CN105523676A - 一种高盐废水零排放蒸发结晶盐分质方法 - Google Patents

一种高盐废水零排放蒸发结晶盐分质方法 Download PDF

Info

Publication number
CN105523676A
CN105523676A CN201510981747.4A CN201510981747A CN105523676A CN 105523676 A CN105523676 A CN 105523676A CN 201510981747 A CN201510981747 A CN 201510981747A CN 105523676 A CN105523676 A CN 105523676A
Authority
CN
China
Prior art keywords
nitre
crystallization
connects
salt
import
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510981747.4A
Other languages
English (en)
Other versions
CN105523676B (zh
Inventor
权秋红
张建飞
石维平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beckett Group Co., Ltd.
Original Assignee
Bgt International Environment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bgt International Environment Technology Co Ltd filed Critical Bgt International Environment Technology Co Ltd
Priority to CN201510981747.4A priority Critical patent/CN105523676B/zh
Publication of CN105523676A publication Critical patent/CN105523676A/zh
Application granted granted Critical
Publication of CN105523676B publication Critical patent/CN105523676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/22Treatment of water, waste water, or sewage by freezing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop

Abstract

本发明涉及一种高盐废水零排放蒸发结晶盐分质方法,所述方法经预处理及深度浓缩后的高浓度盐浓缩液依次通过蒸发结晶装置、冷冻硝结晶装置和盐蒸发结晶装置按照硫酸钠、氯化钠或氯化钠、硫酸钠的分离顺序进行分质,硝蒸发结晶装置、盐蒸发结晶装置在分别利用蒸汽压缩机抽取并压缩二次蒸汽的条件下参照冷冻硝结晶所需温度通过蒸汽压缩机连接冷却水系统并利用冷却器和/或冷冻机冷冻硝结晶装置内部所需温度,使高浓度盐浓缩液实现溶剂再利用以及溶质的充分分质。本发明的高盐废水零排放蒸发结晶盐分质方法分离出的硫酸钠及商业盐作为工业可回收原料加以利用,重复利用水资源,达到污水低成本零排放,防止污水排放对环境造成的不利影响。

