CN105571914A - 一种浊度标准液及其配制方法 - Google Patents

一种浊度标准液及其配制方法 Download PDF

Info

Publication number
CN105571914A
CN105571914A CN201510927156.9A CN201510927156A CN105571914A CN 105571914 A CN105571914 A CN 105571914A CN 201510927156 A CN201510927156 A CN 201510927156A CN 105571914 A CN105571914 A CN 105571914A
Authority
CN
China
Prior art keywords
turbidity
turbidity standard
consumption
titanium oxide
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510927156.9A
Other languages
English (en)
Other versions
CN105571914B (zh
Inventor
葛碧洲
穆玉林
王江林
高伟晨
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201510927156.9A priority Critical patent/CN105571914B/zh
Publication of CN105571914A publication Critical patent/CN105571914A/zh
Application granted granted Critical
Publication of CN105571914B publication Critical patent/CN105571914B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N2001/2893Preparing calibration standards

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种浊度标准液及其配制方法,以商品名P25纳米二氧化钛作为浊度标准液基准物,辅以苯二甲酸氢钾调节剂;用去离子水按照1000NTU相当于0.208g/L纳米二氧化钛的线性关系,直接称量配制,得到的悬浮分散液经摇匀或超声1分钟后,定容制得浊度的标准溶液;对于不适宜称量配制的更低浊度标准溶液,可以高浓度的浊度标准溶液用去离子水按比例稀释得到。纳米二氧化钛是一种广泛使用的经济环保、安全稳定的物质;比较而言,其标准液可现配现用,没有降解、分解现象,无需避光冷藏等使用条件的限制;使用前摇匀即可,是环境友好的无机型浊度校准液。

