CN105522259A - Welding method combining narrow gap argon arc automatic welding and submerged arc automatic welding for thick-walled pipes - Google Patents
Welding method combining narrow gap argon arc automatic welding and submerged arc automatic welding for thick-walled pipes Download PDFInfo
- Publication number
- CN105522259A CN105522259A CN201610075518.0A CN201610075518A CN105522259A CN 105522259 A CN105522259 A CN 105522259A CN 201610075518 A CN201610075518 A CN 201610075518A CN 105522259 A CN105522259 A CN 105522259A
- Authority
- CN
- China
- Prior art keywords
- welding
- pipeline
- arc
- section
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 title claims abstract description 28
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052786 argon Inorganic materials 0.000 title claims abstract description 13
- 239000013078 crystal Substances 0.000 abstract 1
- 238000012797 qualification Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000010953 base metal Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/18—Submerged-arc welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/06—Tubes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
- Arc Welding In General (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种厚壁管道窄间隙氩弧自动焊与埋弧自动焊结合的焊接方法。 The invention relates to a welding method combining argon arc automatic welding with narrow gap automatic welding and submerged arc automatic welding for thick-walled pipelines.
背景技术 Background technique
目前火电和核电管道配管项目过程中,存在大量的厚壁管道的焊接,传统焊接方法采用手工氩弧焊+手工电焊条焊接打底,打底厚度10-30mm。打底焊接后的焊口通过脱氢、并预热到要求温度、通过埋弧自动焊的方法进行填充焊接直至盖面。打底焊接采用传统的手工方法进行。手工焊接具有一定的灵活性,但另一方面焊接效率比较低、焊工工作强度很大,对焊工的技术要求很高,焊口质量对焊工的依赖性也很大,造成焊口合格率的不稳定。且传统埋弧自动焊由于焊接电流大,热输入及线能量大,使得焊接过程中层间温度维持在较高的范围内,导致焊缝和热影响区晶粒粗大,影响焊接接头的质量。 At present, in the process of thermal power and nuclear power pipeline piping projects, there are a large number of welding of thick-walled pipelines. The traditional welding method uses manual argon arc welding + manual electrode welding to make a base, and the thickness of the base is 10-30mm. After bottom welding, the welding joint is dehydrogenated, preheated to the required temperature, and filled and welded to the cover surface by submerged arc automatic welding. Backing welding is carried out using traditional manual methods. Manual welding has a certain degree of flexibility, but on the other hand, the welding efficiency is relatively low, the work intensity of the welder is very high, the technical requirements for the welder are very high, and the quality of the weld is also very dependent on the welder, resulting in the poor pass rate of the weld. Stablize. Moreover, due to the large welding current, large heat input and heat input of traditional submerged arc automatic welding, the interlayer temperature is maintained in a relatively high range during the welding process, resulting in coarse grains in the weld seam and heat-affected zone, which affects the quality of the welded joint.
发明内容 Contents of the invention
本发明的目的在于克服上述不足,提供一种焊接质量较高,焊接效率较高的厚壁管道窄间隙氩弧自动焊与埋弧自动焊结合的焊接方法。 The purpose of the present invention is to overcome the above disadvantages and provide a welding method combining argon arc automatic welding with narrow gap automatic submerged arc welding for thick-walled pipes with high welding quality and high welding efficiency.