Description

一种高盐废水零排放蒸发结晶盐分质方法
技术领域
[0001]本发明涉及节能减排技术领域,尤其涉及一种高盐废水零排放蒸发结晶分质方法。
背景技术
[0002]近年来,随着石化、电力、冶金、煤化工等行业的快速发展,工业生产过程中产生的反渗透浓水、工业污水、循环排污水及部分工艺排水等含成分较复杂的污水量逐年增加,这些成分复杂的污水如何最终处置和再利用问题受到广泛的重视。随着国家对企业污水排放控制力度日趋严格,特别是在水资源匮乏地区,如何合理处置利用好这部分含成分复杂的污水,实现废水零排放,对保护我们赖以生存的周边环境和自然水体,进一步提高水资源的综合利用效率,缓解水资源紧张状况具有重要意义,目前污水处理回用在诸多废水处理技术中,利用反渗透膜法处理技术应用已经逐渐成为工业循环水处理污、废水回用、减量化等领域中的一种非常重要处理手段。
[0003]目前,针对高浓度盐且含难降解有机物废水的处理方法,主要有以下几种方案:
[0004]第一,对废水中的难降解有机物类物质采用强氧化性物质(主要有臭氧、双氧水等)进行催化氧化,使废水中难降解的有机物类物质进行有效降解,经氧化处理后的废水再进入生化单元对污水中的有机物进行去除,经过沉淀和过滤单元后直接排放;
[0005] 第二,将含钙镁硬度废水通过软化后,再通过二次反渗透装置进行减量处理进一步回收部分水量,减量化后产生的浓水直接排放;
[0006]第三,减量化后的高含盐浓水零排处置是高盐浓水利用多蒸发和结晶单元进行处理,形成混盐类,实现水的零排放。
[0007]综合分析以上三种方案,第一种方案只针对废水中的有机物进行有效处理消化,一般的污水处理都是经过较长的生化处理流程,废水中剩余部分有机物可生化性极差,甚至不能生化,因此,单靠化学催化氧化对该部分的去除效果是有限的,最主要的是上述方法对废水中无机盐成分基本无去除作用;第二种方案尽管从工艺上对原水进行一定减量处理,然而,反渗透浓水已经是将原水进行了至少4倍浓缩后的高盐废水,所有的钙离子、镁离子、重金属离子、硅离子等,以及不可生化的有机物等污染物质浓度已经很高,因此,普通的反渗透膜对该废水的回收率不高,甚至海水淡化膜也只能回收50%左右,所产生的浓水虽然进行减量但是产生的浓水水量还是比较大,仍然有占总处理水10%以上的较浓盐水对环境产生很大影响;第三种方案,对浓缩后高盐废水处理得较彻底,相对技术成熟,只是处理成本太高,过程中需要消耗大量蒸汽,根据最终浓水含盐浓度一般水处理成本在50元/吨以上,而且一般只分离一种盐或直接形成混盐,混盐作为危废物需要进行特殊处理,成本很高,该法对大量高盐水进行处理其投资费用及运行成本都非常高。
[0008]中国专利CN103508602B公开了一种膜与蒸发结晶集成的高盐度工业废水零排放的工艺,具体公开了将工业废水经超滤预处理后经过高压栗输送至反渗透过程,渗透测出水回用,对过滤多次后的浓缩液进行电渗析处理,经电渗析浓缩后的物料进行蒸发和结晶,得到盐泥和冷凝水。上述发明将膜与蒸发结晶耦合不仅能从高盐浓度的工业废水中回收高质量的净水,也能实现高盐废水的零排放,但是上述发明的物料经最后的蒸发结晶后只能得到盐泥的混合物,并且对于最终得到的盐泥也无法得到充分再利用,工业废水经超滤预处理并经过反渗透和电渗析处理后得到的高浓度盐浓缩液中含有多种成分,包括氯化钠硫酸钠等,直接放弃或排放会造成很大的浪费,形成的固危废也会对环境产生一定污染。
发明内容
[0009]针对现有技术之不足,本发明提供了一种高盐废水零排放蒸发结晶盐分质方法。本发明通过将工业污水、废水经预处理、反渗透得到的含盐浓水回收95%以上水量重新利用,剩余5%左右水量的较高浓盐水通过电驱动离子膜进行处理,进一步深度浓缩成比例达10%~12%的浓盐水,再进一步对高盐水深度浓缩达20%的浓盐液,经过硝蒸发结晶单元、盐蒸发结晶单元,分别结晶析出硫酸钠和氯化钠等分质盐。作为工业可回收原料加以利用变废为宝,充分重复利用水资源,达到污水低成本零排放,实现综合利用防止污水排放对环境造成的不利影响。
[0010]本发明提供了一种高盐废水零排放蒸发结晶盐分质方法,所述方法包括经预处理及减量化浓缩后的高浓度盐浓缩液依次通过硝蒸发结晶装置、冷冻硝结晶装置和盐蒸发结晶装置按照硫酸钠、氯化钠的分离顺序进行分质,所述硝蒸发结晶装置和所述盐蒸发结晶装置在分别利用第一蒸汽压缩机和第二蒸汽压缩机抽取并压缩二次蒸汽的条件下参照冷冻硝结晶所需温度通过所述第一蒸汽压缩机和所述第二蒸汽压缩机连接冷却水系统并利用冷却器和/或冷冻机保持所述冷冻硝结晶装置内部所需温度。
[0011 ]根据一个优选实施方式,所述分质方法还包括如下步骤:
[0012]将所述高浓度盐浓缩液在负压或微正压下由所述硝蒸发结晶装置进行蒸发结晶;
[0013]经蒸发结晶产生的硝母液经所述冷冻硝结晶装置冷冻结晶,经所述冷冻硝结晶装置产生的混合物通过冷冻硝离心分离器离心分离,离心产生的晶体再次返回与经所述硝蒸发结晶装置产生的硝液热融混合后再经离心分离器分离出硫酸钠晶体;
[0014]经所述冷冻硝离心分离器离心产生的冷冻硝母液经冷硝母液栗加入所述盐蒸发结晶装置并在负压下蒸发结晶得盐;
[0015]由所述硝蒸发结晶装置和所述盐蒸发结晶装置蒸发产生的二次蒸汽分别通过第一蒸汽压缩机和第二蒸汽压缩机抽取并分别由第一加热器和第二加热器提高温度后持续为所述硝蒸发结晶装置和所述盐蒸发结晶装置中的浓缩液提供热能。
[0016]根据一个优选实施方式,所述硝蒸发结晶装置和所述盐蒸发结晶装置蒸发产生的二次蒸汽分别通过所述第一蒸汽压缩机和所述第二蒸汽压缩机连接冷却水系统并通过冷冻机为所述第一蒸汽压缩机和所述第二蒸汽压缩机提供循环冷却水,同时所述冷冻机连接冷却器并通过冷硝循环栗保持所述冷冻硝结晶装置维持在-6〜_5°C。
[0017]根据一个优选实施方式,所述高浓度盐浓缩液在进行分质前,由含有复杂成分的废水依次经过预处理部分、回用与减量化部分后形成减量浓缩后的高浓度盐浓缩液。
[0018]根据一个优选实施方式,所述高浓度盐浓缩液通过增压栗进入原料进料预热器预热后经所述硝蒸发结晶装置进行负压或微正压蒸发结晶,所述硝蒸发结晶装置经硝循环栗连接所述第一加热器对所述硝蒸发结晶装置循环加热;所述硝蒸发结晶装置通过接连真空系统使所述硝蒸发结晶装置保持负压或不采用真空系统保持微正压状态。