Description

一种浊度标准液及其配制方法
技术领域
本发明涉及一种浊度标准液及其配制方法。
背景技术
浊度为透明介质的清浊程度。在水质监测、食品饮料、卫生防疫、医药、能源等行业中,对水中含有的不溶性悬浮颗粒物质都有量的限定,表示该量的主要技术参数就是浊度。
在水体浊度测量前,浊度测量仪器需用标准浊度液标定基准值。目前,国外普遍采用ISO一7027标准推荐的Formazine标准浊度液。我国使用的是国家标准物质研究中心研制的标准值为4000NTU(浊度悬浮液以度作浊度单位)的Formazine浊度标准物质。
Formazine标准浊度液为硫酸肼(H4N2·H2SO4)水溶液与六次甲基四胺[(CH2)6N4]水溶液,在适当温度下,经过聚合反应生成的一种白色高分子聚合物的悬浊液。但,Formazine标准浊度液存在避光冷藏和操作条件苛刻,易降解(刘俊杰,张文阁,祁欣.聚合物浊度标准溶液的研制[J].中国计量,2008(7):67~69)、价格贵,其合成物之一的H4N2·H2SO4有毒,另一种合成物(CH2)6N4有致癌性等问题。另外,Formazine的降解产物目前未知,也增加了其使用的风险性。对于一些数量众多、地理位置相对边远、分散的如油田等使用单位,需要保温冰箱和定期更换4000NTUFormazine标准浊度液母液,也将进一步提高生产成本。
为此,国家标准物质研究中心张文阁报道了,以苯乙烯单体通过聚合反应,在特定条件下,制取定值100NTU的聚苯乙烯乳胶粒子低浓度浊度标准液。但该浊度标准液仍需于冰箱中在一定温度下保存。2010年黄伟莉等发现,基于Formazine标准浊度液为有机聚合物的悬浊液,国内外科研工作者多从合成有机聚合物的悬浊液入手,。但对于解决作为标准浊度物的有机聚合物的降解、浊度物配制成的浊度液的稳定性和有机聚合物价格高的问题,尚无有效办法。随即,提出了价格低廉、产品易得且与环境友好的无机型悬浊液。并合成了固定值40NTU的低浊度范围内替代同浊度的Formazine标准浊度液或作为二级标准物使用。而对于400NTU高浊度稳定性研究尚未证实。
发明内容
为了克服上述有机或无机合成物配制浊度液等现有技术的缺点,本发明的目的在于提供一种浊度标准液及其配制方法,以易得的商品纳米二氧化钛P25配制稳定的无机物标准浊度使用溶液,无需合成制备,直接称取配制,摇匀1分钟后测量使用,此标准浊度液,也无需避光冷藏、无降解变化,具有操作方便、价格便宜、无毒无害、绿色环保等特点,可满足各量程浊度测定的需要。
为了实现上述目的,本发明采用的技术方案是:
一种浊度标准液,以加入纳米二氧化钛的去离子水分散体系为基准液,其中含有微量的稳定调节剂。
所述基准液的浊度与纳米二氧化钛用量之间符合线性关系y=4792x+2.235,R2=0.999,R2表示拟合度。
所述纳米二氧化钛的用量为0.208g,去离子水用量为1L,配成1000NTU浊度标准液。
所述000NTU浊度标准液中,稳定调节剂浓度为2mg/L。
所述稳定调节剂为具有亲水和疏水基两种官能团的表面活性剂类。
所述稳定调节剂为苯二甲酸氢钾。
所述纳米二氧化钛标准商品名为P25,德国Degussa公司等生产,可通过市售途径获取。
与现有技术相比,本发明的配制型浊度标准液具有优异的化学稳定和水溶液分散性,且储藏使用方便,可即用即配,成本低,无毒无害、绿色环保。可满足宽泛的测量使用范围。
附图说明
图1是本发明浊度值NTU与二氧化钛的含量函数关系示意图。
图2是本发明实施例1配制的浊度标准液分散体系的浊度和ζ电位测试结果示意图。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。
实施例1
1000NTU浊度标准液的配制
称取0.208g纳米二氧化钛(P25Degussa)放入烧杯中,加适量去离子水分散。
将上述分散液完全转移到1L容量瓶中,并加入20ml浓度为100mg/L的苯二甲酸氢钾稳定调节剂后,用去离子水定容。摇匀或超声1分钟备用。此分散体系的浊度值即为1000NTU。
上述配制的纳米二氧化钛浊度标准液,可室温保存30天,使用前需摇匀。
实施例2
500NTU浊度标准液的配制
称取0.104g纳米二氧化钛(P25Degussa)放入烧杯中,加适量去离子水分散。
将上述分散液完全转移到1L容量瓶,并加入10ml浓度为100mg/L的苯二甲酸氢钾稳定调节剂后,用去离子水定容。摇匀或超声1分钟备用。此分散体系的浊度值即为500NTU。
上述配制的纳米二氧化钛浊度标准液,室温下,可保存30天,使用前需摇匀。
实施例3
200NTU浊度标准液的配制
称取0.041g纳米二氧化钛(P25Degussa)放入烧杯中,加适量去离子水分散。
将上述分散液完全转移到1L容量瓶,并加入4ml浓度为100mg/L的苯二甲酸氢钾稳定调节剂后,用去离子水定容。摇匀或超声1分钟备用。此即200NTU浊度标准液。
上述配制的纳米二氧化钛浊度标准液,室温下,可保存30天,使用前需摇匀。
实施例4
其他不同浓度的浊度标准液,也可由上述高浓度,按照稀释比例用去离子水配得。使用前摇匀。
方法检验:
1、线性回归分析
以校准后的浊度仪和超声清洗后的器皿容器,按照实施例1,以0.208g纳米二氧化钛P25和稳定调节剂的比例,用去离子水配制浊度分散溶液1L,摇匀。取其不同的量,以50ml比色管稀释定容,分别得到0.15,0.10,0.050,0.025,0.0125,0.0063,0.0031,0.0000g/L等不同的分散液浓度。依次测量其浊度,并与其相应的浊度NTU测定值做回归曲线见图1。可见,浊度值NTU与二氧化钛的含量(g/L)符合y=4792x+2.235函数关系。曲线回归的相关系数R2大于0.999。说明,配制的二氧化钛分散液,在0~1000NTU范围与配制浓度之间具有很好的线性关系。其中,1000NTU浊度值,对应P25的含量是0.208g/L.
2、精密度平行实验
分别以A组(按实施例1配制);B组(按实施例2配制);C组(按实施例3配制)称量配置不同的浊度分散液,做十组平行实验,结果列于表1。表明该分散体系具有很好的重现稳定性。标准偏差分别是13.9%,4.9%,3.3%。变异系数小于1.63%。
表1
3、时间稳定性虽然,此浊度标准液可以方便地即用即配,并且,满足每一次配置,30天内摇匀使用的精度要求。但在每一次摇匀的测定过程,按实施例1配制的浊度标准液分散体系,考察测定间隙140分钟分散体系动态变化,分别测定体系的浊度和ζ电位。结果绘于见图2和表2。
表2
分钟 NTU ζ
10 1000 26.5
20 999 26.4
30 1001 26.5
40 995 25.7
50 996 25.9
60 1000 26.1
70 1011 26.5
80 989 26.5
90 992 25.9
100 991 26.3
110 995 26.9
120 1001 26.9
130 985 25.8
140 987 26.5
平均值 995.8 26.3
标准差 6.80 0.35
变异系数 0.69% 1.33%
根据胶体分散的DLVO理论,分散体系中细小颗粒的表面电荷吸附异号电荷形成的双电层,使颗粒之间产生排斥力。溶胶的稳定性主要是通过双电层排斥能和范德华引力的平衡而实现的。与稳定调节剂一同,去离子水中纳米TiO2颗粒的布朗运动及其表面较高的ζ电位抵抗了团聚、沉降作用,保证了溶胶的分散稳定。实验也表明,1000NTU的浊度标准液,在2小时内的ζ电位和浊度基本不变,如图2。
综上,本发明实现了以去离子水直接配制P25纳米二氧化钛标准浊度溶液(含调节稳定剂)。P25是由德国Degussa公司商品化规模生产的纳米粒度和比表面积均一的产品。该产品应用于许多领域,其水溶液易均匀分散。作为浊度基准物,无需化学合成反应制备,可即用即配,得到的二氧化钛水溶液分散体系化学性质稳定、使用方便,为一种宽泛浓度的环境友好型浊度标准液。