本发明的目的是这样实现的: The purpose of the present invention is achieved like this:
一种厚壁管道窄间隙氩弧自动焊与埋弧自动焊结合的焊接方法,其特征在于采用窄间隙氩弧自动焊对左右布置的待焊接的第一管道和第二管道进行焊接,所述第一管道的右端面以及第二管道的的左端面具有相同的待焊剖面,待焊剖面从外至内依次包括第一斜段、第一圆弧段、第二斜段、第二圆弧段、横段以及竖段,所述第一斜段的外端至竖段的横向距离为36mm,所述第一斜段与竖段的之间的夹角为6°,所述第一圆弧段的半径为5mm,所述第二斜段与竖段的之间的夹角为2°,所述第二圆弧段的半径为3.5mm; A welding method combining narrow-gap argon-arc automatic welding and submerged arc automatic welding for thick-walled pipelines, characterized in that narrow-gap argon-arc automatic welding is used to weld the first and second pipelines to be welded arranged left and right. The right end face of the first pipe and the left end face of the second pipe have the same cross-section to be welded, and the cross-section to be welded includes the first oblique section, the first arc section, the second oblique section, and the second arc from outside to inside. section, horizontal section and vertical section, the lateral distance from the outer end of the first oblique section to the vertical section is 36mm, the angle between the first oblique section and the vertical section is 6°, and the first circle The radius of the arc section is 5mm, the angle between the second oblique section and the vertical section is 2°, and the radius of the second arc section is 3.5mm;
一种厚壁管道窄间隙氩弧自动焊与埋弧自动焊结合的焊接方法,包括以下步骤: A welding method combining narrow-gap argon-arc automatic welding and submerged arc automatic welding for thick-walled pipes, comprising the following steps:
步骤一、将第一管道和第二管道待焊接的端面靠近,使得第一管道的竖段和第二管道的竖段贴合; Step 1, bringing the end faces of the first pipe and the second pipe to be welded close together so that the vertical section of the first pipe and the vertical section of the second pipe fit together;
步骤二、在第一管道或者第二管道上安装窄间隙氩弧自动焊焊机,对第一管道的竖段和第二管道之间的环缝进行全位置焊接直至第一管道和第二管道的第二斜段外端形成弧面的内焊缝; Step 2. Install a narrow-gap argon arc automatic welding machine on the first pipeline or the second pipeline, and perform all-position welding on the circular seam between the vertical section of the first pipeline and the second pipeline until the first pipeline and the second pipeline The outer end of the second oblique section forms an arc-shaped inner weld;
步骤三、在内焊缝外的第一管道和第二管道之间的环缝进行埋弧自动焊直至第一管道和第二管道的第一斜段外端形成弧面的外焊缝; Step 3, performing submerged arc automatic welding on the circular seam between the first pipe and the second pipe outside the inner weld until the outer end of the first inclined section of the first pipe and the second pipe forms an outer weld of the arc surface;
窄间隙氩弧自动焊为全位置焊接,实现双焊丝正负360度焊接循环方式, Narrow-gap argon-arc automatic welding is all-position welding, which realizes the positive and negative 360-degree welding cycle mode of double welding wires,
在全位置焊接过程中,根据不同位置的焊接特点,将整圈粗略的划分为四个区域,分别为平焊位、下坡焊位、仰焊位和上坡焊位; In the process of all-position welding, according to the welding characteristics of different positions, the whole circle is roughly divided into four areas, namely flat welding position, downhill welding position, upward welding position and uphill welding position;
在平焊位时:基值电流160A,峰值电流260A,焊接速度85mm/min,送丝速度90mm/min,电弧电压9.2V; In flat welding position: base current 160A, peak current 260A, welding speed 85mm/min, wire feeding speed 90mm/min, arc voltage 9.2V;
在下坡焊位时:基值电流140A,峰值电流260A,焊接速度80mm/min,送丝速度80mm/min,电弧电压9V; In downhill welding position: base current 140A, peak current 260A, welding speed 80mm/min, wire feeding speed 80mm/min, arc voltage 9V;
在仰焊位时:基值电流140A,峰值电流240A,焊接速度85mm/min,送丝速度80mm/min,电弧电压8.6V; In supine welding position: base current 140A, peak current 240A, welding speed 85mm/min, wire feeding speed 80mm/min, arc voltage 8.6V;
在上坡焊位时:基值电流140A,峰值电流260A,焊接速度85mm/min,送丝速度85mm/min,电弧电压9V。 In the uphill welding position: the base current is 140A, the peak current is 260A, the welding speed is 85mm/min, the wire feeding speed is 85mm/min, and the arc voltage is 9V.