[0019]根据一个优选实施方式,所述硝蒸发结晶装置在负压或微正压状态下,持续进行水分蒸发浓缩,所述硝蒸发结晶装置内高盐浓缩液的温度维持在100〜115°C。
[0020]根据一个优选实施方式,所述高浓度盐浓缩液经所述硝蒸发结晶装置蒸发结晶后进入硝稠厚器进行调整后进入离心分离装置,经离心后的硫酸钠晶体经烘干设备干燥后,进行计量包装得到商品硫酸钠。
[0021]根据一个优选实施方式,所述离心分离装置中产生的硝母液进入硝母液槽,并经硝母液栗进入所述冷冻硝结晶装置进行降温结晶。
[0022]根据一个优选实施方式,所述硝母液在所述冷冻硝结晶装置中进行结晶后排放至沉降器后进行调整,所述冷冻硝结晶装置连接冷却器并通过冷硝循环栗使所述冷冻硝结晶装置保持在-6〜_5°C,
[0023]所述冷冻硝母液通过冷冻硝母液栗进入预热器进行加热,然后进入所述盐蒸发结晶装置并在负压下进行蒸发结晶;
[0024]所述盐蒸发结晶装置通过循环栗连接第二加热器对所述盐蒸发结晶装置进行加热,所述盐蒸发结晶装置产生的二次蒸汽通过所述第二蒸汽压缩机抽取并经第二加热器提高温度后用于所述预热器内部液体的加热。
[0025]所述经盐蒸发结晶后的产物通过稠厚器进入盐离心分离器分离后,再将晶体经烘干得到商品盐。
[0026]根据本发明的另一个方面,本发明还提供了一种用于高盐废水零排放蒸发结晶分质方法的装置,所述装置包括:增压栗,所述增压栗连接原料进料预热器的第一进口;所述原料进料预热器的出料口连接硝蒸发结晶装置的第一进口,所述硝蒸发结晶装置的第一出口连接第一蒸汽压缩机的第一进口,所述硝蒸发结晶装置的第二出口连接硝循环栗的进口,所述硝循环栗的出口连接第一加热器的第一进口;所述第一蒸汽压缩机的第一出口连接第一加热器的第二进口,所述第一加热器的第一出口连接所述原料进料预热器的第二进口,所述第一加热器的第二出口连接硝蒸发结晶装置的第二进口,所述第一蒸汽压缩机的第二出口连接冷却水系统的第一进口,所述硝蒸发结晶装置的第三出口连接真空系统的第一进口;所述硝蒸发结晶装置的第四出口连接硝稠厚器的进料口;所述硝稠厚器的出料口连接离心分离器的进料口 ;所述离心分离器的第一出口连接硝母液槽的进料口,所述离心分离器的第二出口连接烘干装置的进口 ;所述硝母液槽的出料口连接硝母液栗的进料口,所述硝母液栗的出料口连接冷冻硝结晶装置的第一进口,所述冷冻硝结晶装置的第一出口连接沉降器的进料口,所述冷冻硝结晶装置的第二出口连接冷却器的第一进口,所述冷却器的第一出口连接冷冻机的第一进口,所述冷冻机的第一出口连接冷却水系统的第二进口,所述冷却器的第二出口连接冷硝循环栗的进口,所述冷硝循环栗的出口连接所述冷冻硝结晶装置的第二进口 ;所述沉降器的出料口连接冷冻硝离心分离器的进料口,所述冷冻硝离心分离器的第一出口连接冷冻硝母液槽的进料口,所述冷冻硝分离器的第二出口连接所述硝稠厚器的进料口 ;所述冷冻硝母液槽的出料口连接冷硝母液栗的进料口,所述冷硝母液栗的出料口连接预热器的第一进口,所述预热器的出料口连接盐蒸发结晶装置的第一进口;所述盐蒸发结晶装置的第一出口连接循环栗的进口,所述盐蒸发结晶装置的第二出口连接稠厚器的进料口,所述盐蒸发结晶装置的第三出口连接真空系统的第二进口;所述循环栗的出口连接第二加热器的第一进口,所述第二加热器的第一出口连接所述盐蒸发结晶装置的第二进口,所述第二加热器的第二出口连接所述预热器的第二进口;所述盐蒸发结晶装置的第四出口连接第二蒸汽压缩机的第一进口,所述第二蒸汽压缩机的第一出口连接所述第二加热器的第二进口,所述第二蒸汽压缩机的第二出口连接所述冷却水系统的第三进口,所述冷却水系统的第一出口连接所述第一蒸汽压缩机的第二进口,所述冷却水系统的第二出口连接所述第二蒸汽压缩机的第二进口,所述冷却水系统的第三出口连接所述冷冻机的第二进口,所述冷冻机的第二出口连接所述冷却器的第二进口 ;所述稠厚器的出料口连接盐离心分离器的进料口,所述盐离心分离器的出料口连接烘干装置的进口。
[0027]本发明的有益技术效果在于:
[0028] 1、本发明采用化学方法先将污水中的重金属离子、钙镁等硬度离子有效去除,同时也去除了大部分的⑶D有机胶体物质等,防止料液在进入反渗透系统后对反渗透膜表面造成有机物污染以及由于钙镁结垢的堵塞问题。
[0029] 2、本发明通过采用管式微滤装置和树脂作为反渗透单元,将化学反应生成的沉淀物、混凝物胶体物质等进一步去除,分别再通过中压反渗透、高压反渗透减量化浓缩液使TDS达到约50000mg/L,使系统回收率达到85%左右。通过两级电驱动离子膜进一步浓缩使得整个工艺流程达到回收水量95 %以上,TDS约为200000mg/L。
[0030] 3、本发明通过将经预处理和深度浓缩产生的浓盐液经过蒸发结晶后得到部分硫酸钠,然后又进一步通过冷冻硝结晶装置低温结晶得到固体结晶芒硝,产生的芒硝再次返回与硝蒸发结晶装置产生的热融液混合循环处理,充分析出浓盐液中的硫酸钠晶体。浓缩液经分离出硫酸钠后再通过盐蒸发结晶装置进行结晶蒸发盐,实现硝盐分离的效果,并且整个蒸发处理过程实现了零排放。
[0031] 4、本发明的硝蒸发结晶装置和盐蒸发结晶装置分别通过第一蒸汽压缩机和第二蒸汽压缩机抽取内部蒸发产生的二次蒸汽一方面分别通过第一加热器和第二加热器提高温度后对硝蒸发结晶装置和盐蒸发结晶装置内的液体进行加热,另一方面通过第一蒸汽压缩机和第二蒸汽压缩机抽取的二次蒸汽同时连接冷却水系统并通过冷冻机和冷却器为冷冻硝结晶装置提供所需温度,实现高盐废水溶剂充分利用,减少能耗的目的。
附图说明
[0032]图1是本发明的一种高盐废水零排放蒸发结晶盐分质方法的流程图
[0033] 附图标记列表
[0034] 11:增压栗 12:原料进料预热器 13:硝蒸发结晶装置
[0035] 14:硝稠厚器 15:离心分离器 16:第一蒸汽压缩机
[0036] 17:第一加热器 18:硝母液槽 19:硝母液栗
[0037] 20:冷冻硝结晶装置 21:沉降器 22:冷冻硝离心分离器
[0038] 23:冷冻硝母液槽 24:冷硝母液栗 25:预热器
[0039] 26:真空系统 27:盐蒸发结晶装置 28:循环栗
[0040] 29:第二加热器 30:生蒸汽 31:第二蒸汽压缩机
[0041] 32:稠厚器 33:盐离心分离器 34:硝循环栗
[0042] 35:冷却水系统 36:冷冻机 37:冷却器