Claims (10)

1.一种浊度标准液,其特征在于,以加入纳米二氧化钛的去离子水分散体系为基准液,其中含有微量的稳定调节剂。
2.根据权利要求1所述浊度标准液,其特征在于,所述纳米二氧化钛标准商品名为P25。
3.根据权利要求1或2所述浊度标准液,其特征在于,所述基准液的浊度与纳米二氧化钛用量之间符合线性关系y=4792x+2.235,R2=0.999,x表示纳米二氧化钛在去离子水中的浓度,单位g/L,R2表示拟合度。
4.根据权利要求1或2所述浊度标准液,其特征在于,所述纳米二氧化钛的用量为0.208g,去离子水用量为1L,配成1000NTU浊度标准液。
5.根据权利要求4所述浊度标准液,其特征在于,所述1000NTU浊度标准液中,稳定调节剂浓度为2mg/L。
6.根据权利要求1所述浊度标准液,其特征在于,所述稳定调节剂为具有亲水和疏水基两种官能团的表面活性剂类。
7.根据权利要求1所述浊度标准液,其特征在于,所述稳定调节剂为苯二甲酸氢钾。
8.一种权利要求1所述浊度标准液的配制方法,其特征在于,称取纳米二氧化钛放入烧杯中,加适量去离子水分散,之后转移到1L容量瓶中,并加入稳定调节剂,用去离子水定容。
9.根据权利要求8所述浊度标准液的配制方法,其特征在于,所述基准液的浊度与纳米二氧化钛用量之间符合线性关系y=4792x+2.235。
10.根据权利要求8所述浊度标准液的配制方法,其特征在于,
所述纳米二氧化钛的用量为0.208g,去离子水用量为1L,稳定调节剂用量2mg,配成1000NTU浊度标准液;
所述纳米二氧化钛的用量为0.104g,去离子水用量为1L,稳定调节剂用量1mg,配成500NTU浊度标准液;
所述纳米二氧化钛的用量为0.041g,去离子水用量为1L,稳定调节剂用量0.04mg,配成200NTU浊度标准液。
CN201510927156.9A 2015-12-12 2015-12-12 一种浊度标准液及其配制方法 Expired - Fee Related CN105571914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510927156.9A CN105571914B (zh) 2015-12-12 2015-12-12 一种浊度标准液及其配制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510927156.9A CN105571914B (zh) 2015-12-12 2015-12-12 一种浊度标准液及其配制方法

Publications (2)

Publication Number Publication Date
CN105571914A true CN105571914A (zh) 2016-05-11
CN105571914B CN105571914B (zh) 2018-07-10

Family

ID=55882300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510927156.9A Expired - Fee Related CN105571914B (zh) 2015-12-12 2015-12-12 一种浊度标准液及其配制方法

Country Status (1)

Country Link
CN (1) CN105571914B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458992A (zh) * 2018-01-23 2018-08-28 北京海岸鸿蒙标准物质技术有限责任公司 一种聚合物悬浮液浊度标准物质及其制备方法
US20180275052A1 (en) * 2017-03-27 2018-09-27 Ecolab Usa Inc. Techniques and materials for calibrating optical sensors
CN109142160A (zh) * 2018-10-11 2019-01-04 中国矿业大学 一种基于悬浮液浊度表征非常规石油伴生矿物微粒润湿性的方法
CN109870407A (zh) * 2017-12-01 2019-06-11 中粮集团有限公司 用于判断淘米水的浊度的比对装置及其用途
CN110609016A (zh) * 2019-06-10 2019-12-24 上海市计量测试技术研究院(中国上海测试中心、华东国家计量测试中心、上海市计量器具强制检定中心) 一种校准用标准物质及其配制方法和应用
CN112268999A (zh) * 2020-10-19 2021-01-26 河北冀研能源科学技术研究院有限公司 一种浊度标准溶液稳定性检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041878A (ja) * 1999-07-28 2001-02-16 Meidensha Corp 濁度計の校正用セル
US20090059218A1 (en) * 2007-08-31 2009-03-05 Harner Richard S Stable turbidity calibration standards
CN102338733A (zh) * 2010-07-26 2012-02-01 南京理工大学 溶液中纳米粒子浓度的浊度法检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041878A (ja) * 1999-07-28 2001-02-16 Meidensha Corp 濁度計の校正用セル
US20090059218A1 (en) * 2007-08-31 2009-03-05 Harner Richard S Stable turbidity calibration standards
CN102338733A (zh) * 2010-07-26 2012-02-01 南京理工大学 溶液中纳米粒子浓度的浊度法检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WILLIAM G. ROESSLER AND CARL R. BREWER: "Permanent Turbidity Standards", 《APPLIED MICROBIOLOGY》 *
张文阁: "校准浊度计用低浊度标准液的研制", 《中国粉体技术》 *
黄伟莉等: "新型标准浊度液的研制", 《茂名学院学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180275052A1 (en) * 2017-03-27 2018-09-27 Ecolab Usa Inc. Techniques and materials for calibrating optical sensors
US10794826B2 (en) * 2017-03-27 2020-10-06 Ecolab Usa Inc. Techniques and materials for calibrating optical sensors
CN109870407A (zh) * 2017-12-01 2019-06-11 中粮集团有限公司 用于判断淘米水的浊度的比对装置及其用途
CN108458992A (zh) * 2018-01-23 2018-08-28 北京海岸鸿蒙标准物质技术有限责任公司 一种聚合物悬浮液浊度标准物质及其制备方法
CN109142160A (zh) * 2018-10-11 2019-01-04 中国矿业大学 一种基于悬浮液浊度表征非常规石油伴生矿物微粒润湿性的方法
CN110609016A (zh) * 2019-06-10 2019-12-24 上海市计量测试技术研究院(中国上海测试中心、华东国家计量测试中心、上海市计量器具强制检定中心) 一种校准用标准物质及其配制方法和应用
CN112268999A (zh) * 2020-10-19 2021-01-26 河北冀研能源科学技术研究院有限公司 一种浊度标准溶液稳定性检测方法

Also Published As

Publication number Publication date
CN105571914B (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
CN105571914A (zh) 一种浊度标准液及其配制方法
Mondragon et al. Characterization of silica–water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability
Maindarkar et al. Predicting the effects of surfactant coverage on drop size distributions of homogenized emulsions
Weiss et al. Influence of Ostwald ripening on rheology of oil-in-water emulsions containing electrostatically stabilized droplets
Qi et al. Size regulation and prediction of the SiO2 nanoparticles prepared via Stöber process
Murphy et al. Powder and reconstituted properties of commercial infant and follow-on formulas
Wu et al. Effect of temperature on high shear-induced gelation of charge-stabilized colloids without adding electrolytes
Ilyas et al. Dispersion behaviour and agglomeration effects of zinc oxide nanoparticles in ethanol–water mixtures
Croce et al. Impacting the length of wormlike micelles using mixed surfactant systems
Zhu et al. Ultrasonic degradation of konjac glucomannan and the effect of freezing combined with alkali treatment on their rheological profiles
Sanchez-Fernandez et al. Complex by design: Hydrotrope-induced micellar growth in deep eutectic solvents
Mulderig et al. Structural emergence in particle dispersions
Agredo et al. An evaluation of the physicochemical properties of stabilized oil-in-water emulsions using different cationic surfactant blends for potential use in the cosmetic industry
Alam et al. Micellization and mixed micellization of cationic gemini (dimeric) surfactants and cationic conventional (monomeric) surfactants: Conductometric, dye solubilization, and surface tension studies
Makowska et al. Polymer-solvent interactions in modified starches pastes–electrokinetic, dynamic light scattering, rheological and low field nuclear magnetic resonance approach
Bindereif et al. Effect of conformation of sugar beet pectin on the interfacial and emulsifying properties
Ren et al. pH-responsive nanoemulsions based on a dynamic covalent surfactant
Naina et al. Viscosity and specific volume of TiO2/water nanofluid
Grossi Bovi Karatay et al. Storage stability of conventional and high internal phase emulsions stabilized solely by chickpea aquafaba
Rodriguez-Loya et al. Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: a review
Vakilinejad et al. Experimental investigation and modeling of the viscosity of some water-based nanofluids
Shaji et al. Physical Properties of Plasma-Activated Water
Jeong et al. Physical, Morphological, and rheological properties of agglomerated milk protein isolate powders: Effect of binder type and concentration
Adewunmi et al. Pickering emulsions stabilized by chitosan/natural acacia gum biopolymers: Effects of pH and salt concentrations
Lauten et al. Adsorption and desorption of unmodified and hydrophobically modified ethyl (hydroxyethyl) cellulose on polystyrene latex particles in the presence of ionic surfactants using dynamic light scattering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180710