CN105540729A - 一种三维电极光电催化处理高盐高浓度有机废水的方法 - Google Patents

一种三维电极光电催化处理高盐高浓度有机废水的方法 Download PDF

Info

Publication number
CN105540729A
CN105540729A CN201510989366.0A CN201510989366A CN105540729A CN 105540729 A CN105540729 A CN 105540729A CN 201510989366 A CN201510989366 A CN 201510989366A CN 105540729 A CN105540729 A CN 105540729A
Authority
CN
China
Prior art keywords
electrode
vermiculite
salt
titanium net
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510989366.0A
Other languages
English (en)
Inventor
苏会东
孙志伟
孙福佳
董钰莹
李良玉
郑春杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Ligong University
Original Assignee
Shenyang Ligong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Ligong University filed Critical Shenyang Ligong University
Priority to CN201510989366.0A priority Critical patent/CN105540729A/zh
Publication of CN105540729A publication Critical patent/CN105540729A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultra-violet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultra-violet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Abstract

一种三维电极光电催化处理高盐高浓度有机废水的方法,是在150ml反应容器内,以HDV-7C晶体管恒电位仪为电源,与钛网光电极为主电极相连接,并充填粒子复合电极;即TiO2/蛭石0.2-0.5和石墨0.5-0.8g混合物,再在容器内充填高盐有机水,用紫外光照60min,即可。用本发明的方法处理高盐有机水,设备投资少,废水处理效果好,速度快,具有良好的社会和经济效益。