[0043] 38:冷冻硝循环栗
具体实施方式
[0044]下面结合附图进行详细说明。本发明提供了一种高盐废水零排放蒸发结晶盐分质方法。所述方法包括将高浓度盐浓缩液进行分质分离,所述盐浓缩液在进行分质分离前,由含有复杂成分的废水经过预处理、处理减量化后形成减量浓缩后的高浓度盐浓缩液。
[0045]本发明的高浓缩盐浓缩液在进行分质分离前,包括对污废水进行预处理部分、回用与减量化部分。所述预处理部分需要的装置包括调节池、提升栗、高密池、增压栗、管式微滤器、、滤芯过滤器以及污泥池、污泥脱水等设备组成。工业污废水中含有的成分复杂的含盐废水首先通过调节池进行均质和均量,然后通过提升栗将原水送入高密池,高密池通过加药装置依次加入石灰或氢氧化钠、碳酸钠、PAC、PAM进行混凝、软化反应。根据本发明的一种优选实施方式,所述氢氧化钠或石灰的所需量为1.5g/L的20%浓度的溶液;所述碳酸钠的所需量为3g/L的15 %浓度的溶液;所述PAC的所需量为30mg/L的20 %浓度的溶液;所述PAM的所需量为3mg/L的0.3 %浓度的溶液。上述加药装置所添加的试剂可根据水质中所含有的离子浓度进行调整。经过高密池反应产生的沉淀物及絮凝物进入污泥池并通过污泥脱水后干化处理。经过高密池处理后的产水经增压栗进入管式微滤器,管式微滤器为反渗透处理的预处理单元,其孔径为1-5微米,能够将在高密池中化学反应产生的沉淀物、混凝胶体物质进一步去除。再通过滤芯过滤器使前端预处理的废水达到符合后续反渗透进入所需的SDI指标,降低对后续反渗透膜产生的有机物污染、无机物污堵现象。经过滤芯过滤器过滤后的上清溶液进入中间水池,从管式微滤器产生的化学沉淀返回高密池通过重力沉降从底部排入污泥池,经过调整后,进入污泥脱水设备进行泥水分离,成为泥饼后的干污泥最终进行干污泥处置,压滤脱水再进入调节池与原水混合循环处理。
[0046]本发明的废水处理的回用与减量化部分包括中间水池、增压栗、保安过滤器、中压反渗透装置、二级反渗透膜、高压反渗透装置、淡水水箱、浓盐水箱、活性炭过滤器、树脂罐、电驱动离子膜等。经过预处理后的废水去除大部分的硬度及易结垢离子和部分COD后,进入中间水池收集,利用增压栗提升料液压力后依次使其通过保安过滤器和中压反渗透装置。根据本发明的一种优选实施方式,中压反渗透装置采用特种浓缩抗污染中压膜元件GTR3-8040F-65,流道宽度为80mil。经过中压反渗透装置后70%原水的产水经过二级反渗透膜后进入淡水水箱回用,经二级反渗透膜产生的浓离子水再返回预处理后的中间水池进行循环处理。经过中压反渗透装置后30%原水的反渗透浓液进入中间浓水池,经增压栗提升浓水压力通过保安过滤器作为高压反渗透装置的进水。根据本发明的一种优选实施方式,高压反渗透装置采用特种浓缩抗污染高压膜元件GTR4-8040F-80,流道宽度为80mil,经过高压反渗透装置65%进水的产水经二级反渗透膜进入淡水水箱回用。35%进水的反渗透浓水进入中间浓水池收集后通过增压水栗进入活性炭过滤器进行过滤,然后进入树脂罐进行除硬后进入中间水箱,通过增压水栗经保安过滤器进入一级电驱动离子膜进行深度减量化处理。经过一级电驱动离子膜约75%的脱盐水返回二级反渗透膜进入淡水水箱回收,经一级电驱动离子膜后25%的进水进入浓盐水箱收集后经增压水栗进入二级电驱动离子膜进一步进行深度减量化处理。经二级电驱动离子膜处理后的浓盐水进入浓盐水箱用于后续蒸发结晶盐分质,淡水再次返回中压反渗透装置后的中压水池循环处理。通过上述减量化部分处理,约95%以上的优质脱盐水回用。
[0047]图1示出了本发明的高盐废水零排放蒸发结晶分质方法的流程图,如图1所示,经上述深度浓缩后的剩余约5%的浓缩盐液自浓盐水箱通过增压栗11进入原料进料预热器12,经预热后进入硝蒸发结晶装置13将所述高浓度盐浓缩液在负压下由硝蒸发结晶装置13进行蒸发结晶;所述硝蒸发结晶装置13经硝循环栗34连接第一加热器17对所述硝蒸发结晶装置13循环加热;所述硝蒸发结晶装置13通过接连真空系统26使所述硝蒸发结晶装置13保持负压。
[0048]第一加热器17最初由生蒸汽通过第一加热器17提温后对硝蒸发结晶装置13进行加热,之后利用第一蒸汽压缩机16进行抽取蒸发后的二次蒸汽压缩通过第一加热器17提高温度后替代生蒸汽对原料进行持续加热。由所述硝蒸发结晶装置13蒸发产生的二次蒸汽通过第一蒸汽压缩机16并由第一加热器17提高温度后持续为所述硝蒸发结晶装置13中的盐浓缩液提供热能。第一加热器17提温后的蒸汽可以用于原料进料预热器内部液体的预热。硝蒸发结晶装置13在负压状态或微正压下,持续进行水量蒸发浓缩使料液维持在100-115°C,优选 110°C。
[0049] 经蒸发结晶后的固液混合物进入硝稠厚器14进行调整,随后进入离心分离器15进行离心分离。分离出的硫酸钠经烘干干燥通过计量包装得到商品硫酸钠。经蒸发结晶后离心分离产生的硝母液进入硝母液槽18收集,后经硝母液栗19进入冷冻硝结晶装置20冷冻结晶。所述硝母液在所述冷冻结晶装置20中进行低温结晶后排放至沉降器21后进行调整,所述冷冻硝结晶装置20连接冷却器37通过冷硝循环栗38使所述冷冻硝结晶装置20保持低温。冷冻硝结晶装置20通过冷却器37连接冷冻机36和冷冻循环栗38循环冷却,使其内部母液达到-6〜-5°C。经冷冻硝结晶装置20冷却结晶后进入沉降器21,通过冷冻硝离心分离器22离心产生芒硝晶体和冷冻硝母液,所述芒硝晶体再次返回与经所述硝蒸发结晶装置13产生的硝液热融混合后经离心分离器15分离出硫酸钠;所述冷冻硝母液进入冷冻硝母液槽23经冷硝母液栗24加入盐蒸发结晶装置27在负压下蒸发结晶得盐。
[0050]所述冷冻硝母液在冷冻硝母液槽23收集并通过冷冻硝母液栗24首先进入预热器25进行加热,然后进入盐蒸发结晶装置27在负压下进行蒸发结晶;真空系统26用于维持所述盐蒸发结晶装置27内保持负压,所述盐蒸发结晶装置27通过循环栗28连接第二加热器29对所述盐蒸发结晶装置27进行加热,所述盐蒸发结晶装置27产生的二次蒸汽通过第二蒸汽压缩机31抽取并经第二加热器29提高温度后用于所述预热器25内部液体的加热。
