CN105489908A - 一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法 - Google Patents

一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法 Download PDF

Info

Publication number
CN105489908A
CN105489908A CN201610024275.8A CN201610024275A CN105489908A CN 105489908 A CN105489908 A CN 105489908A CN 201610024275 A CN201610024275 A CN 201610024275A CN 105489908 A CN105489908 A CN 105489908A
Authority
CN
China
Prior art keywords
humic acid
compound bio
bio charcoal
molysite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610024275.8A
Other languages
English (en)
Other versions
CN105489908B (zh
Inventor
袁浩然
邓丽芳
陈勇
阮颖英
程鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201610024275.8A priority Critical patent/CN105489908B/zh
Publication of CN105489908A publication Critical patent/CN105489908A/zh
Application granted granted Critical
Publication of CN105489908B publication Critical patent/CN105489908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种腐殖酸复合生物炭的制备方法,包括以下步骤:(1)将腐殖酸溶解于水中,用NaoH溶液调pH至10~11,搅拌使腐殖酸充分溶解;(2)在腐殖酸溶液中加入铁盐,搅拌后用NaoH溶液调pH至8~9,搅拌,充分反应后冷冻干燥,得固体粉末;(3)将固体粉末在惰性气体保护下热解,冷却后与KOH混合后,于900℃温度下热解反应2h,用盐酸溶液洗,抽滤清洗至中性,于60℃~100℃下干燥,即得腐殖酸复合生物炭。本发明采用廉价易得腐殖酸为原料,工艺简单、反应条件温和,制备出来的产品比表面积较大且性能稳定,电化学催化活性强,可广泛应用于锂离子电池、分子筛、催化剂、超级电容等及相关领域的基础理论研究。