Description

一种三维电极光电催化处理高盐高浓度有机废水的方法
技术领域
[0001 ]本发明涉及一种三维电极光电催化处理高盐高浓度有机废水的方法,主要针对高盐高浓度有机废水的处理,属于有机废水处理技术领域。
背景技术
[0002]我国石油和化工行业的高盐难生物降解有机废水往往具有浓度高、毒性大、成分杂、难降解等特点,由于长期以来缺乏技术可行、经济合理的处理办法,造成企业投入高、治理难度大、水污染严重等一系列突出问题,特别是近期发生的高浓度含盐母液有机废水污染水体的事件,对企业的生存和发展造成了严重的负面影响,也成为社会、公众和政府部门高度关注的问题。
发明内容
[0003]本发明的目的,是提供一种三维电极光电催化处理高盐高浓度有机废水的方法,采用本发明污水处理方法,企业投入少,对高盐高浓度有机废水的处理速度快,水污染物去除率高,具有明显的经济和社会效益。
[0004]采用的技术方案是:
一种三维电极光电催化处理高盐高浓度有机废水的方法,包括下述工艺步骤:
1、石墨粒子的处理:
将石墨块粉碎,选择40-60目粒子,超声清洗90 min,冲洗干净,在80°C下烘干,冷却后,密封保存备用。
[0005]上述处理好的石墨粒子用作粒子电极。
[0006] 2、輕石粒子的处理:
蛭石粒子预处理:将蛭石粉碎,选择40-60目粒子,超声清洗30 min后,冲洗干净,在80°C下烘干,冷却后,密封保存备用。
[0007]上述处理过的輕石粒子作光催化剂载体。
[0008] 3、制备TiC>2/輕石粒子电极:
采用溶胶凝-胶法制备T12负载型粒子电极,制备过程如下:首先将4-6 ml钛酸丁酯缓慢滴入到含有10 -12ml无水乙醇和0.2 -0.4ml浓度1:3盐酸的小烧杯中,磁力搅拌器下搅拌20 min;同时在另一烧杯中,将0.2 -0.4 ml浓度1:3浓盐酸缓慢滴入到含有10 -12ml无水乙醇和0.2 -0.4ml蒸馏水的小烧杯中,磁力搅拌器下搅拌10 min;然后将两个烧杯中的溶液混合,均匀搅拌60min形成无色透明液体。再将l-3g预处理后的蛭石均匀平铺在培养皿中,将制备的透明液体缓慢均匀的倒进培养皿中,搅拌混合均匀,超声波震荡60min,然后自然干燥48小时,450-550°C煅烧2h,既得T12/蛭石粒子电极。
[0009] 4、制备钛网光电极:
I)、对钛网进行预处理:
将钛网切割成面积(30 mmX60 mm)的小片,浸泡到质量分数为5%的Na2CO3溶液中,超声清洗30 min后取出用蒸馏水清洗,放入10%的冰醋酸溶液中,超声清洗30 min后,冲洗干净,烘干后密封保存备用。
[0010] 2)、采用溶胶凝胶法制备T12光电极:取4-6 ml酞酸丁酯、0.5-0.7 g氯化锡,加入30-35ml异丙醇和20-22ml正丁醇,混合后不断搅拌,再加入0.01-0.02 g十六烷基三甲基溴化铵,I ml浓度65%的浓硝酸,搅拌60 min,制备成涂液,涂覆到经过预处理的钛网片上,100°(3下干燥15 min,重复该过程,涂覆3次,450_550°C煅烧2h,得到钛网光电极。
[0011] 5、对高盐高浓度有机废水的处理:
以HDV-7C晶体管恒电位仪为反应装置提供2-3V稳定的电压,与制备好的一个钛网光电极为主电极相连接,设置在反应器内,然后充填T12/蛭石0.2-0.5g和经步骤I处理的石墨粒子0.5-0.8g,将有机废水装满反应器,用20w紫外灯(λ=253.7nm)为固定光源,照射60分钟,即可对有机废水进行处理。
[0012]验证本发明对有机废水处理效果,采用在反应器中加入亚甲基蓝量为5-10mg/L,通过亚甲基蓝的脱色率来计算三维光电体系对废水的处理效果。
[0013]本发明处理有机废水投资少,处理效果好,用紫外光照射60min后的脱色率达到59.6%以上。
具体实施方式
[0014] 实施例一
一种三维电极光电催化处理高盐高浓度有机废水的方法,包括下述步骤:
1、粒子电极的制备
蛭石和石墨分别粉碎,选择40-60目粒子,分别将蛭石超声清洗30 min,石墨超声清洗90 min后,冲洗干净,分别在80°C下烘干,冷却后,密封保存备用。
[0015] 将4 ml钛酸丁酯缓慢滴入到含10 ml无水乙醇和0.2 ml浓度1: 3浓盐酸的小烧杯中,磁力搅拌器下搅拌20 min;同时在另一烧杯中,将0.2 ml浓度1: 3浓盐酸缓慢滴入到含有10 ml无水乙醇和0.2 ml蒸馏水的小烧杯中,磁力搅拌器下搅拌10 min;然后将两个烧杯中的溶液混合,均匀搅拌60min形成无色透明液体。再将2g预处理后的蛭石均匀平铺在培养皿中,将制备的透明液体缓慢均匀的倒进培养皿中,搅拌混合均匀,超声波震荡60min,然后自然干燥48小时,500°C煅烧2h,既得T12/蛭石粒子电极。
[0016] 2、钛网光电极的制备方法
将钛网切割成面积(30 mmX60 mm)的小片,浸泡到质量分数为5%的Na2CO3溶液中,超声清洗30 min后取出用蒸馏水清洗,放入10%的冰醋酸溶液中,超声清洗30 min后,冲洗干净,烘干后密封保存备用。取4.5ml酞酸丁酯、0.5 g氯化锡,加入30ml异丙醇和20ml正丁醇,混合后不断搅拌,再加入0.01 g十六烷基三甲基溴化铵,I ml浓度65%的浓硝酸,搅拌60min,制备成涂液,涂覆到经过预处理的钛片上,100 °C下干燥15 min,重复该过程,涂覆3次,450°C煅烧2h,得到钛网光电极。
[0017] 3、在150ml的容器内,以HDV-7C晶体管恒电位仪为电源,与制备好的一个钛网光电极为主电极相连接,充填量为T12/蛭石0.2g和石墨0.Sg为复合粒子电极,再在反应容器内充满高盐有机水,最后用20w紫外灯为光源,形成三维光电催化体系处理有机水,三维光电催化60min,即可。
[0018] 采用加入亚甲基蓝液验证,脱色率达到59.6%以上。
[0019] 验证实施例一
一种三维电极光电催化处理高盐高浓度有机废水的方法包括下述步骤:
按照实施例1的方法制备粒子电极和钛网光电极,在三维光电催化实验中,以150 ml的烧杯作为反应容器,以含有3 mol/L的Na2SO4与10 mg/L的亚甲基蓝溶液为模拟高盐有机废水,以制备的钛网光电极为主电极,填充T12/蛭石0.2 g与石墨0.8为复合粒子电极,20w紫外灯为光源,以HDV-7C晶体管恒电位仪保持2V电压,进行三维光电催化处理模拟废水。结果表明,三维光电催化60min的脱色率为59.6%。
[0020] 验证实施例二
一种三维电极光电催化处理高盐高浓度有机废水的方法,包括下述步骤:
按照实施例1的方法制备粒子电极和钛网光电极,在三维光电催化实验中,以150 ml的烧杯作为反应容器,以含有2 mol/L的Na2SO4与5 mg/L的亚甲基蓝溶液为模拟高盐有机废水,以制备的钛网光电极为主电极,填充T12/蛭石0.2 g与石墨0.8为复合粒子电极,20w紫外灯为光源,以HDV-7C晶体管恒电位仪保持2V电压,进行三维光电催化处理模拟废水。结果表明,三维光电催化60min的脱色率为65.2%。