[0051]所述第二加热器29—方面可用于加热盐蒸发结晶装置内部液体,另一方面可用于预热器25内部液体的预热。用于盐蒸发结晶装置27加热的最初热量来自生蒸汽30通过第二加热器29进行加热,之后利用第二蒸汽压缩机31抽取蒸发后的低温二次蒸汽压缩提高温度替代生蒸汽对原液进行持续加热,盐蒸发产生的二次蒸汽循环加热。盐蒸发结晶装置27在负压状态下,持续进行水量蒸发浓缩,使内部料液温度维持在50-60°C。所述经盐蒸发结晶后的产物通过稠厚器32进入盐离心分离器33再经烘干得到商品盐。
[0052]另外如图1所示,所述硝蒸发结晶装置13和盐蒸发装置27蒸发产生的二次蒸汽同时利用第一蒸汽压缩机16和第二蒸汽压缩机31连接冷却水系统35通过冷冻机36为所述第一蒸汽压缩机16和第二蒸汽压缩机31循环提供冷却水,同时所述冷冻机36连接冷却器37通过冷硝循环栗38保持所述冷冻硝结晶装置20所需温度,实现充分利用高浓度浓缩液中的溶剂并充分分离溶质的目的。由于在硝蒸发结晶装置13和盐蒸发结晶装置27的蒸发过程中,二次蒸汽的蒸发会夹带大量的液体,为了防止损失有用的产品或者防止污染冷凝液,需要在硝蒸发结晶装置13和盐蒸发结晶装置27中加入微量的消泡剂。
[0053]本发明首先采用化学方法将重金属离子、钙镁等硬度离子在进入浓水反渗透之前进行有效的去除,同时通过混凝、吸附的作用去除大部分C0D、有机胶体物质降低浓度,然后再进入反渗透系统,使反渗透膜表面避免了有机物污染和钙镁结垢的污堵问题。另外本发明采用管式微滤装置和树脂除硬作为反渗透进水预处理单元,将化学反应生成的沉淀物、混凝胶体物质等进一步得到去除,使前段预处理即达到符合后续反渗透进水的SDI指标,降低了对后续反渗透产生的有机物污染、无机物的污堵,使整个系统处理废水工艺更趋于合理,保证了系统长期、稳定、可靠运行。
[0054]另外,本发明的中压反渗透装置采用流道宽度为65mil(约1.65mm)的特种浓缩抗污染中压膜元件,高压反渗透装置采用流道宽度为SOmil(约2.03mm)的特种浓缩抗污染高压膜元件,高压膜元件具有超大流道的特点,特殊的流道和结构设计,使反渗透膜更不易发生离子结垢和有机物的污堵。
[0055]本发明的废水零排放工艺经深度减量化部分对中压反渗透装置和高压反渗透装置产生的高含盐水进一步减量化处理,利用高效电驱动离子膜对反渗透装置产生的浓水进一步浓缩,使高盐水从TDS 50000mg/L经一级电驱动离子膜提高到120000mg/L,经过二级电驱动离子膜提高到200000mg/L以上,与常规多效蒸发减少较低浓度的蒸发水量相比,大幅度降低蒸发水量,节省能耗,整个工艺流程减量化达到回收水量95%以上,TDS约为200000mg/L的浓盐液作为蒸发结晶单元原料水。
[0056]根据本发明的另一个方面,本发明提供了一种用于高盐废水零排放蒸发结晶分质方法的装置,所述装置包括:增压栗11,所述增压栗11的出口连接原料进料预热器12的第一进口 ;所述增压栗11的进口连接浓盐水箱的出口;所述原料进料预热器的出料口连接硝蒸发结晶装置13的第一进口,所述硝蒸发结晶装置13的第一出口连接第一蒸汽压缩机16的第一进口,所述硝蒸发结晶装置13的第二出口连接硝循环栗34的进口,硝循环栗34的出口连接第一加热器17的第一进口 ;所述第一蒸汽压缩机16的第一出口连接第一加热器17的第二进口,第一加热器17的第一出口连接原料进料预热器12的第二进口,所述第一加热器17的第二出口连接硝蒸发结晶装置13的第二进口,所述第一蒸汽压缩机16的第二出口连接冷却水系统35的第一进口,硝蒸发结晶装置13的第三出口连接真空系统26的第一进口;硝蒸发结晶装置13的第四出口连接硝稠厚器14的进料口;所述硝稠厚器14的出料口连接离心分离器15的进料口;离心分离器15的第一出口连接硝母液槽18的进料口,离心分离器15的第二出口连接烘干装置的进口 ;硝母液槽18的出料口连接硝母液栗19的进料口,硝母液栗19的出料口连接冷冻硝结晶装置20的第一进口,所述冷冻硝结晶装置20的第一出口连接沉降器21的进料口,冷冻硝结晶装置20的第二出口连接冷却器37的第一进口,所述冷却器37的第一出口连接冷冻机36的第一进口,所述冷冻机36的第一出口连接冷却水系统35的第二进口,所述冷却器37的第二出口连接冷硝循环栗38的进口,所述冷硝循环栗38的出口连接所述冷冻硝结晶装置20的第二进口;所述沉降器21的出料口连接冷冻硝离心分离器22的进料口,所述冷冻硝离心分离器22的第一出口连接冷冻硝母液槽23的进料口,所述冷冻硝分离器22的第二出口连接所述硝稠厚器14的进料口;所述冷冻硝母液槽23的出料口连接冷硝母液栗24的进料口,所述冷硝母液栗24的出料口连接预热器25的第一进口,所述预热器25的出料口连接盐蒸发结晶装置27的第一进口;所述盐蒸发结晶装置27的第一出口连接循环栗28的进口,所述盐蒸发结晶装置27的第二出口连接稠厚器32的进口,所述盐蒸发结晶装置27的第三出口连接真空系统26的第二进口;所述循环栗28的出口连接第二加热器29的第一进口,所述第二加热器29的第一出口连接所述盐蒸发结晶装置27的第二进口,所述第二加热器29的第二出口连接所述预热器25的第二进口;所述盐蒸发结晶装置27的第四出口连接第二蒸汽压缩机31的第一进口,所述第二蒸汽压缩机31的第一出口连接所述第二加热器29的第二进口,所述第二蒸汽压缩机31的第二出口连接所述冷却水系统35的第三进口,所述冷却水系统35的第一出口连接所述第一蒸汽压缩机16的第二进口,所述冷却水系统35的第二出口连接所述蒸汽压缩机31的第二进口,所述冷却水系统35的第三出口连接所述冷冻机36的第二进口,所述冷冻机36的第二出口连接所述冷却器37的第二进口 ;所述稠厚器32的出料口连接盐离心分离器33的进料口,所述盐离心分离器33的出料口连接烘干装置的进
□ O
[0057] 实施例1
[0058] 取TDS为200000mg/L的经预处理及减量化处理后的高浓度盐浓缩液,通过增压栗11进入原料进料预热器12进行预热,之后进入硝蒸发结晶装置13。先通入生蒸汽通过第一加热器17使硝蒸发结晶装置内部料液沸腾后,再利用第一蒸汽压缩机16将蒸发产生的二次蒸汽抽取并压缩提温后替代生蒸汽对料液进行循环加热,使硝蒸发结晶装置13内部温度保持在110°C。压缩后的二次蒸汽经过热交换后变成低温冷凝水进入冷却水系统35,进一步通过冷冻机36和冷却器37降低冷冻硝结晶装置内部温度。硝蒸发结晶装置13内产生的混合物进入硝稠厚器14进行调整后通过离心分离器15分离出蒸发结晶产生的硫酸钠晶体。离心分离后的硝母液进入硝母液槽18收集后通过硝母液栗19进入冷冻硝结晶装置20。冷冻硝结晶装置20利用冷却水系统35通过冷冻机36及冷却器37保持内部温度为-5°C。冷冻结晶后的混合物进入冷冻硝离心分离器22离心,离心产生的晶体再次返回进入硝稠厚器14与硝蒸发结晶产生的物料热融再通过离心分离器分离产生硫酸钠晶体,后经烘干干燥后进行包装。所得硫酸钠晶体的浓度达到96 %。
