ground Improvement in Mine Goaf
Ming et al. Experimental research of concrete with steel slag powder and zeolite powder
CN115073093A (zh) 一种低收缩高强自密实再生混凝土及其制备方法
CN109265126A (zh) 一种利用废弃粘土砖制备灌浆料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: He Zhihai

Inventor after: Du Shigui

Inventor after: He Lingling

Inventor after: Hu Yunjin

Inventor after: Huang Man

Inventor before: Du Shigui

Inventor before: He Zhihai

Inventor before: He Lingling

Inventor before: Hu Yunjin

Inventor before: Huang Man

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200518

Address after: 536000 No.49 Kejin Road, Beihai Industrial Park, Beihai City, Guangxi Zhuang Autonomous Region

Patentee after: Beihai Dazheng Concrete Co., Ltd

Address before: 312000, No. 508 West Ring Road, Yuecheng District, Zhejiang, Shaoxing

Patentee before: SHAOXING University