Description

一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法
技术领域
本发明属于生物腐殖酸技术领域,具体涉及一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法。
背景技术
微生物燃料电池以微生物为阳极催化剂,直接将储存在生物质中的化学能转化成电能。与传统燃料电池相比,具有能量转化率高、无污染、燃料来源广泛、反应条件温和等众多优点。而空气阴极微生物燃料电池,将阴极直接暴露在空气中,减少了曝气成本,可降低运行维护成本,结构简单,为微生物燃料电池的产业化应用打下了坚实的基础。
目前,微生物燃料电池发展的制约因素是输出功率密度较低。其中,以廉价的氧气作为阴极电子受体,通过添加适当的阴极催化剂提高氧气的还原速率,可大幅度的提高电池的输出功率密度、改善电池性能。但目前单室空气阴极微生物燃料电池阴极大多使用以铂为代表的贵金属为催化剂,这类催化剂具有电化学活性高,产电性能高等特点,单室其昂贵的价格限制了其实际应用。而普通的催化剂材料如炭黑、碳纳米管等,电池的产电性能又不高。因此,开发一种高效且廉价易得的阴极催化剂,并由此获得廉价、高性能的微生物燃料电池是其产业化应用的关键技术。
发明内容
本发明的目的在于提供一种腐殖酸复合生物炭在微生物燃料电池中的应用,其广泛应用于锂离子电池、分子筛、催化剂、超级电容等及相关领域的基础理论研究。
为了实现上述发明目的,本发明的技术方案如下:
一种腐殖酸复合生物炭在微生物燃料电池中的应用。其广泛应用于锂离子电池、分子筛、催化剂、超级电容等及相关领域的基础理论研究。
优选地,所述腐殖酸复合生物炭作为微生物燃料电池阴极催化剂。
优选地,腐殖酸复合生物炭由如下方法制备,包括以下步骤:
(1)溶解腐殖酸:将腐殖酸溶解于水中,并用NaoH溶液调pH至10~11;
(2)腐殖酸与铁盐复合:在步骤(1)得到的腐殖酸溶液中逐滴加入铁盐,搅拌后,用NaoH溶液调pH至8~9,搅拌至充分反应后冷冻干燥,得腐殖酸铁盐复合生物炭的固体粉末;
(3)将步骤(2)所得固体粉末在氮气保护下900℃热解2h,冷却后与KOH混合后再于900℃热解反应2h进行活化,冷却,用盐酸溶液洗,搅拌,抽滤清洗至中性,于60℃~100℃下干燥,即得腐殖酸复合生物炭。本发明中用盐酸溶液清洗以去除游离的铁盐和碱。
进一步的,步骤(1)和步骤(2)中所述NaoH溶液的浓度为10mol/L。
进一步的,步骤(2)中所述铁盐选自硫酸铁、硝酸铁或氯化铁中的一种。
进一步的,腐殖酸与所述铁盐的质量比为15:1~30:1。
更进一步的,腐殖酸与所述铁盐的质量比为20:1。
进一步的,腐殖酸铁盐复合生物炭与KOH质量比为1:2~1:4。
更进一步的,腐殖酸铁盐复合生物炭与KOH质量比为1:3。
本发明的另一个目的在于提供一种腐殖酸复合生物炭的制备方法,本发明采用廉价易得腐殖酸为原料,工艺简单、成本较低、反应条件温和,制备出来的产品比表面积较大且性能稳定,电化学催化活性强,适用性广。
一种腐殖酸复合生物炭的制备方法,包括以下步骤:
(1)溶解腐殖酸:将腐殖酸溶解于水中,并用NaoH溶液调pH至10~11;
(2)腐殖酸与铁盐复合:在步骤(1)得到的腐殖酸溶液中逐滴加入铁盐,搅拌后,用NaoH溶液调pH至8~9,搅拌至充分反应后冷冻干燥,得腐殖酸铁盐复合生物炭的固体粉末;
(3)将步骤(2)所得固体粉末在氮气保护下900℃热解2h,冷却后与KOH混合后再于900℃热解反应2h进行活化,冷却,用盐酸溶液洗,搅拌,抽滤清洗至中性,于60℃~100℃下干燥,即得腐殖酸复合生物炭。
本发明的有益效果是:本发明采用廉价易得腐殖酸为原料,工艺简单、成本较低、反应条件温和,制备出来的产品比表面积较大且性能稳定,电化学催化活性强,适用性广,可广泛应用于锂离子电池、分子筛、催化剂、超级电容等及相关领域的基础理论研究。
附图说明
图1:实施例1和对比例1所得腐殖酸生物炭材料扫描电镜图;
图2:实施例1和对比例1所得腐殖酸生物炭材料电化学催化性能对比图;
图3:实施例2、3、4所得腐殖酸复合生物炭电化学催化性能对比图;
图4:实施例2、3、4所得腐殖酸复合生物炭作为微生物燃料电池阴极催化剂产电效果图。
具体实施方式
下面结合具体实例,进一步阐明本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。
除特别说明,本发明使用的设备和试剂为本技术领域常规市购产品。腐殖酸购于Sigma-Aldrich,St.Louis,MO,USA。