与现有技术相比,本发明的有益效果是: Compared with prior art, the beneficial effect of the present invention is:
本发明采用窄间隙氩弧自动焊打底+埋弧自动焊填充、盖面:解决了手工焊打底现状,实现打底焊接自动化。并结合传统埋弧自动焊进一步提高焊接效率。适应于工厂化管道预制和高焊接质量要求的焊件。因此,本发明厚壁管道窄间隙氩弧自动焊与埋弧自动焊结合的焊接方法具有降低焊接线能量,有效减小焊缝及热影响区晶粒尺寸,提高焊接质量和焊接一次合格率,并降低焊工劳动强度的优点。 The present invention adopts narrow-gap argon arc automatic welding for bottoming + submerged arc automatic welding for filling and covering: solving the current situation of manual welding for bottoming and realizing automatic bottoming welding. And combined with traditional submerged arc automatic welding to further improve welding efficiency. Weldments suitable for factory pipe prefabrication and high welding quality requirements. Therefore, the welding method of the present invention combining narrow-gap argon-arc automatic welding and submerged arc automatic welding of thick-walled pipes has the advantages of reducing the welding heat energy, effectively reducing the grain size of the weld seam and the heat-affected zone, improving the welding quality and the first pass rate of welding, And the advantages of reducing the labor intensity of welders.
附图说明 Description of drawings
图1为本发明的结构示意图。 Fig. 1 is a structural schematic diagram of the present invention.
图2为窄间隙氩弧自动焊的各个配件的连接图。 Fig. 2 is a connection diagram of various accessories of the narrow gap argon arc automatic welding.
图3为全位置焊接的分区示意图。 Figure 3 is a schematic diagram of the divisions of all-position welding.
图4为窄间隙氩弧自动焊时的焊枪位置、焊接时间与电弧电流的关系图。 Fig. 4 is a diagram showing the relationship between welding torch position, welding time and arc current during narrow gap argon arc automatic welding.
其中: in:
第一管道1、第二管道2、内焊缝3、外焊缝4。 The first pipe 1, the second pipe 2, the inner weld 3, and the outer weld 4.
具体实施方式 detailed description
参见图1,本发明涉及的一种厚壁管道窄间隙氩弧自动焊与埋弧自动焊结合的焊接方法,先后采用窄间隙氩弧自动焊以及埋弧自动焊对左右布置的待焊接的第一管道1和第二管道2进行焊接,所述第一管道1的右端面以及第二管道2的的左端面具有相同的待焊剖面,待焊剖面从外至内依次包括第一斜段、第一圆弧段、第二斜段、第二圆弧段、横段以及竖段,所述第一斜段的外端至竖段的横向距离为36mm,所述第一斜段与竖段的之间的夹角为6°,所述第一圆弧段的半径为5mm,所述第二斜段与竖段的之间的夹角为2°,所述第二圆弧段的半径为3.5mm。 Referring to Fig. 1, the present invention relates to a welding method combining narrow-gap argon-arc automatic welding and submerged arc automatic welding for thick-walled pipes. A pipeline 1 and a second pipeline 2 are welded, and the right end surface of the first pipeline 1 and the left end surface of the second pipeline 2 have the same section to be welded, and the section to be welded sequentially includes the first oblique section, The first arc section, the second oblique section, the second arc section, the horizontal section and the vertical section, the lateral distance from the outer end of the first oblique section to the vertical section is 36mm, and the first oblique section and the vertical section The included angle between them is 6°, the radius of the first arc segment is 5mm, the included angle between the second oblique segment and the vertical segment is 2°, the radius of the second arc segment is 3.5mm.
一种厚壁管道窄间隙氩弧自动焊与埋弧自动焊结合的焊接方法,包括以下步骤: A welding method combining narrow-gap argon-arc automatic welding and submerged arc automatic welding for thick-walled pipes, comprising the following steps:
步骤一、将第一管道1和第二管道2待焊接的端面靠近,使得第一管道1的竖段和第二管道2的竖段贴合; Step 1, bringing the end faces of the first pipeline 1 and the second pipeline 2 to be welded close together so that the vertical section of the first pipeline 1 and the vertical section of the second pipeline 2 fit together;
步骤二、在第一管道1或者第二管道2上安装窄间隙氩弧自动焊焊机,连接焊接时的各个配件(如图2所示的气瓶、焊接电源、热丝电源、水箱、控制器、操作盒、焊机机头等,图2中的工件即第一管道1和第二管道2),对第一管道1的竖段和第二管道2之间的环缝进行全位置焊接直至第一管道1和第二管道2的第二斜段外端形成弧面的内焊缝3。 Step 2. Install a narrow-gap argon arc automatic welding machine on the first pipeline 1 or the second pipeline 2, and connect the various accessories during welding (gas cylinder, welding power supply, hot wire power supply, water tank, control device, operation box, welding machine head, etc., the workpieces in Figure 2 are the first pipeline 1 and the second pipeline 2), and perform all-position welding on the circumferential seam between the vertical section of the first pipeline 1 and the second pipeline 2 Up to the outer ends of the second oblique section of the first pipe 1 and the second pipe 2 form arc-shaped inner welds 3 .
步骤三、在内焊缝3外的第一管道1和第二管道2之间的环缝进行埋弧自动焊直至第一管道1和第二管道2的第一斜段外端形成弧面的外焊缝4。 Step 3: Perform submerged arc automatic welding on the circular seam between the first pipe 1 and the second pipe 2 outside the inner weld 3 until the outer ends of the first inclined section of the first pipe 1 and the second pipe 2 form an arc surface Outer weld 4.
窄间隙氩弧自动焊为全位置焊接,采用弧压传感技术控制弧长在上下及两侧一致,实现自动调节电极位置,从而达到有效控制焊接成形。实现双焊丝正负360度焊接循环方式,减少焊接接头。较传统的正负180度焊接方式效率提高一倍。焊接时采用电弧电流峰值/基值法,通过峰值电流焊接坡口两侧壁,及两端停止时取峰值电流,使母材充分熔透;而在电极摇动过程中采用基值电流,从而达到控制焊接热输入的目的。由于自动焊较手工焊适应性相对较差,对工艺参数的稳定和电弧空间位置的控制要求非常高。且上一道焊缝成形外观质量对后道焊缝成形影响很大,工艺参数的稳定精度和电弧的准确直接影响到层间及侧壁之间的熔合质量。 Narrow-gap argon arc automatic welding is all-position welding, using arc pressure sensing technology to control the arc length to be consistent up and down and on both sides, to realize automatic adjustment of electrode position, so as to achieve effective control of welding shape. Realize the positive and negative 360-degree welding cycle mode of double welding wire, and reduce welding joints. Compared with the traditional plus or minus 180 degree welding method, the efficiency is doubled. The arc current peak value/base value method is adopted during welding, the two side walls of the groove are welded by the peak current, and the peak current is taken when both ends stop, so that the base metal is fully penetrated; while the base value current is used during the electrode shaking process, so as to achieve The purpose of controlling welding heat input. Since the adaptability of automatic welding is relatively poor compared with manual welding, the requirements for the stability of process parameters and the control of the spatial position of the arc are very high. Moreover, the appearance quality of the previous weld formation has a great influence on the subsequent weld formation. The stable accuracy of process parameters and the accuracy of the arc directly affect the fusion quality between layers and side walls.
考虑到全位置焊接,在不同焊接位置的工艺差异性,对整个圆周区域分段控制,采用4点或16点输入线性修正技术。在全位置焊接过程中,根据不同位置的焊接特点,参见图3,将整圈粗略的划分为四个区域,分别为平焊位、下坡焊位、仰焊位和上坡焊位。伴随着焊接位置的变化,峰值/基值电流、送丝速度、电弧电压、机头行走速度(焊接速度)等焊接参数在圆周不同位置需进行不同设置。 Considering all-position welding and process differences at different welding positions, the entire circumference area is controlled segmentally, and 4-point or 16-point input linear correction technology is used. In the process of all-position welding, according to the welding characteristics of different positions, see Figure 3, the whole circle is roughly divided into four areas, namely flat welding position, downhill welding position, supine welding position and uphill welding position. Along with the change of welding position, welding parameters such as peak/base value current, wire feeding speed, arc voltage, head walking speed (welding speed) need to be set differently at different positions of the circumference.
在平焊位时:基值电流160A,峰值电流260A,焊接速度85mm/min,送丝速度90mm/min,电弧电压9.2V; In flat welding position: base current 160A, peak current 260A, welding speed 85mm/min, wire feeding speed 90mm/min, arc voltage 9.2V;
在下坡焊位时:基值电流140A,峰值电流260A,焊接速度80mm/min,送丝速度80mm/min,电弧电压9V; In downhill welding position: base current 140A, peak current 260A, welding speed 80mm/min, wire feeding speed 80mm/min, arc voltage 9V;
在仰焊位时:基值电流140A,峰值电流240A,焊接速度85mm/min,送丝速度80mm/min,电弧电压8.6V; In supine welding position: base current 140A, peak current 240A, welding speed 85mm/min, wire feeding speed 80mm/min, arc voltage 8.6V;
在上坡焊位时:基值电流140A,峰值电流260A,焊接速度85mm/min,送丝速度85mm/min,电弧电压9V。 In the uphill welding position: the base current is 140A, the peak current is 260A, the welding speed is 85mm/min, the wire feeding speed is 85mm/min, and the arc voltage is 9V.
上述的各项焊接参数均为线性变化。 The above welding parameters are all linear changes.
在全位置焊接过程中,熔池主要受到电弧力、表面张力及重量作用。在平焊位和上坡焊由于焊接成型好,可以适当增加焊接规范。下坡焊焊位置在电弧热的作用下,熔池具有下趟趋势,造成实际焊接厚度增大,未焊透缺陷几率增大。通过降低焊接速度,降低电弧电压,增加峰值电流可以有效增加焊缝熔深。在仰焊位置,特别是6点钟位置的焊缝受重力作用,焊缝塌陷倾向最大。通过降低电弧电压,增大焊接速度,有效抑制焊缝塌陷现象。 During the all-position welding process, the molten pool is mainly affected by arc force, surface tension and weight. In the flat welding position and uphill welding, due to the good welding shape, the welding specification can be appropriately increased. Under the action of arc heat at the downhill welding position, the molten pool has a downward trend, resulting in an increase in the actual welding thickness and an increase in the probability of incomplete penetration defects. By reducing the welding speed, reducing the arc voltage, and increasing the peak current can effectively increase the weld penetration. In the overhead welding position, especially the weld at the 6 o'clock position is affected by gravity, and the weld has the greatest tendency to collapse. By reducing the arc voltage and increasing the welding speed, the phenomenon of weld collapse can be effectively suppressed.
焊接前通过对整个焊接过程参数的设定,根据焊接特性焊接参数在全位置实现自动调节,从而保证焊接成型质量。 By setting the parameters of the whole welding process before welding, the welding parameters can be automatically adjusted in all positions according to the welding characteristics, so as to ensure the quality of welding forming.
参见图4,可以看出焊枪位置的运动轨迹,以及相应时间的电弧电流。 Referring to Figure 4, we can see the trajectory of the position of the welding torch and the arc current at the corresponding time.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610075518.0A CN105522259A (en) | 2016-02-03 | 2016-02-03 | Welding method combining narrow gap argon arc automatic welding and submerged arc automatic welding for thick-walled pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610075518.0A CN105522259A (en) | 2016-02-03 | 2016-02-03 | Welding method combining narrow gap argon arc automatic welding and submerged arc automatic welding for thick-walled pipes |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105522259A true CN105522259A (en) | 2016-04-27 |
Family
ID=55764969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610075518.0A Pending CN105522259A (en) | 2016-02-03 | 2016-02-03 | Welding method combining narrow gap argon arc automatic welding and submerged arc automatic welding for thick-walled pipes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105522259A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110303261A (en) * | 2019-06-26 | 2019-10-08 | 江苏众信绿色管业科技有限公司 | A kind of oil-gas transportation stainless steel pipes all-position welding method |
CN111482680A (en) * | 2020-04-21 | 2020-08-04 | 西安热工研究院有限公司 | Groove and welding method for narrow gap welding of thick-walled pipeline |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101077547A (en) * | 2006-08-25 | 2007-11-28 | 中国核工业第二三建设公司 | Large posted sides pipeline narrow gap tungsten electrode noble gas protecting all-position automatic soldering method |
CN101164729A (en) * | 2006-10-20 | 2008-04-23 | 上海动力设备有限公司 | Pipe-shell type heat converter pipe plate and hemispherical closing head single-side welding narrow gap welding technology |
CN101972884A (en) * | 2010-09-09 | 2011-02-16 | 中广核工程有限公司 | Automatic welding method of nuclear island main pipes |
CN102233474A (en) * | 2010-05-07 | 2011-11-09 | 中国海洋石油总公司 | Argon arc welding process for narrow gap hot wire |
CN104002028A (en) * | 2014-05-13 | 2014-08-27 | 江苏科技大学 | Welding method for arc-rocking narrow-gap one-side welding with back formation |
CN104096953A (en) * | 2013-04-04 | 2014-10-15 | 阿尔斯通技术有限公司 | Method for welding rotors for power generation |
-
2016
- 2016-02-03 CN CN201610075518.0A patent/CN105522259A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101077547A (en) * | 2006-08-25 | 2007-11-28 | 中国核工业第二三建设公司 | Large posted sides pipeline narrow gap tungsten electrode noble gas protecting all-position automatic soldering method |