[0059]经冷冻硝离心分离器22产生的母液进入冷冻硝母液槽23进行收集后经冷硝母液栗24进入预热器25进行预热后进入盐蒸发结晶装置27进行低温蒸发。盐蒸发结晶装置27先通过生蒸汽利用第二加热器29提温后对其加热,然后利用蒸汽压缩机31抽取盐蒸发产生的二次蒸汽压缩提温后使盐蒸发结晶装置27内部温度保持在50°C。压缩后的二次蒸汽经过热交换后变成低温冷凝水进入冷却水系统35,进一步通过冷冻机36和冷却器37降低冷冻硝结晶装置内部温度。真空系统用来保持盐蒸发结晶装置27和硝蒸发结晶装置13内部负压的状态或不采用真空系统保持微正压状态。
[0060]经验蒸发结晶产生的混合物料进入稠厚器32调整后进入盐离心分离器33进行离心分离,将分离产生的氯化钠晶体烘干干燥进行包装。所得氯化钠浓度达98%。
[0061] 实施例2
[0062] 取TDS为210000mg/L的经预处理及减量化处理后的高浓度盐浓缩液,通过增压栗11进入原料进料预热器12进行预热,之后进入硝蒸发结晶装置13。先通入生蒸汽通过第一加热器17使硝蒸发结晶装置内部料液沸腾后,再利用第一蒸汽压缩机16将蒸发产生的二次蒸汽抽取并压缩提温后替代生蒸汽对料液进行循环加热,使硝蒸发结晶装置13内部温度保持在100°C。压缩后的二次蒸汽经过热交换后变成低温冷凝水进入冷却水系统35,进一步通过冷冻机36和冷却器37降低冷冻硝结晶装置内部温度。硝蒸发结晶装置13内产生的混合物进入硝稠厚器14进行调整后通过离心分离器15分离出蒸发结晶产生的硫酸钠晶体。离心分离后的硝母液进入硝母液槽18收集后通过硝母液栗19进入冷冻硝结晶装置20。冷冻硝结晶装置20利用冷却水系统35通过冷冻机36及冷却器37保持内部温度为-6°C。冷冻结晶后的混合物进入冷冻硝离心分离器22离心,离心产生的晶体再次返回进入硝稠厚器14与硝蒸发结晶产生的混合物热融再通过离心分离器分离产生硫酸钠晶体,后经烘干干燥后进行包装。所得硫酸钠晶体的浓度达到97%。
[0063]经冷冻硝离心分离器22产生的母液进入冷冻硝母液槽23进行收集后经冷硝母液栗24进入预热器25进行预热后进入盐蒸发结晶装置27进行低温蒸发。盐蒸发结晶装置27先通过生蒸汽利用第二加热器29提温后对其加热,然后利用蒸汽压缩机31抽取盐蒸发产生的二次蒸汽压缩提温后使盐蒸发结晶装置27内部保持在60°C。压缩后的二次蒸汽经过热交换后变成低温冷凝水进入冷却水系统35,进一步通过冷冻机36和冷却器37降低冷冻硝结晶装置内部温度。真空系统用来保持盐蒸发结晶装置27和硝蒸发结晶装置13内部负压的状态或不采用真空系统保持微正压状态。
[0064]经验蒸发结晶产生的混合物料进入稠厚器32调整后进入盐离心分离器33进行离心分离,将分离产生的氯化钠晶体烘干干燥进行包装。所得氯化钠浓度达99%。
[0065] 实施例3
[0066] 取TDS为220000mg/L的经预处理及减量化处理后的高浓度盐浓缩液,通过增压栗11进入原料进料预热器12进行预热,之后进入硝蒸发结晶装置13。先通入生蒸汽通过第一加热器17使硝蒸发结晶装置内部料液沸腾后,再利用第一蒸汽压缩机16将蒸发产生的二次蒸汽抽取并压缩提温后替代生蒸汽对料液进行循环加热,使硝蒸发结晶装置13内部温度保持在115°C。压缩后的二次蒸汽经过热交换后变成低温冷凝水进入冷却水系统35,进一步通过冷冻机36和冷却器37降低冷冻硝结晶装置内部温度。硝蒸发结晶装置13内产生的物料进入硝稠厚器14进行调整后通过离心分离器15分离出蒸发结晶产生的硫酸钠晶体。离心分离后的硝母液进入硝母液槽18收集后通过硝母液栗19进入冷冻硝结晶装置20 ο冷冻硝结晶装置20利用冷却水系统35通过冷冻机36及冷却器37保持内部温度为-5°C。冷冻结晶后的混合物进入冷冻硝离心分离器22离心,离心产生的晶体再次返回进入硝稠厚器14与硝蒸发结晶产生的物料热融再通过离心分离器分离产生硫酸钠晶体,后经烘干干燥后进行包装。所得硫酸钠晶体的浓度达到98%。
[0067]经冷冻硝离心分离器22产生的母液进入冷冻硝母液槽23进行收集后经冷硝母液栗24进入预热器25进行预热后进入盐蒸发结晶装置27进行低温蒸发。盐蒸发结晶装置27先通过生蒸汽利用第二加热器29提温后对其加热,然后利用第二蒸汽压缩机31抽取盐蒸发产生的二次蒸汽压缩提温后使盐蒸发结晶装置27内部温度保持在55°C。压缩后的二次蒸汽经过热交换后变成低温冷凝水进入冷却水系统35,进一步通过冷冻机36和冷却器37降低冷冻硝结晶装置内部温度。真空系统用来保持盐蒸发结晶装置27和硝蒸发结晶装置13内部负压的状态或不采用真空系统保持微正压状态。
[0068]经验蒸发结晶产生的混合物料进入稠厚器32调整后进入盐离心分离器33进行离心分离,将分离产生的氯化钠晶体烘干干燥进行包装。所得氯化钠浓度达98.5%。
[0069]本发明的零排工艺蒸发结晶,经过前述两级减量化过程,形成的高浓度盐液进入蒸发结晶的预热器、硝蒸发结晶装置,在负压状态下进行蒸发结晶。利用生蒸汽提供初步热量加热盐液至沸腾,然后利用蒸发产生的低温二次乏汽通过蒸汽压缩机进行压缩提高乏汽的温度,实现持续为硝罐盐液提供热能。利用水盐体系Na+/Cl—,S042—-H20相图,进行硫酸钠和氯化钠的结晶分离,根据相图采用低温冷冻方式进一步分离出芒硝,把芒硝回溶到结晶罐与待分离的料液共同进行热融析出硫酸钠,最终达到对硫酸钠和氯化钠进行分质分离。同时利用蒸汽压缩机抽取蒸发产生的二次蒸汽用于循环冷却水系统,利用冷冻机和冷却器为冷冻硝结晶装置内保持低温。实现充分利用溶剂和分离溶质的效果。本发明的分质盐分离硫酸钠浓度可达96%以上,氯化钠浓度98%以上,最终混盐占总盐量5%以下,产水全部回收利用,无废水排放,达到废水零排放的效果。
[0070]需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。

Claims (10)

1.一种高盐废水零排放蒸发结晶盐分质方法,其特征在于,所述方法包括经预处理及深度浓缩后的高浓度盐浓缩液依次通过硝蒸发结晶装置(13)、冷冻硝结晶装置(20)和盐蒸发结晶装置(27)按照硫酸钠、氯化钠的分离顺序进行分质,所述硝蒸发结晶装置(13)和所述盐蒸发结晶装置(27)在分别利用第一蒸汽压缩机(16)和第二蒸汽压缩机(31)抽取并压缩二次蒸汽的条件下参照冷冻硝结晶所需温度通过所述第一蒸汽压缩机(16)和所述第二蒸汽压缩机(31)连接冷却水系统(35)并利用冷却器(37)和/或冷冻机(36)保持所述冷冻硝结晶装置(20)内部所需温度。
2.根据权利要求1所述的高盐废水零排放结晶盐分质方法,其特征在于,所述分质方法还包括如下步骤: 将所述高浓度盐浓缩液在负压或微正压下由所述硝蒸发结晶装置(13)进行蒸发结晶; 经蒸发结晶产生的硝母液经所述冷冻硝结晶装置(20)冷冻结晶,经所述冷冻硝结晶装置(20)产生的混合物通过冷冻硝离心分离器(22)离心,离心产生的晶体再次返回与经所述硝蒸发结晶装置(13)产生的硝液热融混合后再经离心分离器(15)分离出硫酸钠晶体; 经所述冷冻硝离心分离器(22)离心产生的冷冻硝母液经冷硝母液栗(24)加入所述盐蒸发结晶装置(27)并在负压下蒸发结晶得盐; 由所述硝蒸发结晶装置(13)和所述盐蒸发结晶装置(27)蒸发产生的二次蒸汽分别通过第一蒸汽压缩机(16)和第二蒸汽压缩机(31)抽取并分别由第一加热器(17)和第二加热器(29)提高温度后持续为所述硝蒸发结晶装置(13)和所述盐蒸发结晶装置(27)中的浓缩液提供热能。
3.根据权利要求2所述的高盐废水零排放蒸发结晶盐分质方法,其特征在于,所述硝蒸发结晶装置(13)和所述盐蒸发结晶装置(27)蒸发产生的二次蒸汽分别通过所述第一蒸汽压缩机(16)和所述第二蒸汽压缩机(31)连接冷却水系统(35)并通过冷冻机(36)为所述第一蒸汽压缩机(16)和所述第二蒸汽压缩机(31)提供循环冷却水,并且所述冷冻机(36)连接冷却器(37)并通过冷硝循环栗(38)保持所述冷冻硝结晶装置(20)维持在-6〜-5°C。
4.如权利要求1-3之一所述的高盐废水零排放蒸发结晶盐分质方法,其特征在于,所述高浓度盐浓缩液在进行分质前,由含有复杂成分的废水依次经过预处理部分、回用与减量化部分后形成减量浓缩后的高浓度盐浓缩液。
5.如权利要求2或3所述的高盐废水零排放蒸发结晶分质方法,其特征在于,所述高浓度盐浓缩液通过增压栗(11)进入原料进料预热器(12)预热后经所述硝蒸发结晶装置(13)进行负压或微正压蒸发结晶,所述硝蒸发结晶装置(13)经硝循环栗(34)连接所述第一加热器(17)对所述硝蒸发结晶装置(13)循环加热;所述硝蒸发结晶装置(13)通过接连真空系统(26)使所述硝蒸发结晶装置(13)保持负压。
6.如权利要求1-3之一所述的高盐废水零排放蒸发结晶分质方法,其特征在于,所述硝蒸发结晶装置(13)在负压或微正压状态下,持续进行水分蒸发浓缩,所述硝蒸发结晶装置(13)内高盐浓缩液的温度维持在100〜115°C。
7.如权利要求1-3之一所述的高盐废水零排放蒸发结晶分质方法,其特征在于,所述高浓度盐浓缩液经所述硝蒸发结晶装置(13)蒸发结晶后进入硝稠厚器(14)进行调整后进入离心分离装置(15),经离心后的硫酸钠晶体经烘干设备干燥后,进行计量包装得到商品硫酸钠。
8.如权利要求1-3之一所述的高盐废水零排放蒸发结晶分质方法,其特征在于,所述离心分离装置(15)中产生的硝母液进入硝母液槽(18),并经硝母液栗(19)进入所述冷冻硝结晶装置(20)进行降温结晶。
9.如权利要求1-3之一所述的高盐废水零排放蒸发结晶分质方法,其特征在于,所述硝母液在所述冷冻硝结晶装置(20)中进行结晶后排放至沉降器(21)后进行调整,所述冷冻硝结晶装置(20)连接冷却器(37)并通过冷硝循环栗(38)使所述冷冻硝结晶装置(20)保持在-6 〜_5°C ; 所述冷冻硝母液通过冷冻硝母液栗(24)进入预热器(25)进行加热,然后进入所述盐蒸发结晶装置(27)并在负压下进行蒸发结晶; 所述盐蒸发结晶装置(27)通过循环栗(28)连接第二加热器(29)对所述盐蒸发结晶装置(27)进行加热,所述盐蒸发结晶装置(27)产生的二次蒸汽通过所述第二蒸汽压缩机(31)抽取并经第二加热器(29)提高温度后用于所述预热器(25)内部液体的加热。 所述经盐蒸发结晶后的产物通过稠厚器(32)进入盐离心分离器(33)分离后,再将晶体经烘干得到商品盐。
10.—种用于权利要求1-9所述的高盐废水零排放蒸发结晶分质方法的装置,其特征在于,所述装置包括:增压栗(U),所述增压栗(11)连接原料进料预热器(12)的第一进口;所述原料进料预热器的出料口连接硝蒸发结晶装置(13)的第一进口,所述硝蒸发结晶装置(13)的第一出口连接第一蒸汽压缩机(16)的第一进口,所述硝蒸发结晶装置(13)的第二出口连接硝循环栗(34)的进口,所述硝循环栗(34)的出口连接第一加热器(17)的第一进口 ;所述第一蒸汽压缩机(16)的第一出口连接第一加热器(17)的第二进口,所述第一加热器(17)的第一出口连接所述原料进料预热器(12)的第二进口,所述第一加热器(17)的第二出口连接硝蒸发结晶装置(13)的第二进口,所述第一蒸汽压缩机(16)的第二出口连接冷却水系统(35)的第一进口,所述硝蒸发结晶装置(13)的第三出口连接真空系统(26)的第一进口;所述硝蒸发结晶装置(13)的第四出口连接硝稠厚器(14)的进料口;所述硝稠厚器(14)的出料口连接离心分离器(15)的进料口;所述离心分离器(15)的第一出口连接硝母液槽(18)的进料口,所述离心分离器(15)的第二出口连接烘干装置的进口;所述硝母液槽(18)的出料口连接硝母液栗(19)的进料口,所述硝母液栗(19)的出料口连接冷冻硝结晶装置(20)的第一进口,所述冷冻硝结晶装置(20)的第一出口连接沉降器(21)的进料口,所述冷冻硝结晶装置(20)的第二出口连接冷却器(37)的第一进口,所述冷却器(37)的第一出口连接冷冻机(36)的进口,所述冷冻机(36)的第一出口连接冷却水系统(35)的第二进口,所述冷却器(37)的第二出口连接冷硝循环栗(38)的进口,所述冷硝循环栗(38)的出口连接所述冷冻硝结晶装置(20)的第二进口;所述沉降器(21)的出料口连接冷冻硝离心分离器(22)的进料口,所述冷冻硝离心分离器(22)的第一出口连接冷冻硝母液槽(23)的进料口,所述冷冻硝分离器(22)的第二出口连接所述硝稠厚器(14)的进料口;所述冷冻硝母液槽(23)的出料口连接冷硝母液栗(24)的进料口,所述冷硝母液栗(24)的出料口连接预热器(25)的第一进口,所述预热器(25)的出料口连接盐蒸发结晶装置(27)的第一进口 ;所述盐蒸发结晶装置(27)的第一出口连接循环栗(28)的进口,所述盐蒸发结晶装置(27)的第二出口连接稠厚器(32)的进口,所述盐蒸发结晶装置(27)的第三出口连接真空系统(26)的第二进口;所述循环栗(28)的出口连接第二加热器(29)的第一进口,所述第二加热器(29)的第一出口连接所述盐蒸发结晶装置(27)的第二进口,所述第二加热器(29)的第二出口连接所述预热器(25)的第二进口;所述盐蒸发结晶装置(27)的第四出口连接第二蒸汽压缩机(31)的第一进口,所述第二蒸汽压缩机(31)的第一出口连接所述第二加热器(29)的第二进口,所述第二蒸汽压缩机(31)的第二出口连接所述冷却水系统(35)的第三进口,所述冷却水系统(35)的第一出口连接所述第一蒸汽压缩机(16)的第二进口,所述冷却水系统(35)的第二出口连接所述第二蒸汽压缩机(31)的第二进口,所述冷却水系统(35)的第三出口连接所述冷冻机(36)的第二进口,所述冷冻机(36)的第二出口连接所述冷却器(37)的第二进口 ;所述稠厚器(32)的出料口连接盐离心分离器(33)的进料口,所述盐离心分离器(33)的出料口连接烘干装置的进口。
CN201510981747.4A 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质方法 Active CN105523676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510981747.4A CN105523676B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510981747.4A CN105523676B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质方法
CN201711427252.2A CN108275815B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质系统及方法
CN201711427339.XA CN108275816B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质装置及方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201711427339.XA Division CN108275816B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质装置及方法
CN201711427252.2A Division CN108275815B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质系统及方法