一种腐殖酸复合生物炭的制备方法,包括以下步骤:
(1)溶解腐殖酸:将腐殖酸溶解于水中,并用NaoH溶液调pH至10~11;
(2)腐殖酸与铁盐复合:在步骤(1)得到的腐殖酸溶液中逐滴加入铁盐,搅拌后,用NaoH溶液调pH至8~9,搅拌至充分反应后冷冻干燥,得腐殖酸铁盐复合生物炭固体粉末;
(3)将步骤(2)所得固体粉末在氮气保护下900℃热解2h,冷却后与KOH混合后再于900℃热解反应2h进行活化,冷却,用盐酸溶液洗,搅拌,抽滤清洗至中性,于60℃~100℃下干燥,即得腐殖酸复合生物炭。
实施例1
参照上述实验步骤:
腐殖酸复合生物炭的制备(FZS-B+Fe):10g腐殖酸溶于50mL去离子水中,先用10mol/LNaOH溶液调pH值至10.5,磁力搅拌4h;0.5gFe(NO)3·9H2O溶于2ml超纯水中,随后逐滴加入到上述腐殖酸溶液中。大力搅拌后用NaoH溶液调pH至9,磁力搅拌14h,充分反应后冷冻干燥,将所得固体粉末在氮气保护下900℃热解2h,冷却,用盐酸溶液洗,磁力搅拌器搅拌12h,抽滤并用去离子水清洗至中性,于60℃~100℃下干燥得腐殖酸复合生物炭(图1b),图1b为实施例1所得腐殖酸生物炭材料扫描电镜图。
对比例1
参照上述实验步骤:
腐殖酸生物炭的制备(FZS-B):10g腐殖酸溶于50mL去离子水中,先用10mol/LNaOH溶液调pH值至10.5,磁力搅拌器搅拌4h后,采用700rad/s转速离心15min,冷冻干燥,随后,将所得固体于以氮气为保护气的管式炉中900°烧2h,冷却后采用6mol/L盐酸溶液酸洗,磁力搅拌器搅拌12h,再以纯水水清洗并抽滤,于60℃~100℃下干燥得到腐殖质生物炭,研磨成粉末即得腐殖质生物炭(图1a),图1a为实施例1所得腐殖酸生物炭材料扫描电镜图。
实施例1与对比例1比较,经循环伏安扫描发现,腐殖酸生物炭复合了铁之后,其氧化还原电位向正的方向发生了较大的位移,即其电化学性能有了较大的提升,如图2所示,图2为实施例1和对比例1所得腐殖酸生物炭材料电化学催化性能对比图。
实施例2
与实施例1相同,不同之处在于:
制备好的腐殖酸铁盐复合生物炭冷却后与KOH经质量比1:2混合后再于900℃管式炉中热解反应2h活化,冷却,用盐酸溶液洗,磁力搅拌器搅拌12h,抽滤并用去离子水清洗至中性,得FZS-B+Fe-1:2。
实施例3
与实施例2相同,不同之处在于:
用KOH活化时,腐殖酸铁盐复合生物炭与KOH的质量比为1:3,得FZS-B+Fe-1:3。
实施例4
与实施例2相同,不同之处在于:
用KOH活化时,腐殖酸铁盐复合生物炭与KOH的质量比为1:4,得FZS-B+Fe-1:4。
实施例2、实施例3和实施例4比较,经循环伏安扫描发现,腐殖酸复合生物炭经过KOH活化后,其电化学性能有了进一步的提升,其中实施例3即KOH与腐殖酸生物炭的质量比为3:1,所得的复合生物炭电化学性能最佳,如图3所示,图3为实施例2、3、4所得腐殖酸复合生物炭电化学催化性能对比图。
实施例5
将实施例2、3、4所得腐殖酸生物炭分别用于微生物燃料电池阴极催化剂,进行微生物燃料电池产电研究。
结果显示,腐殖酸复合生物炭经过KOH活化后,且腐殖酸复合生物炭与KOH质量比为1:3时,所得的腐殖质复合生物炭性能最佳,此时电池性能最佳,其输出电压最高,达0.54V,如图4所示,图4为实施例2、3、4所得腐殖酸复合生物炭作为微生物燃料电池阴极催化剂产电效果图。
实施例6
与实施例3相同,不同之处在于:
10g腐殖酸溶于50mL去离子水中,0.33gFe(NO)3·9H2O溶于2ml超纯水中。当由此条件制备的复合生物炭用于微生物燃料电池阴极催化剂时,其最大输出电压为0.50V。
实施例7
与实施例3相同,不同之处在于:
10g腐殖酸溶于50mL去离子水中,0.67gFe(NO)3·9H2O溶于2ml超纯水中。当由此条件制备的复合生物炭用于微生物燃料电池阴极催化剂时,其最大输出电压为0.51V。
实施例8
与实施例3相同,不同之处在于:
10g腐殖酸溶于50mL去离子水中,0.5gFeCl3溶于2ml超纯水中。当由此条件制备的复合生物炭用于微生物燃料电池阴极催化剂时,其最大输出电压为0.58V。
实施例9
与实施例3相同,不同之处在于:
10g腐殖酸溶于50mL去离子水中,0.5gFe2(SO4)3溶于2ml超纯水中。当由此条件制备的复合生物炭用于微生物燃料电池阴极催化剂时,其最大输出电压为0.49V。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利保护范围中。