Claims (1)

1.一种三维电极光电催化处理高盐高浓度有机废水的方法,其特征在于,包括下述工艺步骤: (1)、粒子电极的预处理: 蛭石和石墨分别粉碎,选择40-60目粒子,分别将蛭石超声清洗30 min,石墨超声清洗.90 min后,冲洗干净,分别在80°C下烘干,冷却后,密封保存备用; (2)、钛网预处理: 将钛网切割成面积30 mmX60 mm的小片,浸泡在质量分数为5%的Na2CO3溶液中,超声清洗30 min后取出用蒸馏水清洗,放入10%的冰醋酸溶液中,超声清洗30 min后,冲洗干净,烘干后密封保存备用; (3)、粒子电极的制备:采用溶胶凝-胶法制备T12负载型粒子电极,制备过程如下:首先将4-6 ml钛酸丁酯缓慢滴入到含10 -12ml无水乙醇和0.2 -0.4ml浓度1:3浓盐酸的小烧杯中,磁力搅拌器下搅拌20 min;同时在另一烧杯中,将0.2 -0.4 ml浓度1:3浓盐酸缓慢滴入到含有10 -12ml无水乙醇和0.2 -0.4ml蒸馈水的小烧杯中,磁力搅拌器下搅拌10 min;然后将两个烧杯中的溶液混合,均匀搅拌60min形成无色透明液体;再将l-3g预处理后的蛭石均匀平铺在培养皿中,将制备的透明液体缓慢均匀的倒进培养皿中,搅拌混合均匀,超声波震荡60min,然后自然干燥48小时,450-550°C煅烧2h,既得T12/蛭石粒子电极; (4)、钛网光电极的制备: 采用溶胶凝胶法制备T12光电极:取4-6 ml酞酸丁酯、0.5-0.7 g氯化锡,加入30_35ml异丙醇和20-22ml正丁醇,混合后不断搅拌,再加入0.01-0.02 g十六烷基三甲基溴化铵,Iml浓度65%的浓硝酸,搅拌60 min,制备成涂液,涂覆到经过预处理的钛片上,100 °C下干燥.15 min,重复该过程,涂覆3次,450-550°C煅烧2h,得到钛网光电极; (5)、在150ml的容器内,以HDV-7C晶体管恒电位仪为电源,与钛网光电极为主电极相连接,并填充T12/蛭石0.2-0.5g和石墨0.5-0.8g,再在反应容器中注入高盐有机废水,采用λ=253.7nm的20w紫外灯照射60min,即完成高盐有机废水的处理。
CN201510989366.0A 2015-12-28 2015-12-28 一种三维电极光电催化处理高盐高浓度有机废水的方法 Pending CN105540729A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510989366.0A CN105540729A (zh) 2015-12-28 2015-12-28 一种三维电极光电催化处理高盐高浓度有机废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510989366.0A CN105540729A (zh) 2015-12-28 2015-12-28 一种三维电极光电催化处理高盐高浓度有机废水的方法

Publications (1)

Publication Number Publication Date
CN105540729A true CN105540729A (zh) 2016-05-04

Family

ID=55820363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510989366.0A Pending CN105540729A (zh) 2015-12-28 2015-12-28 一种三维电极光电催化处理高盐高浓度有机废水的方法

Country Status (1)