CN101164729A (en) * | 2006-10-20 | 2008-04-23 | 上海动力设备有限公司 | Pipe-shell type heat converter pipe plate and hemispherical closing head single-side welding narrow gap welding technology |
CN102233474A (en) * | 2010-05-07 | 2011-11-09 | 中国海洋石油总公司 | Argon arc welding process for narrow gap hot wire |
CN101972884A (en) * | 2010-09-09 | 2011-02-16 | 中广核工程有限公司 | Automatic welding method of nuclear island main pipes |
CN104096953A (en) * | 2013-04-04 | 2014-10-15 | 阿尔斯通技术有限公司 | Method for welding rotors for power generation |
CN104002028A (en) * | 2014-05-13 | 2014-08-27 | 江苏科技大学 | Welding method for arc-rocking narrow-gap one-side welding with back formation |
Non-Patent Citations (1)
Title |
---|
刘立君等: "厚壁管窄间隙全位置焊接侧壁熔透技术研究", 《电焊机》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110303261A (en) * | 2019-06-26 | 2019-10-08 | 江苏众信绿色管业科技有限公司 | A kind of oil-gas transportation stainless steel pipes all-position welding method |
CN110303261B (en) * | 2019-06-26 | 2021-09-17 | 江苏众信绿色管业科技有限公司 | All-position welding method for stainless steel pipeline for oil and gas transmission |
CN111482680A (en) * | 2020-04-21 | 2020-08-04 | 西安热工研究院有限公司 | Groove and welding method for narrow gap welding of thick-walled pipeline |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105537737B (en) | A kind of liquefied natural gas storage tank founds the narrow gap welding method of seam position | |
CN103737158B (en) | A kind of electric arc welding gun with double consumable electrodes and a welding method thereof controlled based on heat input | |
CN109732210B (en) | A galvanometer laser-hot wire composite pipeline automatic welding method and device | |
CN104014909B (en) | Method for welding pipeline | |
CN102151959A (en) | High-speed welding production process and device for thin-walled steel tubes | |
CN105195872A (en) | Double-sided submerged arc back-chipping-free welding technology for pipeline steel | |
CN107442907A (en) | A kind of Steel Bridge U rib plate two-sided welding method based on deep molten gas shield welding | |
CN105252114A (en) | Pipeline welding process for sloping field | |
CN104668744A (en) | Automatic TIG (tungsten inert gas) welding process for thick-wall nuclear fusion vacuum chamber | |
CN203918200U (en) | A kind of copper liner | |
CN108436234B (en) | A method and device for synergistic welding of double heat sources for large thermal conductivity mismatched metal materials | |
CN112171029A (en) | Double-wire submerged-arc welding back-gouging-free welding method for boiler drum | |
CN205271298U (en) | Axle type coaxial butt joint welder of work piece dress | |
CN105522259A (en) | Welding method combining narrow gap argon arc automatic welding and submerged arc automatic welding for thick-walled pipes | |
CN102390002B (en) | Automatic submerged-arc welding method for large insertion-type adapting pipe on cone | |
CN106238993A (en) | One is applicable to penstock stiffening ring automatic welding system and welding method | |
CN206474820U (en) | The narrow gap welding groove of sheet material | |
CN105522260A (en) | Narrow-gap argon arc automatic welding method of thick-wall pipes | |
CN112122750A (en) | A kind of circumferential seam butt welding method of seamless steel pipe | |
CN109024903B (en) | Hemispherical support joint and manufacturing process thereof | |
CN108890092B (en) | Method of single-sided welding and double-sided forming of molten electrode MAG welding tube sheet | |
CN101323041B (en) | Narrow-gap pulse melting extreme gas shielded automatic welding method for petroleum kelly | |
CN103752994A (en) | Circular seam welding process of thin-wall container | |
CN110465727A (en) | The welding method of T word column steel plate | |
CN108672904B (en) | Pipeline submerged arc welding wire adding device and wire adding welding process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160427 |