Claims (10)

1.一种腐殖酸复合生物炭在微生物燃料电池中的应用。
2.根据权利要求1所述的腐殖酸复合生物炭在微生物燃料电池中的应用,其特征在于,所述腐殖酸复合生物炭作为微生物燃料电池阴极催化剂。
3.根据权利要求1所述的腐殖酸复合生物炭在微生物燃料电池中的应用中的腐殖酸复合生物炭由如下方法制备,其特征在于,包括以下步骤:
(1)溶解腐殖酸:将腐殖酸溶解于水中,并用NaoH溶液调pH至10~11;
(2)腐殖酸与铁盐复合:在步骤(1)得到的腐殖酸溶液中逐滴加入铁盐,搅拌后,用NaoH溶液调pH至8~9,搅拌至充分反应后冷冻干燥,得腐殖酸铁盐复合生物炭的固体粉末;
(3)将步骤(2)所得固体粉末在氮气保护下900℃热解2h,冷却后与KOH混合后再于900℃热解反应2h进行活化,冷却,用盐酸溶液洗,搅拌,抽滤清洗至中性,于60℃~100℃下干燥,即得腐殖酸复合生物炭。
4.根据权利要求3所述的腐殖酸复合生物炭的制备方法,其特征在于,步骤(1)和步骤(2)中所述NaoH溶液的浓度为10mol/L。
5.根据权利要求3所述的腐殖酸复合生物炭的制备方法,其特征在于,步骤(2)中所述铁盐选自硫酸铁、硝酸铁或氯化铁中的一种。
6.根据权利要求3所述的腐殖酸复合生物炭的制备方法,其特征在于,腐殖酸与所述铁盐的质量比为15:1~30:1。
7.根据权利要求6所述的腐殖酸复合生物炭的制备方法,其特征在于,腐殖酸与所述铁盐的质量比为20:1。
8.根据权利要求3所述的腐殖酸复合生物炭的制备方法,其特征在于,腐殖酸铁盐复合生物炭与KOH质量比为1:2~1:4。
9.根据权利要求8所述的腐殖酸复合生物炭的制备方法,其特征在于,腐殖酸铁盐复合生物炭与KOH质量比为1:3。
10.一种腐殖酸复合生物炭的制备方法,其特征在于,包括以下步骤:
(1)溶解腐殖酸:将腐殖酸溶解于水中,并用NaoH溶液调pH至10~11;
(2)腐殖酸与铁盐复合:在步骤(1)得到的腐殖酸溶液中逐滴加入铁盐,搅拌后,用NaoH溶液调pH至8~9,搅拌至充分反应后冷冻干燥,得腐殖酸铁盐复合生物炭的固体粉末;
(3)将步骤(2)所得固体粉末在氮气保护下900℃热解2h,冷却后与KOH混合后再于900℃热解反应2h进行活化,冷却,用盐酸溶液洗,搅拌,抽滤清洗至中性,于60℃~100℃下干燥,即得腐殖酸复合生物炭。
CN201610024275.8A 2016-01-13 2016-01-13 一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法 Active CN105489908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610024275.8A CN105489908B (zh) 2016-01-13 2016-01-13 一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610024275.8A CN105489908B (zh) 2016-01-13 2016-01-13 一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法

Publications (2)

Publication Number Publication Date
CN105489908A true CN105489908A (zh) 2016-04-13
CN105489908B CN105489908B (zh) 2018-05-01

Family

ID=55676752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610024275.8A Active CN105489908B (zh) 2016-01-13 2016-01-13 一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法

Country Status (1)

Country Link
CN (1) CN105489908B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400363A (zh) * 2018-03-09 2018-08-14 中国科学技术大学 一种电极材料及其制备方法和应用
CN109759438A (zh) * 2019-01-25 2019-05-17 湖南新九方科技有限公司 一种有机污染土壤的修复方法
CN110247091A (zh) * 2019-06-28 2019-09-17 昆明理工大学 一种加速电活性微生物进行胞外电子传递过程的方法
CN111129523A (zh) * 2019-12-17 2020-05-08 中国科学院广州能源研究所 一种基于厌氧发酵沼渣的超薄柔性炭纳米片氧还原催化剂的制备方法
CN111682229A (zh) * 2020-06-24 2020-09-18 中国海洋大学 一种腐殖酸-Fe复合改性阳极及其制备方法和应用、海底微生物燃料电池
CN112349943A (zh) * 2019-08-07 2021-02-09 中国石油天然气集团有限公司 一种腐殖质-金属氧化物复合改性电极及其制备与应用
CN112778538A (zh) * 2020-12-10 2021-05-11 兖矿集团有限公司 一种腐植酸络合物及其制备方法和应用
CN114538408A (zh) * 2020-11-24 2022-05-27 中国科学院广州能源研究所 一种微氧热解制备高电催化活性生物炭的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641117A (zh) * 2013-12-17 2014-03-19 中国科学院新疆理化技术研究所 以腐殖酸为原料制备活性炭材料的方法及其应用
CN104241662A (zh) * 2014-08-27 2014-12-24 中国科学院广州能源研究所 一种用于微生物燃料电池阴极催化剂的生物炭的制备方法
CN104617312A (zh) * 2015-01-29 2015-05-13 黑龙江大学 具有抑菌功能的微生物燃料电池阴极催化剂材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641117A (zh) * 2013-12-17 2014-03-19 中国科学院新疆理化技术研究所 以腐殖酸为原料制备活性炭材料的方法及其应用
CN104241662A (zh) * 2014-08-27 2014-12-24 中国科学院广州能源研究所 一种用于微生物燃料电池阴极催化剂的生物炭的制备方法
CN104617312A (zh) * 2015-01-29 2015-05-13 黑龙江大学 具有抑菌功能的微生物燃料电池阴极催化剂材料及制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400363A (zh) * 2018-03-09 2018-08-14 中国科学技术大学 一种电极材料及其制备方法和应用
CN109759438A (zh) * 2019-01-25 2019-05-17 湖南新九方科技有限公司 一种有机污染土壤的修复方法
CN110247091A (zh) * 2019-06-28 2019-09-17 昆明理工大学 一种加速电活性微生物进行胞外电子传递过程的方法
CN112349943A (zh) * 2019-08-07 2021-02-09 中国石油天然气集团有限公司 一种腐殖质-金属氧化物复合改性电极及其制备与应用
CN111129523A (zh) * 2019-12-17 2020-05-08 中国科学院广州能源研究所 一种基于厌氧发酵沼渣的超薄柔性炭纳米片氧还原催化剂的制备方法
CN111129523B (zh) * 2019-12-17 2021-02-19 中国科学院广州能源研究所 一种基于厌氧发酵沼渣的超薄柔性炭纳米片氧还原催化剂的制备方法
CN111682229A (zh) * 2020-06-24 2020-09-18 中国海洋大学 一种腐殖酸-Fe复合改性阳极及其制备方法和应用、海底微生物燃料电池
CN114538408A (zh) * 2020-11-24 2022-05-27 中国科学院广州能源研究所 一种微氧热解制备高电催化活性生物炭的方法
CN114538408B (zh) * 2020-11-24 2023-08-11 中国科学院广州能源研究所 一种微氧热解制备高电催化活性生物炭的方法
CN112778538A (zh) * 2020-12-10 2021-05-11 兖矿集团有限公司 一种腐植酸络合物及其制备方法和应用
CN112778538B (zh) * 2020-12-10 2022-06-28 兖矿集团有限公司 一种腐植酸络合物及其制备方法和应用