Country Link
CN (1) CN105540729A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745529A (zh) * 2016-11-30 2017-05-31 山东大学 一种TiO2电催化活化过氧化氢的类电芬顿工作阴极及其制备方法与应用
CN107459101A (zh) * 2017-09-19 2017-12-12 辽宁大学 一种新型光电催化三维电极体系及其制备方法和应用
CN107857343A (zh) * 2017-11-16 2018-03-30 辽宁大学 一种基于复合粒子电极降解高盐染料废水的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948328A (en) * 1994-02-24 1999-09-07 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Shaping of microparticles in electric-field cages
CN101187646A (zh) * 2007-11-23 2008-05-28 东华大学 一种具有光电催化功能的粒子电极及制备和应用
CN102874960A (zh) * 2011-12-12 2013-01-16 湖北中碧环保科技有限公司 三维粒子光电同步耦合催化氧化处理高盐难降解有机工业废水的装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948328A (en) * 1994-02-24 1999-09-07 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Shaping of microparticles in electric-field cages
CN101187646A (zh) * 2007-11-23 2008-05-28 东华大学 一种具有光电催化功能的粒子电极及制备和应用
CN102874960A (zh) * 2011-12-12 2013-01-16 湖北中碧环保科技有限公司 三维粒子光电同步耦合催化氧化处理高盐难降解有机工业废水的装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
施中华: "三维粒子电极光电催化性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
王栾,郭佩佩,叶琴,李克娟,刘宏芳: "改性TiO2电极光电催化降解甲基橙", 《化工环保》 *
陈武等: "《环境污染治理的电化学技术》", 31 March 2013, 石油工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745529A (zh) * 2016-11-30 2017-05-31 山东大学 一种TiO2电催化活化过氧化氢的类电芬顿工作阴极及其制备方法与应用
CN106745529B (zh) * 2016-11-30 2020-06-30 山东大学 一种TiO2电催化活化过氧化氢的类电芬顿工作阴极及其制备方法与应用
CN107459101A (zh) * 2017-09-19 2017-12-12 辽宁大学 一种新型光电催化三维电极体系及其制备方法和应用
CN107857343A (zh) * 2017-11-16 2018-03-30 辽宁大学 一种基于复合粒子电极降解高盐染料废水的方法

Similar Documents

Publication Publication Date Title
CN105540729A (zh) 一种三维电极光电催化处理高盐高浓度有机废水的方法
Park et al. Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species
Wang et al. -Based Photocatalytic Process for Purification of Polluted Water: Bridging Fundamentals to Applications
Zhao et al. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor
CN103990493B (zh) 一种用于降解水中罗丹明b的可见光催化剂及其应用
Garcia-Segura et al. Mineralization of phthalic acid by solar photoelectro-Fenton with a stirred boron-doped diamond/air-diffusion tank reactor: Influence of Fe3+ and Cu2+ catalysts and identification of oxidation products
CN104944511B (zh) 一种光电催化去除废水中重金属离子的方法和装置
CN102208657A (zh) 一种Ag/AgBr@TiO2/CA电极的制备方法及其应用
CN104437551A (zh) 一种CuS修饰的固定化TiO2纳米带光催化剂的制备及使用方法
CN102974346B (zh) 玻璃基体上Cu2O/TiO2光催化剂及制法和应用
CN104607242A (zh) 一种5-羟基间苯二甲酸铀酰配合物光催化剂
Boyjoo et al. Photocatalytic treatment of shower water using a pilot scale reactor
Lei et al. Linear attenuation current input mode: A novel power supply mode for electrochemical oxidation process
CN104261548A (zh) 一种用于化学废水的新型氧化处理方法
CN103721713A (zh) 一种高效降解染料的三相复合可见光催化剂
Ratpukdi Degradation of paracetamol and norfloxacin in aqueous solution using vacuum ultraviolet (VUV) process
CN102774926B (zh) 一种垃圾渗滤液的高级氧化处理的方法
CN102491459B (zh) 一种非金属掺杂钛基薄膜电极、制备方法及其应用
CN104496094B (zh) 一种实验室高危废水处理仪及处理方法
CN203715331U (zh) 纳米二氧化钛光催化反应器
CN104128203A (zh) 一种磷酸银/树脂复合物及其应用
CN101058889A (zh) 一种提高PbO2电极降解效能的电极改性方法
CN108906126A (zh) 一种光与金属有机框架联合催化过氧化镁降解抗生素的方法
CN102826506A (zh) 一种基于可见光驱动的光电降解有机污染物制氢的方法和装置
CN103949200B (zh) 一种NiFe2O4/ZnO复合水处理材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160504

RJ01 Rejection of invention patent application after publication