Publications (2)

Publication Number Publication Date
CN105523676A true CN105523676A (zh) 2016-04-27
CN105523676B CN105523676B (zh) 2018-01-23

Family

ID=55766258

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201510981747.4A Active CN105523676B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质方法
CN201711427252.2A Active CN108275815B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质系统及方法
CN201711427339.XA Active CN108275816B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质装置及方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201711427252.2A Active CN108275815B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质系统及方法
CN201711427339.XA Active CN108275816B (zh) 2015-12-23 2015-12-23 一种高盐废水零排放蒸发结晶盐分质装置及方法

Country Status (1)

Country Link
CN (3) CN105523676B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751577A (zh) * 2018-05-26 2018-11-06 江苏源拓环境科技有限公司 一种煤化工行业废水近零排放尾水处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850920A (zh) * 2018-12-04 2019-06-07 中国中轻国际工程有限公司 一种盐硝体系卤水蒸发生产盐硝工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139932A1 (en) * 2004-05-07 2009-06-04 William Haas Water purification system and method using reverse osmosis reject stream in an electrodeionization unit
JP2009132582A (ja) * 2007-11-30 2009-06-18 Hakatako Kanri Kk 製塩方法
CN104445788A (zh) * 2014-12-24 2015-03-25 新疆德蓝股份有限公司 高含盐废水处理回用零排放集成工艺
CN204251456U (zh) * 2014-11-26 2015-04-08 深圳能源资源综合开发有限公司 采用蒸发结晶实现煤化工高浓盐水资源化利用的装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070272A (zh) * 2010-12-07 2011-05-25 华电水处理技术工程有限公司 一种废水蒸发浓缩工艺及装置系统
CN102417193B (zh) * 2011-10-11 2013-06-26 山东东岳氟硅材料有限公司 一种提高膜法除硝能力的生产方法
CN103172088A (zh) * 2013-04-11 2013-06-26 南风化工集团股份有限公司 Mvr结晶蒸发器在硫酸钠和氯化钠分离工艺中的应用
ES2545696B1 (es) * 2014-03-11 2016-06-29 Hpd Process Engineering, S.A.U. Procedimiento de optimización energética en sistemas de evaporación y cristalización de sales
CN104692575B (zh) * 2014-12-22 2017-02-22 内蒙古久科康瑞环保科技有限公司 一种高含盐废水的结晶处理方法及其装置
CN105036222B (zh) * 2015-08-19 2017-06-30 石家庄工大化工设备有限公司 一种高盐废水的回收处理方法
CN105110542B (zh) * 2015-09-14 2017-03-22 济宁璟华环保科技有限公司 工业高盐废水零排放分盐提纯方法
CN105152443B (zh) * 2015-09-22 2017-12-22 江苏中圣高科技产业有限公司 高含盐废水零排放结晶盐资源回收的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139932A1 (en) * 2004-05-07 2009-06-04 William Haas Water purification system and method using reverse osmosis reject stream in an electrodeionization unit
JP2009132582A (ja) * 2007-11-30 2009-06-18 Hakatako Kanri Kk 製塩方法
CN204251456U (zh) * 2014-11-26 2015-04-08 深圳能源资源综合开发有限公司 采用蒸发结晶实现煤化工高浓盐水资源化利用的装置
CN104445788A (zh) * 2014-12-24 2015-03-25 新疆德蓝股份有限公司 高含盐废水处理回用零排放集成工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751577A (zh) * 2018-05-26 2018-11-06 江苏源拓环境科技有限公司 一种煤化工行业废水近零排放尾水处理方法

Also Published As

Publication number Publication date
CN108275815B (zh) 2020-07-31
CN108275815A (zh) 2018-07-13
CN105523676B (zh) 2018-01-23
CN108275816A (zh) 2018-07-13
CN108275816B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN103319042B (zh) 高盐复杂废水回用与零排放集成设备及工艺
CN108203197B (zh) 一种含盐废水的处理系统
CN100515957C (zh) 废液处理方法及系统
CN105502787B (zh) 一种高含盐废水的零排放处理方法
CN105000737B (zh) 一种工业污水处理系统及污水处理方法
CN104692574A (zh) 一种高含盐废水的处理方法
CN106830465B (zh) 一种含盐废水的分盐及纯化回收方法
CN105384300B (zh) 一种多级电驱动离子膜处理高含盐废水的方法
CN102774994B (zh) 组合式膜分离回收含盐废水工艺
CN106966535A (zh) 浓盐水零排放膜浓缩与分质结晶工艺及设备
CN103172212A (zh) 一种木质素生产废水的处理方法
CN105523676A (zh) 一种高盐废水零排放蒸发结晶盐分质方法
CN104058525A (zh) 含有高氨氮和硝态氮的生产污水回收处理方法
CN105152405A (zh) 一种烟气脱硫系统排放的脱硫废水的处理方法及设备
CN205222911U (zh) 一种煤化工浓盐水零排放及制盐装置
CN105174587B (zh) 一种制浆尾水回用零排放处理方法
CN105198141A (zh) 一种高温高盐废水的零排放方法
CN104909494A (zh) 一种工业高浓盐水除杂提纯工艺及其专用设备
CN204803133U (zh) 一种工业高浓盐水除杂提纯工艺的专用设备
CN105036444B (zh) 减量化和资源化中水回用零排放处理工艺
CN204939142U (zh) 一种烟气脱硫系统排放的脱硫废水的处理设备
CN107954561A (zh) 超临界协同反渗透系统及其实现海水淡化零排放的方法
CN205313300U (zh) 一种高含盐废水的零排放处理系统
CN214400129U (zh) 一种煤化工反渗透浓水单质盐回收系统
CN109665659B (zh) 一种大豆制油废水的处理回用系统与工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 100076 9th Floor, A8 Building, 20 Guangde Street, Jiugong Town, Daxing District, Beijing

Patentee after: Beckett Group Co., Ltd.

Address before: 100076 Xiushui Garden Building No. 36, Jiugong Town, Daxing District, Beijing

Patentee before: BGT INTERNATIONAL ENVIRONMENT TECHNOLOGY CO., LTD.