Also Published As

Publication number Publication date
CN105489908B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
CN105489908A (zh) 一种腐殖酸复合生物炭在微生物燃料电池中的应用及其制备方法
CN105289695B (zh) 一种石墨烯负载Co-N-C氧还原催化剂及其制备方法
Wang et al. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater
CN108649198B (zh) 一种钴嵌入的氮、硫共掺杂的碳纳米材料的合成方法
CN106881138A (zh) 一种氮磷共掺杂多孔生物质碳催化剂的制备方法
CN109256567A (zh) 一种过渡金属/氮掺杂竹节状碳纳米管的制备方法
CN103007975A (zh) 含氮碳材料的制备及作为氧还原电催化剂在燃烧电池中的应用
CN108615904B (zh) 一种钴酸镍空心球/氮化碳量子点复合材料及其制备方法和应用
CN108336374A (zh) 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN104979568A (zh) 一种燃料电池阴极催化剂及其制备方法
CN110400939A (zh) 一种生物质掺氮多孔碳氧还原催化剂的制备方法
CN104624218A (zh) 一种过渡金属氧还原反应催化剂的制备方法
CN110054168A (zh) 一种全pH值燃料电池阴极氧还原电催化剂的制备方法
CN112191260A (zh) 一种氮化碳纳米片-碳化钛-石墨烯三维复合电极催化剂的制备方法
CN103977829A (zh) 碳-氮包覆磁性氧化物纳米粒子的复合材料及其制备和应用
CN112968184A (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN114685805A (zh) 一种室温下直接合成电催化二氧化碳还原的mof材料的制备方法
CN113270602B (zh) 一种碳基生物阳极、其制备方法及微生物燃料电池
CN112076764A (zh) 镍掺杂的磁黄铁矿FeS纳米颗粒的制备方法及其应用
CN116845254A (zh) 碳纳米管/共价有机骨架化合物耦合聚苯胺导电聚合物的氧还原催化剂及其制备方法和应用
CN116454293A (zh) 一种非晶-多晶结构的金属氧化物-煤矸石催化剂的制备方法及应用
CN114225953B (zh) 一种核壳球型b、n、p共掺杂碳纳米球电催化剂及其制备方法和应用
CN113644284B (zh) 一种碳材料负载氟掺杂碳化铌纳米复合材料及其制备方法和应用
CN114725403A (zh) 一种微生物燃料电池阳极材料及其制备方法与应用
Ning et al. Fe/N codoped porous graphitic carbon derived from macadamia shells as an efficient cathode oxygen reduction catalyst in microbial fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant